+ Cripto

Molecular control of cell fate decision in pluripotent and
adult stem cells: from basic science toward therapy
Gabriella Minchiotti
INBB, Roma 24 Ottobre 2014
Convergent pathways in embryogenesis, oncogenesis and tissue
regeneration
Cancer Stem Cells
Embryonic Stem Cells
ONCOGENESIS EMBRYOGENESIS
Primary Tumor
Zygote
Blastocyst
Gastrula
Adult Stem Cells
Tissue Regeneration
Tissue
Regeneration
Adult Stem Cell
Activation/Differantiation
Metastasis
Mechanisms of cell lineage specification in mammals
TAC
TACs- Transit Amplifying Cells
Adapted S. Pece et al., BBA 2011
Role of local environmental cues in defining cell-type identity
Stem cell
Modified from Scadden D., Nature 2006
Signaling pathways involved in cell fate specification
Blastocyst
Growth of
ICM cells
Germ layers
specification
ES
cells
Follistatin
cerberus
EGF-CFC
cripto
Activins
Nodal
Nodal-related Vg1
TGF-1, 2, 3
BMP2
BMP4
BMP7
DDF6
Munoz‐Sanjuan and Brivanlou, 2002
Cripto redirects the neural fate of ESCs
+ Cripto
- Cripto
MF20
MF20
+ Cripto
- Cripto
III tubulin
III tubulin
Parisi et al., JCB 2003
Genetic or pharmacological inhibition of Cripto in mouse ESCs cells improves functional
integration of ESCs and blocks tumor formation in Parkinsonian rats
% change in rotational behaviour
wild-type ESCs
Cripto -/- ESCs
Parish, et al., Stem Cells, 2005
Lonardo, et al., Stem Cells, 2010
Cripto controls cell lineage specification in ESCs
Therapeutic target
Parkinsons’ disease
Parish et al., Stem Cells, 2005
Cripto
HIF-1
APJ/Apelin
APJ-Cerberus-Baf60C
Lonardo et al., Stem Cells, 2010
Patent- EP09166967
Bianco et al., Am. J. Pathology, 2009
D’Aniello et al., Circ Res, 2010
D’Aniello et al., Cardiovasc. Res., 2013
Cripto regulates cell lineage commitment in pluripotent stem cells
Pluripotent
CRIPTO
Adapted S. Pece et al., BBA 2011
ADULT STEM CELLs??
Common pathways in embryonic and adult stem cells
Embryonic Stem Cells
Cripto
Adult Stem Cells
Cripto
Skeletal Muscle Regeneration
Skeletal muscle regeneration
Myogenic satellite cells: physiology to
molecular biology, T. J. Hawke, 2001
Sequential expression of myogenic transcription factors
The Skeletal Muscle Satellite Cell: The Stem Cell That Came inFrom the Cold. Peter S. Zammit et al., 2006
Cripto is expressed in myoblasts and inflammatory cells in skeletal muscle regeneration
Guardiola et al., PNAS 2012
Cripto is expressed in myogenic precursor cells in isolated
myofibers
Cripto
Pax7
DAPI
MyoD
Cripto BF
B
C
D
E
F
G
H
I
J
M
N
O
T24
T0
A
L
T48
K
Guardiola et al., PNAS 2012
Cripto promotes satellite cell lineage progression and proliferation
Isolated myofibers
Model of satellite cell self-renewal
Number of positive cells (%)
*
**
**
**
*
*
Control
Zammit P S et al. J Cell Biol 2004
**
sCripto
T48
Control
sCripto
Control
T72
sCripto 0‐96h
sCripto 0‐
48h
T96
Committed myoblasts to differentiation (Pax7‐/MyoD+)
Activated/proliferating satellite cells (Pax7+/Myod+)
Quiescent satellite cells (Pax7+/MyoD‐) Guardiola et al., PNAS 2012
Cripto promotes satellite cell myogenic commitment antagonizing Myostatin
Control
Myostatin
+ Cripto
Myostatin
Committed myoblasts (Pax7‐/MyoD+)
Activated/proliferating satellite cells
(Pax7+/Myod+)
Quiescent satellite cells (Pax7+/MyoD‐) Guardiola et al., PNAS 2012
CONDITIONAL SATELLITE CELL –SPECIFIC CRIPTO KO Tg:Pax7-CreERT2::CriptoLoxP/-
CONDITIONAL SATELLITE CELL –SPECIFIC CRIPTO GOF Tg:Pax7-CreERT2::CriptoGOF
Satellite cell-specific cripto ablation affects muscle regeneration
Tg:Pax7-CreERT2::CriptoLoxP/-
Guardiola et al., PNAS 2012
Impacts of Genetic modulation of Cripto signaling in the satellite cell compartment on
skeletal muscle regeneration
Toward Pharmacological modulation of Cripto signaling for skeletal muscle regeneration The Cell maker
The system executes
Protocols for targeted differentiation of ES cells
Screening of compounds libraries
Complete sterility
Advantage/benefits
High standard reliability, performance and flexibility
Low user intervention
Contamination risk reduction
96-channel head
disposable pipetting tips
Method standardization
Up to 4000 single compuonds simultaneously screened
Co developed with Hamilton Robotics
+
Cell-based Phenotypic Screening:
Cell Proliferation (36hrs)
Cell Colony Phenotype (5days)
Small
molecules
• Metabolic
Intermediates
• HDAC Inhibitors
• FDA-approved
drugs
Casalino et al., JMCB, 2011
Casalino et al., Molecular Biotechnology, 2011
Franci et al., Biol. Open, 2013
Comes et al., Stem Cell Reports, 2013
Targeted
Differentiation
(10-13 days)
neurons
cardiomyocytes
L Proline –induced cells (PiCs):
a novel metastable state of pluripotent stem cells
ESCs
PiCs
Sensitivity to trypsin digestion
‐
+
Alkaline phoshatase activity
+
‐
In vitro cardiac and neural differentiation
+
+
Teratoma formation and blastocyst colonization
+
+
PiCs
Control
L-proline
BF
EGFP
PiCs = Proline induced Cells
E 11.5
Casalino, Comes et al., JMCB, 2011
E 11.5
L-Pro induces remodeling of the ESC transcriptome
Comes et al., Stem Cell Reports 2013
L-Proline -induced cytoskeletal rearrangements in ESCs
ESCs
PiCs
50 µm
50 µm
PiCs
50 µm
50 µm
50 µm
50 µm
50 µm
30 µm
20 µm
Comes et al., Stem Cell Reports 2013
L-Pro induces a motile phenotype in ESCs
Control ESCs
L- proline -treated ESCs
From Day 3 to Day 4 (images were collected every 5 minutes/ 20x objective)
ESCs
**
PiCs
100
80
60
*
40
20
0
1-15%
*
migration
invasion
**
150
100
50
0
0
ESCs
0
100
PiCs
PiCs
ESCs
15%
FBS
200
1x106 ESCs or PiCs injected into tail veins; mice were sacrificed 4 weeks after injection
SDF-1
(ng/ml)
EGFP+ PiCs
Cell Migration
(cells per field)
120
B16-BL6
140
Cell Migration / Invasion
(cells per field)
PiCs are invasive and metastatic pluripotent stem cells
Comes et al., Stem Cell Reports 2013
L-Proline induces a fully reversible EMT –like transition in embryonic stem cells:
embryonic stem to Mesenchymal Transition (esMT)
B
Control
1
1
100 500
Relative Expression
3
5
GADPH
-36
E
Slug
kDa
GADPH
-36
E-cad
0
Control
1
Control
3
4
5
++ L-Pro
L-Pro(day)
(day)
day 3
E-CAD/Hoechst
day 5
Relative E-CAD Level
-120
Comes et al., Stem Cell Reports 2013
kDa
-135
Snail
E-CAD
0
5
-50
L-Pro(day)
(day)
++ L-Pro
4
4
T
+ L-Pro (day)
Control
3
N-CAD
10
5
N-cad
100
4
Vim
+ L-Pro (day)
N-cad
T
3
T
1000
2
MMP-2
Control
Relative Expression
A
1
2
Relative Expression
+ L-Pro
compacted
stem cells
scattered
stem cells
L-Proline
esMT
MesT
E-cadherin
Vitamin C
E-cadherin
teratoma
invasiveness
Vitamin C is a key cofactor of the reactions driven by
histone demethylases of the JMJ family
Vitamin C improves cell riprogramming (Shi et al., Cell Stem Cell
2009) by modulating H3K9 and H3K36 methylation (Chen J. et al
Nature Genet., 2012)
L-Proline is a genome-wide inducer of H3K9 and H3K36 methylation
Comes et al., Stem Cell Reports 2013
L-Pro triggers an esMT reminiscent of the EMT that occurs at the
invasive front of the tumor, and contributes to the acquisition of cell
plasticity and invasiveness.
L-Pro–induced esMT is fully reversible (MesT) and is accompanied by
a global remodeling of H3K9 and H3K36 methylation status
compacted
stem cells
scattered
stem cells
L-Proline
esMT
MesT
E-cadherin
Vitamin C
E-cadherin
teratoma
invasiveness
Lab members
Past members
Salvatore Iaconis
Stefania Comes
Nicola Laprano
External collaborations
Ombretta Guardiola
Annalisa Fico
Carolina Prezioso
Alessandro Fiorenzano
Cristina D’Aniello
Gennaro Andolfi
Giorgio Scita, IFOM, Milan
Claudia Angelini, Institute for Applied Mathematics, CNR, Naples
Silvia Brunelli, HSR, Milan
Michael Shen, Columbia University, NY
Sharhaghim Tajbakhsh, Pasteur Institute, Paris
Ann Zeuner, Ruggero de Maria, ISS, Rome
TIGEM Bioinformatic Core Facility,, Naples
Dror Seliktar, Technion, Haifa, Israel
Thanks to
IGB collaborations
Eduardo J. Patriarca
Maria Matarazzo
Dario De Cesare
Laura Casalino
IGB Facilities
Integrated Microscopy
Animal House
FACS
NGS
EMBOWORKSHOP ON
StemCell Mechanobiology in
Development and Disease
October 18-21, 2015
Capri, Naples
Yohanns Bellaïche, France
Françoise Brochard-Wyart, France
Chen Christofer S., USA
Giulio Cossu, UK
George Q. Daley, USA
Carl-Philipp Heisenberg, Austria
Donald E. Ingber, USA
Benoît Ladoux, France
David A. Lee, UK
Ohad Medalla, Switzerland
Christine Mummery, The Netherlands
Paolo Netti, Italy
Graziella Pellegrini, Italy
Stefano Piccolo, Italy
Mattieu Piel, France
Giorgio Scita, Italy
Dror Sellktar, Israel
GV Shivashankar, Italy
Craig A. Simons, Canada
Molly Stevens, UK
Viola Vogel, Switzerland
Fiona Watt, UK
Gabriella Minchiotti, Institute of Genetics and Biophysics ‘A. Buzzati Traverso’, (IGB), Naples, Italy
Paolo A. Netti, Italian Institute of Technology (IIT), Naples, Italy
Viola Vogel, Laboratory of Applied Mechanobiology, ETH, Zürich, Switzerland
The IGB Meeting Coordinators
Maria R. Matarazzo, Maria G. Miano
Workshop Secretariat
Anna Maria Aliperti, Federica Staempfli