Series A

SERIES – A
PAPER – II
ELECTRICAL ENGINEERING
Number of
Questions
Timing
Subject Code
11:35 Hrs.
120
(121 to 240)
To
13:05 Hrs.
DO NOT OPEN
BEFORE
11:35 AM
136
,
121. A 3-phase delta connected motor is supplied at a line
voltage of 400 V, the voltage across each winding of
the motor will be:
(1) 400 V
(3) 100 V
122.
(2) Inductance
(4) Capacitance
123.
123. In a star- star connected transformer:
(1)
(2)
(3)
(4)
Line voltage is equal to phase voltage
Line voltage is equal to √3 phase voltage
There is no line current
There flows no phase current
124. A synchronous motor working on leading power factor
and not driving any mechanical is known as:
(1) Synchronous induction motor
(3) Synchronous condenser
,d f=dyk MsYVk vkc) eksVj dks 400 V dh ykbZu oksYVrk vkiwfrZ
dh tkrh gS] eksVj ds çR;sd okbZfUMax ds vkj&ikj oksYVrk gksxh%
(1) 400 V
(3) 100 V
(2) 200 V
(4) 300 V
122. Maxwell Bridge is used for the measurement of:
(1) Frequency
(3) Resistance
121.
124.
(2) Spinning motor
(4) None of these
(2) 200 V
(4) 300 V
eSDlosy lsrq fdlds ekiu esa ç;qä gksrk gS%
(1) vko`fÙk
(2) çsj.k
(3) çfrjks/k
(4) /kkfj=
,d rkjk&rkjk vkc) VªkUlQkeZj esa%
(1) ykbZu oksYVrk Qst oksYVrk ds cjkcj gksrk gS
(2) ykbZu oksYVrk √3 Qst oksYVrk ds cjkcj gksrk gS
(3) dksbZ Hkh ykbZu /kkjk ugha gksrh gS
(4) dksbZ Hkh dyk /kkjk dk cgko ugha gksrk gS
,d rqY;dkfyd eksVj tks fd vxz “kfä xq.kd ij dk;Z dj jgh gS
,oa dksbZ ;kaf=dh ughsa pyk jgh gS] mls tkuk tkrk gS%
(1) rqY;dkfyd çsj.k eksVj
(2) fLifuax eksVj
(3) rqY;dkfyd daMsUlj
(4) buesa ls dksbZ ugha
,d 6 /kzqo okyh ySi okmUM dc tfu= esa 300 pkyd gSaA çfr pkyd
esa çsfjr emf 5 oksYV gSA ;g tfu= emf mRié djsxk%
(1) 60 oksYV
(2) 300 oksYV
(3) 250 oksYV
(4) 1800 oksYV
125. A 6 pole Lap wound dc generator has 300 conductors.
Emf induced per conductor is 5 volt. This generator
will generate emf of:
(1) 60 volt
(2) 300 volt
(3) 250 volt
(4) 1800 volt
125.
126. In a 3-phase induction motor, maximum torque is
obtained at starting if:
(1) Rotor resistance = Rotor reactance
(2) Rotor resistance < Rotor reactance
(3) Rotor resistance >Rotor reactance
(4) Rotor resistance = Stator reactance
126.
127. Ferranti effect in a transmission leads to which of the
following conclusion:
(1) Receiving end voltage is less than sending end voltage
(2) Receiving end voltage is equal to sending end voltage
(3) Receiving end voltage is more than sending end voltage
(4) Receiving end voltage is equal to half of sending end voltage
127.
128. In the figure A and B are two semiconductor diodes.
128.
fp= esa
129.
fuEufyf[kr esa ls dkSu&lk dFku lR; gS%
(1) A ,oa B vxz vfHkufr esa
(2) A vxz vfHkufr gS ,oa B O;qRØeh; vfHkufr gS
(3) A ,oa B O;qRØeh; vfHkufr gSa
(4) A O;qRØeh; vfHkufr gS ,oa B vxz vfHkufr gS
fp= esa vkiwfrZ oksYVrk V gSA
Which of the following statement is true:
(1) A and B are forward biased
(2) A is forward biased and B is reverse biased
(3) A and B are reverse biased
(4) A is reverse biased and B is forward biased
129. Supply voltage V in the figure is.
(1) 210V
(3) 50V
(2) 70V
(4) 230V
,d f=dyk çsj.k eksVj esa çkjaHku ij vf/kdre cy vk?kw.kZ çkIr gksrk
gS ;fn
(1) jksVj çfrjks/k = jksVj çfr?kkr
(2) jksVj çfrjks/k < jksVj çfr?kkr
(3) jksVj çfrjks/k > jksVj çfr?kkr
(4) jksVj çfrjks/k = LVsVj çfr?kkr
lapj.k esa QsjkUrh çHkko fdl fu’d’kZ dh vksj ys tkrk gS%
(1) xzkgh Nksj oksYVrk çsf’kr Nksj oksYVrk ls de gS
(2) çsf’kr Nksj oksYVrk xzkgh Nksj oksYVrk ds cjkcj gS
(3) xzkgh Nksj oksYVrk çsf’kr Nksj oksYVrk ls vf/kd gS
(4) xzkgh Nksj oksYVrk çsf’kr Nksj oksYVrk ds vk/ks ds cjkcj gS
A
,oa
(1) 210V
(3) 50V
ECL-136 [A–17]
B
nks v/kZpkyd Mk;ksM gSaA
(2) 70V
(4) 230V
130. Please refer figure showing oil pot with electrodes
used for testing dielectric strength of transformer oil.
The gap between two electrodes is 4 mm and the pot
is filled with oil.
130.
crZu dks rsy ijh{k.k fdV esa Mkyk tkrk gS ,oa ;g voyksfdr fd;k
tkrk gS fd czsd Mkmu 16 KV ij ?kfVr gksrk gSA rsy dk ijkoS|qr
lkeF;Z gksxk%
The pot is placed in the oil testing kit and it is
observed that breakdown occurs at 16KV. The
dielectric strength of oil is:
(1) 16KV/cm
(2) 20 KV/cm
(3) 40KV/cm
(4) 50KV/cm
131. Three equal resistances, each of 6 Ω are connected in
star, their corresponding value of each resistance in
delta connection will be:
(1) 2 Ω
(3) 18 Ω
(1) 16KV/cm
(3) 40KV/cm
131.
132.
133. A dc shunt generator, whose generated emf is 220 V is
supplying a load at 210 V. If the resistance of the
armature circuit is 0.5 Ω, the armature current will be:
(1) 220 A
(2) 105 A
(3) 20 A
(4) None of these
133.
134. In a balanced 3 φ supply system, the vector sum of the
three-phase emfs at any instant is equal to:
(1) Phase voltage
(2) Line voltage
(3) Zero
(4) Maximum value
134.
135. A three-Phase synchronous motor has been provided
with damper winding. It can be started as a:
135.
136.
137. If there are repeated roots of the characteristic
equation on the jω–axis, the system would be:
(1) Conditionally stable
(2) Oscillatory
(3) Stable
(4) Unstable
137.
dksbZ ugha
800 W
(2) 640 W
(4) 200 W
,d dc ik”oZ iFk tfu= ftldh tfur emf 220 oksYV gS] 210
oksYV ij dh Hkkj vkiwfrZ dj jgh gSA ;fn vkesZpj ifjiFk dk çfrjks/k
0.5 Ω gS] rks vkesZpj /kkjk gksxh%
(1) 220 A
(3) 20 A
136. The iron losses in a 100 kvA transformer are 1 kw and
the full load copper losses are 2 kw, then maximum
efficiency occurs at a load of:
(1) 100√2 kvA
(2) 100/√2
(3) 50 kvA
(4) None of these
(2) 12 Ω
(4) buesa ls
VªkUlQkeZj esa iw.kZ Hkkj ij rkez {kfr ,oa ,dd “kfä xq.kd
gSA iw.kZ Hkkj ij rkez {kfr ,oa 0.8 i”p “kfä xq.kd gksxk%
(1) 400 W
(3) 800 W
Single-phase synchronous motor
Three-phase squirrel cage induction motor
Single-phase induction motor
Three-phase alternator
(2) 20 KV/cm
(4) 50KV/cm
,d rhu cjkcj çfrjks/k çR;sd 6 Ω okys rkjs esa vkc) gSaA MsYVk
vkc) esa çR;sd çfrjks/k dk lerqY; eku gksxk%
(1) 2 Ω
(3) 18 Ω
(2) 12 Ω
(4) None of these
132. In a transformer copper losses at full-load and unity
power factor are 800 W. The copper losses at full load
and at 0.8 power factor lagging will be:
(1) 400 W
(2) 640 W
(3) 800 W
(4) 200 W
(1)
(2)
(3)
(4)
fuEufyf[kr lanfHkZr fp= esa VªkUlQkeZj rsy dh ijkoS|qr lkeF;Z
ijh{k.k gsrq ç;qä bysDVªkM lfgr rsy dk crZu n”kkZ;k x;k gSA nks
bysDVªkWM ds e/; vUrjky gS 4 mm ,oa crZu rsy ls Hkjk gqvk gSA
(2) 105 A
(4) buesa ls
dksbZ ugha
vkiwfrZ esa fdlh dky ij f=dyk emf dk lfn”k
,d larqfyr 3 φ
;ksx gksrk gS%
(1) dyk oksYVrk ds cjkcj
(2) ykbZu oksYVrk ds cjkcj
(3) “kwU; ds cjkcj
(4) vf/kdre eku ds cjkcj
,d f=dyk rqY;dkfyd eksVj esa voeUnu okbZfUMax çnku fd;k x;k
gSA ;g çkjEHk fd;k tk ldrk gS%
(1) ,dy dyk rqY;dkfyd eksVj
(2) f=dyk fiatjh çsj.k eksVj
(3) ,dy dyk çsj.k eksVj
(4) f=dyk vYVjusVj
100 kvA VªkUlQkeZj esa ykSg gkfu 1 kw gS ,oa iw.kZ Hkkj rkez gkfu
2 kw gS] rks vf/kdre n{krk fdl Hkkj ?kfVr gksxh%
(1) 100√2 kvA
(3) 50 kvA
(2) 100/√2
(4) buesa ls dksbZ
ugha
;fn jω–v{k ij vfHky{k.k lehdj.k iqujkofrZr ewy gksrs gSa] ,slh
iz.kkyh gksxh%
(1) izfrcaf/kr :i ls fLFkj
(2) nksyu
(3) fLFkj
(4) vfLFkj
ECL-136 [A–18]
138. For a feedback system having the characteristic
equation:
1+
138. 1 +
mi;qZDr vfHky{k.k lehdj.k ls ;qDr QhMcSd iz.kkyh ds fy,
okLrfod v{k ds izfr ewy fcanqiFk ds lh/kh js[kk vuarLif”kZ;ksa ds dks.k
fuEu }kjk izkIr gksrs gSa%
K
= 0,
s( s + 1)(s + 2)
The angles of the straight line asymptotes of the root
locus with the real axis, are given by
(1) 30°, 90°, 180°
(3) 60°, 180°, 300°
(1) 30°, 90°, 180°
(3) 60°, 180°, 300°
(2) 30°, 180°, 300°
(4) 30°, 60°, 120°
139. The transfer function of a compensating network is
given as:
139.
(1)
(2)
(3)
(4)
z < p
tc
, the network is called the
(1)
(2)
(3)
(4)
Phase–lag network
Phase–lead network
Phase lag–lead network
Phase shifting network
140. The expression given below is the impulse response
of a feed–back control system c(t)=e–0.6t sin 0.8t. The
damping ratio and natural frequency of oscillations
are, respectively, given by:
(1) 0.6,1 rad/sec
(3) 1, 0.6 rad/sec
(1)
(2)
(3)
(4)
141.
(2) 50 sec
(4) 1 m–sec
142. FET is advantageous in comparison with BJT because
of its:
142.
High input impedance
High noise
High gain–bandwidth product
Current controlled behaviour
143. In a transistor, leakage current mainly depends on:
(1) Doping of base
(3) Rating of transistor
143.
(2) Size of emitter
(4) Temperature
(2) 0.8, 0.6 rad/sec
(4) 1, 0.8 rad/sec
izFke Js.kh ds vkStkj esa dkykad 50 lsdaM gksrk gSA bls 0.002Hz ij
,d T;koØh; bUiqV lkbdfyax ds v/khu j[kk tkrk gSA vc dky
i”prk gksxh%
(1) 500 lsdaM
(2) 50 lsdaM
(3) 44.6 lsdaM
(4) 1m-lsdaM
BJT dh rqyuk esa FET viuh fuEu fo”ks’krk ds dkj.k ykHkdkjh gksrh
gS%
(1) mPp bUiqV izfrck/kk
(2) mPp jo
(3) mPp yfC/k&cSaMfoM~Fk mRikn
(4) /kkjk fu;af=r O;ogkj
,d VªkaftLVj esa {kj.k /kkjk eq[;r% fuEu ij fuHkZj djrh gS%
(1) csl dk eanu
(2) mRltZd dk vkdkj
(3) VªkaftLVj dh jsfVax
(4) rkieku
fLeV fVªxj ds fy, Åijh rFkk fupyh fVªi oksYVrk,a gSa 3V rFkk 1V
vkSj mPp rFkk fuEu voLFkk,a gSa 15V rFkk 2VA 10V ihd ds
T;koØh; bUiqV ds fy, vkmViqV fuEu ds chp gksxk%
(1) 1V rFkk 3V
(2) 2V rFkk 15V
(3) 3V rFkk 15V
(4) 10V rFkk 15V
144.
145. The resolution of a 12 bit D/A converter using a binary
ladder with +10V as the full scale output will be:
(1) 5.12mV
(2) 4.32mV
(3) 3.50mV
(4) 2.44mV
145.
146. The sag of a transmission line with 50m span is 1m.
What will be the sag if the height of the transmission
line is increased by 20%?
146. 50m
(2) 1.25m
(4) 1m
z < p ] usVodZ dgykrk gS
dyk&i”prk usVodZ
dyk&vxzrk usVodZ
dy i”prk&vxzrk usVodZ
dyk&foLFkkiudkjh usVodZ
uhps nh xbZ vfHkO;fDr QhMcSd fu;a=.k iz.kkyh c(t)=e–0.6t sin 0.8t
dh ,d vkosxh vfHkfØ;k gSA nksyuksa dk eanu vuqikr vkSj izkd`frd
vko`fRr Øe”k% fuEu ls izkIr gksrh gS%
144. For a Schmitt trigger, the upper and lower trip voltages
are 3V and 1V, and high and low states are 15V and 2V.
The output for a sinusoidal input of 10V peak will lie
between:
(1) 1V and 3V
(2) 2V and 15V
(3) 3V and 15V
(4) 10V and 15V
(1) 2m
(3) 1.2m
s+ z
s+p
(1) 0.6,1 rad/sec
(3) 1, 0.6 rad/sec
(2) 0.8, 0.6 rad/sec
(4) 1, 0.8 rad/sec
141. A first order instrument has a time constant of 50 sec.
It is subjected to a sinusoidal input cycling at 0.002Hz.
The time lag will now be:
(1) 500 sec
(3) 44.6 sec
140.
(2) 30°, 180°, 300°
(4) 30°, 60°, 120°
,d izfrdkjh usVodZ dk varj.k Qyu fuEu :i esa fn;k x;k gS%
Gc (s) =
s+ z
Gc (s) =
s+p
When
K
= 0,
s( s + 1)(s + 2)
iwjs iSekus dh vkmViqV ds :i esa +10V lfgr ,d f}vk/kkjh ySMj
dk iz;ksx djrs gq, 12 fcV Mh@, ifjorZd dk ek=d gksxk%
(1) 5.12mV
(3) 3.50mV
(2) 4.32mV
(4) 2.44mV
foLr`fr okyh lapj.k ykbu dk >ksy gS 1mA ;fn lapj.k ykbu
dh ÅapkbZ 20% c<+k nh tkrh gS rks >ksy fdruk gksxk\
(1) 2m
(3) 1.2m
ECL-136 [A–19]
(2) 1.25m
(4) 1m
147. The pulse transformer in thyristor circuits is used for:
(1)
(2)
(3)
(4)
Amplification of gate signal
Attenuation of gate signal
Isolation of gate signal from power circuit
Fast turn on of thyristor
148. The presence of source inductance in line
commutated thyristor converters effectively leads to:
(1)
(2)
(3)
(4)
148.
Increase in output dc voltage
Reduction in the load current ripples
Increase in the load current ripple
Reduction in output dc voltage
149. Which one of the following frequency converter is
most preferred method for speed control of medium
power rating, three-phase, squirrel cage induction
motor:
(1)
(2)
(3)
(4)
147.
149.
Current source inverter
Voltage source inverter
Parallel inverter
Cycloconverter
150. In a three-phase, fully controlled thyristor converter
with continuous dc load current, the number of
thyristors conduct during commutation:
(1) None
(2) One
(3) Two
(4) Three
150.
151. For a single-phase, AC voltage controller feeding pure
inductive load, the range of firing angle of each
thyristor is:
(1) 0° to 360°
(2) 0° to 180°
(3) 0° to 90°
(4) 90° to 180°
151.
152. In a single-phase induction motor, the maximum
starting torque is developed:
(1) Shaded pole construction
(2) Capacitor start
(3) Capacitor start and capacitor run
(4) Repulsion start
152.
153. In a three-phase variable reluctance type stepper
motor, stator consist 12 poles and rotor has 8 poles.
The step angle will be:
153.
(1) 30°
(3) 15°
(2) 45°
(4) 10°
lrr Mh- lh- yksM /kkjk okys ,d f=çkoLFkk] iw.kZr% fu;fU=r
FkkbZfjLVj ifjorZd esa fnDifjorZu ds nkSjku buesa ls fdrus FkkbfjLVj
dk;Z djrs gSa%
(1) dksbZ ugha
(2) ,d
(3) nks
(4) rhu
“kq) çsjf.kd Hkkj QhM djus okys ,d ,dy&çkoLFkk ,-lh- oksYVrk
fu;U=d ds çR;sd FkkbZfjLVj ds Qk;fjax dks.k dh Ja[kyk gS%
(1) 0° ls 360°
(2) 0° ls 180°
(3) 0° ls 90°
(4) 90° ls 180°
,d ,dy çkoLFkk çsj.kh eksVj esa vf/kdre vkjfEHkd cy vk?kw.kZ
fodflr fd;k x;k gS%
(1) Nk;knkj iksy fuekZ.k
(2) la/kkfj= vkjEHk
(3) la/kkfj= vkjEHk rFkk la/kkfj= pyuk
(4) çfrd’kZ.k çkjEHk
f=&çkoLFkk okyh ifjorhZ çfr’VEHk çdkj dh lksikfur eksVj esa LVsVj
esa 12 iksy gSa rFkk ?kw.kZd esa 8 iksy gSaA rks ix dks.k buesa ls fdrus
fMxzh dk gS%
(1) 30°
(3) 15°
154. A three-phase induction motor has 8 poles and
operates with a slip of 0.05 for a certain load. The speed
of the rotor magnetic field with respect to stator is:
(1) 855 rpm
(3) 900 rpm
FkkbfjLVj ifjiFkksa esa Lian ifj.kkfe= dk ç;ksx fdlds fy, fd;k tkrk gS%
(1) }kj ladsr dk ço/kZu
(2) }kj ladsr dk {kh.ku
(3) “kfä ifjiFk ls }kj ladsr dk foyxu
(4) FkkbfjLVj dk æqr ?kwerk
ykbu fnd~ifjofrZr FkkbfjLVj ifjorZdksa esa lzksr çsjdRo dh mifLFkfr
çHkkoh :i ls buesa ls fdlesa vxz gksrh gS%
(1) fuxZe Mh-lh- oksYVrk esa o`f)
(2) yksM /kkjk ÅfeZdkvksa esa gkzl
(3) yksM /kkjk ÅfeZdk esa o`f)
(4) fuxZe Mh-lh- oksYVrk esa deh
e/;e “kfä lhekad] f=çkoLFkk] fiatjh çsj.kh eksVj dh xfr fu;U=.k
ds fy, fuEukafdr vko`fÙk ifjorZdksa esa ls fdl i)fr dks lcls
vf/kd çkFkfedrk nh tkrh gS%
(1) /kkjk lzksr çrhid
(2) oksYVrk lzksr çrhid
(3) lekUrj çrhid
(4) lkbDyks ifjorZd
154.
(2) 45 rpm
(4) 0 rpm
,d f=&çkoLFkk çsj.kh eksVj esa vkB iksy gSa rFkk ;g fuf”pr Hkkj ds
fy, 0.05 ds liZ.k lfgr çpkfyr gksrh gSA LVsVj ds lkis{k esa ?kw.kZd
pqEcdh; {ks= dh xfr gS%
(1) 855 rpm
(3) 900 rpm
155. A dc shunt motor is running at rated speed with rated
supply voltage. If the supply voltage is reduced to half,
then the speed of the motor becomes:
(1) Half of the rated speed
(2) Double of the rated speed
(3) Slightly less than the rated speed
(4) Slightly more than the rated speed
155.
(2) 45°
(4) 10°
(2) 45 rpm
(4) 0 rpm
vuqer vkiwfrZ oksYVrk lfgr ,d Mh- lh- ik”oZ eksVj vuqer xfr
ij py jgh gSA ;fn vkiwfrZ oksYVrk vk/kh rd de dj nh tkrh gS
rks eksVj dh xfr buesa ls D;k gks tk,xh%
(1) vuqer xfr dh vk/kh
(2) vuqer xfr dh nqxuh
(3) vuqer xfr dh rqyuk esa fdphar de
(4) vuqer xfr dh rqyuk esa fdphar vf/kd
ECL-136 [A–20]
cage
156.
157. A resistance R is connected in parallel with a parallel
combination of a 20mH inductance and a 50µF
capacitance. For what value of R will the circuit be
critically damped:
157.
156. Starting torque of a three-phase
induction motor at rated voltage is:
(1)
(2)
(3)
(4)
squirrel
The rated torque
50% to 100% of the rated torque
4 to 7 times of the rated torque
1 to 3 times of the rated torque
(1) 5 Ω
(3) 10 Ω
(1) 70 kVA
(3) 68 kVA
(1) 5 Ω
(3) 10 Ω
(2) 1 Ω
(4) 100 Ω
158. An overexcited synchronous motor is connected
across a 100 kVA inductive load having a 0.8 lagging
power factor. The motor takes 10kW input power while
idling (no load). If the motor is not to carry any load,
the value of kVA rating of the motor, if it is desired to
bring the overall power factor to unity, is:
158.
159.
160. Three equal resistors connected in series, across a
source of emf, dissipate 10W of power. What would be
the power dissipated when they are connected in
parallel across the same source:
(1) 10W
(2) 30W
(3) 90W
(4) 270W
160.
161. The voltage distribution across the insulating string of
high voltage line is made uniform by:
(1) Increasing the number of discs
(2) Decreasing the number of discs
(3) Using the guard rings
(4) Increasing the size of disc
161.
162. For dc shunt motor, speed control by armature
resistance variation is best suited for:
162.
(1) The outer cage has higher resistance and lower
inductance as compared to inner cage
(2) The outer cage has higher resistance and inductance
as compared to inner cage
(3) The outer cage has lower resistance and inductance
as compared to inner cage
(4) The outer cage has lower resistance and higher
inductance as compared to inner cage.
(2) 3.6
(4) 7.2
lhjht ls tqM+s rhu leku çfrjks/kd emf lzksr ds ikj 10 okV fo|qr
{k; djrs gSaA fdruh fo|qr {k; gksxh ;fn mUgsa mlh lzksr ds ikj
lekukUrj esa tksM+ fn;k tk,%
(1) 10W
(3) 90W
163.
163. In a double cage induction motor:
(2) 60.8 KVA
(4) 50 KVA
,d fo|qr dqfdax jsUt dh gkWV IysV dk ghfVax ,yhesUV 240 oksYV
vkiwfrZ ls 12 A ysrk gSA ,d ?kUVk 15 feuV esa ;g fdruh kWh
ÅtkZ [kir djsxk%
(1) 1.2
(3) 6.0
Constant power drive
Constant torque drive
Variable torque and variable power drive
None of the above
(2) 1 Ω
(4) 100 Ω
dksbZ vfrmÙksftr rqY;dkfyd eksVj 0.8 i”pxkeh “kfä xq.kkad okys
100 KVA ds çsjf.kd Hkkj ls lEc) gSA dk;Z ghurk ¼Hkkj jfgr½ dh
fLFkfr esa eksVj 10kw fuos”k “kfä ysrh gSA ;fn eksVj dks dksbZ Hkkj
ugha ysuk gS vkSj ;fn bls ,dd ¼;wfuVh½ dk ldy “kfä xq.kkad ykus
ds fy, dgk tk, rks eksVj ds KVA vuqerkad dk eku gksxk%
(1) 70 KVA
(3) 68 KVA
(2) 60.8 kVa
(4) 50 kVA
159. A heating element of a hot plate, on an electric
cooking range, draws 12A from 240V supply. How
many kWh of energy will be consumed in one hour
and 15 minutes:
(1) 1.2
(2) 3.6
(3) 6.0
(4) 7.2
(1)
(2)
(3)
(4)
vuqer oksYVrk ij ,d f=&çkoLFkk fiatjh çsj.kh eksVj dk vkjfEHkd
cy vk?kw.kZ gS%
(1) vuqer cyk?kw.kZ
(2) vuqer cyk?kw.kZ 50% ls 100%
(3) vuqer cyk?kw.kZ dk 4 ls 7 xquk
(4) vuqer cyk?kw.kZ dk 1 ls 3 xquk
,d çfrjks/kd R lekUrj esa 20 mH çsjdRo rFkk 50µ F /kkfjrk ds
lekUrj la;kstu ls tqM+k gqvk gSA R ds fdl eku ds fy, ifjiFk
ØkfUrd :i ls voean gksxk%
(2) 30W
(4) 270W
mPp oksYVrk ykbu esa fo|qrjks/kh rkj ds ikj oksYVrk forj.k buesa ls
fdlds }kjk leku :i ls fd;k tkrk gS%
(1) fMLdksa dh la[;k c<+kdj
(2) fMLdksa dh la[;k de djds
(3) j{kd oy;ksa dk ç;ksx djds
(4) fMLd dk vkdkj c<+kdj
,d 'kaV eksVj ds fy, vkesZpj çfrjks/kd fofHkérk }kjk xfr fu;a=.k
buesa ls fdlds lcls vf/kd mi;qä gksrk gS%
(1) lrr 'kfä ifjpkyu }kjk
(2) lrr cy vk?kw.kZ ifjpkyu }kjk
(3) ifjorÊ cy vk?kw.kZ rFkk ifjorÊ 'kfä ifjpkyu }kjk
(4) mi;qZä esa ls dksbZ ugha
,d f}fiatjh çsj.k eksVj esa%
(1) Hkhrjh fiatjh dh rqyuk esa ckgjh fiatjh esa vf/kd çfrjks/kdrk
rFkk de çsjdRo gksrk gSA
(2) Hkhrjh fiatjh dh rqyuk esa ckgjh fiatjh esa vf/kd çfrjks/kdrk
rFkk çsjdRo gksrk gSA
(3) Hkhrjh fiatjh dh rqyuk esa ckgjh fiatjh esa de çfrjks/kdrk rFkk
çsjdRo gksrk gSA
(4) Hkhrjh fiatjh dh rqyuk esa ckgjh fiatjh esa de çfrjks/kdrk rFkk
vf/kd çsjdRo gksrk gSA
ECL-136 [A–21]
164.
164. Buchholz relay is:
(1)
(2)
(3)
(4)
Voltage sensitive device
A current sensitive device
A frequency sensitive device
A gas actuated device
165. According to double revolving field theory, a single
phase induction motor can be considered as
equivalent to two hypothetical constituent motors. If
the slip of one of these motors is ‘s’, the slip of the
second will be:
(1) s
(3) 2 – s
(1) s
(3) 2 – s
(2) 250 KHz and 50%
(4) 250 KHz and 20%
167.
168. The best location of DC operating point in an amplifier
for undistorted output is:
(1) Near saturation
(2) Near cut-off region
(3) In the middle of the active region
(4) Any where in the cut off region.
168.
169. A dynamic memory stores its data in:
169.
(2) Inductors
(4) Registers.
170. In a dual converter operating under circulating current
mode:
(1)
(2)
(3)
(4)
170.
Only one converter operates at a time
Both operate as rectifier
Both operate as inverter
One converter acts as rectifier and other as inverter
171. In a semi-controlled bridge rectifier, the power flow is:
(1) From load to the source
(3) Both directions
deZ pØ lfgr ,d 8 Mhz TTL flXuy ,d 5&fcV ÅfeZdk
xf.k= dks DykWd djrk gSA vfUre f¶yi ¶ykWi dh DykWd vko`fÙk D;k
gksxh rFkk blds fuxZe rjax :i dk deZ pØ D;k gksxk%
(1) 500 KHz vkSj 20%
(2) 250 KHz vkSj 50%
(3) 500 KHz vkSj 50%
(4) 250 KHz vkSj 20%
,d taD'ku VªkfUtLVj esa laxzkgd {ks= dk Mksfiax Lrj gS%
(1) mRltZd {ks= ls vf/kd
(2) vk/kkj {ks= ls de
(3) vk/kkj {ks= ls de fdUrq mRltZd {ks= ls vf/kd
(4) vk/kkj vkSj mRltZu {ks= dh Mksfiax ls Lora=
166. 20%
167. In a junction transistor, the doping level of collector
region is:
(1) Higher than emitter region
(2) Lower than base region
(3) Is higher than base region but lower than emitter region
(4) Independent of the doping of base and emitter regions
(1) Flip – flops
(3) Capacitors
(2) 2s
(4) 1 – s
(2) 2s
(4) 1 – s
166. An 8-Mhz TTL signal with 20% duty cycle clocks a 5-bit
ripple counter. What is the clock frequency of the last
flip flop and the duty cycle of its output waveform?:
(1) 500 KHz and 20%
(3) 500 KHz and 50%
165.
cqdgksYt fjys gS%
(1) ,d oksYVrk laosnh lk/ku
(2) ,d djUV laosnh lk/ku
(3) ,d vko`fÙk laosnh lk/ku
(4) ,d xSl lapkfyr lk/ku
nqgjs ?kw.kÊ {ks= fl)kUr ds vuqlkj ,d ,dy dyk çsj.k eksVj dks nks
ifjdkfYir ?kVd eksVjksa ds lerqY; ekuk tk ldrk gSA ;fn bu eksVjksa
esa ls ,d dh fLyi ßsÞ gS rks nwljh eksVj dh fLyi gksxh%
171.
(2) From source to load
(4) Not possible
172. The meter that is suitable for only direct current
measurement is:
(1) Moving iron type
(2) Permanent magnet type
(3) Electro-dynamic type
(4) Hot-wire type
172.
173. Two complete signal cycles would be displayed on the
screen of a scope when time period of the sweep
generator is …………:
(1) Half
(2) Twice
(3) Equal
(4) None of the above
173.
vfoÑr fuxZe ds fy, ,d ço/kZd esa D.C. çpkyu Iokb±V dh
loZJs"B txg gS%
(1) lar`fIr ds fudV
(2) dV&vkWQ {ks= ds fudV
(3) lfØ; {ks= ds e/; esa
(4) dV&vkWQ {ks= esa dgha Hkh
,d xfrd Le`fr vius MkVk buesa ls fdlesa HkaMkj.k djrh gSA
(1) f¶yi&¶ykWi
(2) çsjd
(3) la/kkfj=
(4) jftLVj
ifjlapkjh /kkjk eksM ds vUrxZr py jgs ,d f}&ifjorZd esa%
(1) ,d le; esa dsoy ,d ifjorZd gh dk;Z djrk gS
(2) nksuksa fn"Vdkjh ds :i esa dk;Z djrs gSa
(3) nksuksa çrhid ds :i esa dk;Z djrs gSa
(4) ,d ifjorZd fn"Vdkjh rFkk nwljk çrhid ds :i esa dk;Z djrk
gS
,d v)Zfu;fU=r lsrq fn"Vdkjh esa 'kfä çokg gksrk gS%
(1) Hkkj ls lzksr dh vksj
(2) lzksr ls Hkkj dh vksj
(3) nksuksa fn'kkvksa esa
(4) lEHko ugha gS
lh/ks djUV ekius ds fy, ,d ek= mi;qä ehVj gS%
(1) py ykSg çdkj
(2) LFkkbZ pqEcd çdkj
(3) bysDVªks xR;kRed çdkj
(4) rIr ok;j çdkj
fdlh Ldksi ds insZ ij nks iw.kZ ladsr pØ çnf'kZr fd, tk,xsa tcfd
Lohi tsujsVj dh le;kof/k gS%
(1) vk/kh
(2) nqxuh
(3) cjkcj
(4) mi;qZä esa ls dksbZ ugha
ECL-136 [A–22]
174. The Fourier Series of an even periodic function contains:
(1) Sine terms only
(2) Cosine terms only
(3) Both sine and cosine terms
(4) Alternate sine and cosine terms
174.
175. A ramp voltage, v(t) = 100.t, is applied to an R-C series
circuit with R = 5 kΩ and C = 4 µF. The current
through the circuit as t → ∞ is:
175.
(1) 200 mA
(3) 4 mA
(2) 20 mA
(4) 0.4 mA
(1) 200 mA
(3) 4 mA
176. The equivalent inductance between X-X’ in the circuit
given below is:
(1) 6/5
(3) 12/7
176.
177.
178. A compiler produces which of the following output:
(1) An executable file
(2) An object file
(3) A com file
(4) A source file
178.
179. In frequency modulation the:
(1) Carrier amplitude varies according to signal amplitude
(2) Carrier amplitude varies according to signal frequency
(3) Carrier frequency varies according to signal amplitude
(4) Carrier frequency varies according to signal frequency
179.
180. Which one of the following is not a common
application of a Wien bridge?
180.
Frequency determining network in an oscillator
Measurement of inductance
Harmonic distortion analyzer
Measurement of frequency
181. Two sinusoidal signals of frequencies f1 and f2 are
applied to the horizontal and vertical inputs
respectively of a cathode ray oscilloscope. The display
is as shown below. The ratio f1/f2 is:
(1) 2/5
(3) 1/5
(2) 5/2
(4) 5
uhps fn[kk, x, fp= ifjiFk esa
(1) 6/5
(3) 12/7
(2) 3/2
(4) 2
177. The main difference between the drift and diffusion
mechanisms of current flow in a transistor is that:
(1) The drift current flows due to forward bias while
diffusion current is due to reverse bias
(2) The drift current flows due to reverse bias while
diffusion current is due to forward bias
(3) The drift current depends on concentration gradient
while diffusion current depends on electric field
(4) The drift current depends on electric field while
diffusion current depends on concentration gradient
(1)
(2)
(3)
(4)
,d le fu;rdkfyd Qyu dh Qwfj, Js.kh esa gksrs gSa%
(1) dsoy lkbu VeZ
(2) dsoy dkslkbu VeZ
(3) lkbu vkSj dkslkbu VeZ nksuksa
(4) ckjh&ckjh ls lkbu vkSj dkslkbu VeZ
,d jsEi oksYVrk] v(t) = 100.t ,d R-C Js.kh lfdZV ij
R = 5 kΩ vkSj C = 4 µF ds lkFk esa yxkbZ tkrh gS rks
t → ∞ ds :i esa lfdZV ds ek/;e ls djUV gksxk%
181.
(2) 20 mA
(4) 0.4 mA
x–x*
ds chp lerqY; çsjdRo gS:
(2) 3/2
(4) 2
fdlh VªkfUtLVj esa djUV çokg dh viokg vkSj folj.k ;kfU=dh ds
chp çeq[k vUrj ;g gS fd%
(1) viokg djUV vxz vfHkufr ds dkj.k çokfgr gksrk gS tcfd
folj.k djUV foijhr vfHkufr ds dkj.k
(2) viokg djUV foijhr vfHkufr ds dkj.k tcfd folj.k djUV
vxz vfHkufr ds dkj.k çokfgr gksrk gS
(3) viokg djUV ladsUæ.k ço.krk ij fuHkZj djrk gS tcfd folj.k
djUV fo|qr {ks= ij fuHkZj djrk gSA
(4) viokg djUV fo|qr {ks= ij fuHkZj djrk gS tcfd folj.k
djUV ladsUæ.k ço.krk ij fuHkZj djrk gS
dksbZ dEikbyj fuEufyf[kr vkmViqV esa ls fdls mRikfnr djrk gS%
(1) fu"ik| Qkby
(2) vfHky{; Qkby
(3) dkWe Qkby
(4) lzksr Qkby
vko`fÙk ekMqyu esa%
(1) ladsr vk;ke ¼,sfEIyV~;wM½ ds vuqlkj okgd ¼dSfjvj½ vk;ke
cnyrk gS
(2) ladsr vko`fÙk ds vuqlkj okgd ¼dSfjvj½ vk;ke cnyrk gS
(3) ladsr vk;ke ds vuqlkj okgd vko`fÙk cnyrh gS
(4) ladsr vko`fÙk ds vuqlkj okgd vko`fÙk cnyrh gS
fuEufyf[kr esa ls dkSu ,d ohu fczt dk lkekU; vuqç;ksx ugha gS\
(1) fdlh nksfy= esa vko`fÙk fu/kkZjd usVodZ
(2) çsjdRo dk ekiu
(3) lauknh fo:i.k fo'ys"kd
(4) vko`fÙk dk ekiu
,d dSFkksM fdj.k nksyun'kÊ esa {kSfrt ,oa Å/okZ/kj buiqVksa ds fy,
Øe'k% f1 vkSj f2 vko`fÙk;ksa ds nks T;koØh; ladsr ç;qä fd, tkrs gSaA
uhps fp= esa çn'kZuh fn[kkbZ xbZ gSA f1/f2 dk vuqikr crkb,\
(1) 2/5
(3) 1/5
ECL-136 [A–23]
(2) 5/2
(4) 5
182. The presence of dc link inductance in line commutated
thyristor converters effectively leads to:
(1)
(2)
(3)
(4)
Increase in output dc voltage
Reduction in the load current ripples
Increase in the load current ripple
Reduction in output dc voltage
183.
183. The pulse width modulation technique is used in:
(1)
(2)
(3)
(4)
182.
Cycloconverter
Line commutated inverter
ac voltage controller
Voltage source inverter
184. In medium power rating voltage source inverter, the
best device to be used is:
(1) Thyristor
(2) Triac
(3) IGBT
(4) MOSFET
184.
185. In a 3-phase phase ac system, any unbalanced load
can be converted to:
185.
(1)
(2)
(3)
(4)
(1) Ammeter meter
(3) Energy meter
186.
(2) Wattmeter
(4) Voltmeter
187.
187. The negative feedback in a control system offers:
(1)
(2)
(3)
(4)
(2) Triac
(3) IGBT
(4) MOSFET
Balanced load using inductors
Balanced load using capacitors
Balanced load using resistors and capacitors
Balanced load using inductors and capacitors
186. The creeping is observed in:
ykbu fnd~ ifjofrZr FkkbfjLVj ifjorZdksa esa Mh-lh- fyad çsjdRo dh
mifLFkfr çHkkfor djrh gS%
(1) fuxZe Mh-lh- oksYVrk esa o`f)
(2) Hkkj /kkjk ÅfeZdkvksa esa deh
(3) Hkkj /kkjk ÅfeZdk esa o`f)
(4) fuxZe Mh-lh- oksYVrk esa deh
Lian foLrkj ekMqyu rduhd buesa ls fdlesa ç;ksx dh tkrh gS%
(1) lkbDyks ifjorZd
(2) ykbu fnd~ifjofrZr çrhid
(3) ,-lh- oksYVrk fu;U=d
(4) oksYVrk lzksr çrhid
,d e/;e “kfä fu/kkZfjr oksYVrk lzksr çrhid esa ç;ksx dh tkus okyh
loZJs’B ;qfä gS%
(1) FkkbfjLVj
Always stable system
Always unstable system
Oscillatory system
Conditionally stable system
rhu Qst okys ,-lh- flLVe esa dksbZ Hkh vlUrqfyr Hkkj buesa ls
fdlesa ifjofrZr fd;k tk ldrk gS%
(1) çsjdksa dk ç;ksx djrs gq, larqfyr Hkkj
(2) la/kkfj=ksa dk ç;ksx djrs gq, larqfyr Hkkj
(3) çfrjks/kdksa rFkk la/kkfj=ksa dk ç;ksx djrs gq, larqfyr Hkkj
(4) çsjdksa rFkk la/kkfj=ksa dk ç;ksx djrs gq, larqfyr Hkkj
foliZ.k fØ;k buesa ls fdlesa ns[kh tkrh gS%
(1) ,sehVj ehVj
(2) okVehVj
(3) ÅtkZ ehVj
(4) oksYVehVj
fdlh fu;U=.k rU= esa _.kkRed iqufuZos”k çnku djrk gS%
(1) lnSo fLFkj rU=
(2) lnSo vfLFkj rU=
(3) nksyu rU=
(4) çfrcfU/kr LFkk;h rU=
,dy Qst ,-lh flLVe dh rqyuk esa 3&Qst ,-lh- flLVe dks
çkFkfedrk feyus dk dkj.k buesa ls D;k gS%
(1) pkydksa dh vf/kd la[;k
(2) lgt fu;U=.k
(3) mPp n{krk
(4) vo;oksa dh de la[;k
HkwlEidZu VªkUlQkeZj dk ç;ksx fd;k tkrk gS%
(1) VªkUlQkeZjksa esa gkeksZfud ls cpus ds fy,
(2) tgk¡ ij rhu Qst flLVe ds U;wVªy Iokb±V vfHkxE; u gksa ogka
ij Ñf=e U;wVªy fLopu miyC/k djkus ds fy,
(3) U;wVªy dh /kkjk {kerk esa lq/kkj ykus ds fy,
(4) nks’k dh fLFkfr esa U;wVªy /kkjk dks Hkwfe rd c<+kus ds fy,
188. 3-phase AC system is preferred compared to singlephase AC system because of:
(1) High number of conductors
(2) Easy control
(3) High efficiency
(4) Smaller number of components
188.
189. The earthing transformer is used:
(1) To avoid the harmonics in the transformers
(2) To provide artificial neutral earthing where the neutral
points of the 3–phase system are not accessible
(3) To improve the current capacity of neutral
(4) To increase the neutral current to ground in case of
fault
189.
190. In EHV sub-stations isolation switches are used in
series with the circuit breakers:
(1) To ensure fast isolation during faults
(2) To reduce the probability of circuit breaker not
opening
(3) To provide visible physical isolation of an open circuit
(4) To open quickly to interrupt a fault and present
arching in the circuit breaker
190. EHV
lcLVs”kuksa esa fo;kstu fLopksa dk ç;ksx ifjiFk fo;kstdksa ds lkFk
Js.kh c) :i esa fd;k tkrk gS%
(1) nks’k ds nkSjku Rofjr fo;kstu lqfuf”pr djus ds fy,
(2) ifjiFk fo;kstd ds u [kqyus dh lEHkkouk dks de djus ds fy,
(3) fdlh [kqys ifjiFk esa çkÑfrd :i ls n`”; fo;kstu miyC/k
djkus ds fy,
(4) nks’k jksdus ds fy, rqjUr [kksyus rFkk ifjiFk fo;kstd esa MkViqr
Hkkx miyC/k djkus ds fy,
ECL-136 [A–24]
çnk;d dk vkdkj çeq[kr% buesa ls fdlds }kjk fu/kkZfjr fd;k tkrk gS%
(1) /kkjk tks mls ogu djuh gS
(2) çnk;d esa oksYVrk dh çfr”kr fofHkUurk
(3) çnk;d ds ikj oksYVrk
(4) nwjh ftlds Åij lapkj.k fd;k x;k gS
EHV lapj.k ykbuksa esa caMy pkydksa dks çkFkfedrk nh tkrh gS
D;ksafd%
(1) irys pkydksa dks cukuk rFkk ,d caMy pkyd cukus ds fy,
mUgsa tksM+uk vklku gksrk gS
(2) ykbu dk ldy çsjdRo de gks tkrk gS rFkk dksjksuk {kfr
U;wure gksrh gS
(3) VkWoj dh Å¡pkbZ de gks tkrh gS rFkk bl dkj.k lapkj.k ykbus
lLrh gksrh gSa
(4) tc caMy pkydksa dk ç;ksx fd;k tkrk gS rks lapkj.k ykbu esa
dksbZ >ksy ugha jgrk gS
fdlh 3&Qst VªkUlQkeZj dh vf/kdre n{krk ml Hkkj.k ij gksrh gS
ftl ij%
(1) dksbZ ykSg {kfr rFkk rkez {kfr ugha gksrh gS
(2) rkez {kfr dh 3 – xquk ykSg {kfr gksrh gS
(3) tc çkFkfed vkSj ek/;fed vUrLFkksa ij oksYVrk dk ewY;kadu
fd;k tkrk gS rFkk /kkjk,a ek/;fed rFkk çkFkfed lkbMksa esa 3:1
ds lekuqikr esa gksrh gS
(4) tc ykSg {kfr rkez {kfr ds cjkcj gksrh gS
VªkUlQkeZjksa ds fy, Hksnpkfyr j{k.k esa gkeksZfud fujks/k fuEukafdr esa
ls fdlds dkj.k gksus okys dqçpkyu dks jksdus ds fy, miyC/k djk;k
tkrk gS%
(1) pqEcdu vUr%/kkjk
(2) xSj&lqesfyr CT /kkjk vlUrqyu
(3) vpqEcdu vfHkokg
(4) lEc) VTs }kjk [kksts x, nks’kks ds nkSjku oksYVrk vlUrqyu
191. The size of a feeder is determined primarily by:
(1) The current it is to carry
(2) The percentage variation of voltage in the feeder
(3) The voltage across the feeder
(4) The distance over which the transmission is made
191.
192. The bundle conductors are preferred in EHV
transmission lines because:
(1) It is easy to fabricate thin conductors and combine
them to make a bundle conductor
(2) Overall inductance of the line is reduced and corona
loss are minimum
(3) Height of the tower is reduced and hence cheap
transmission lines
(4) There is no sag in the transmission line when bundle
conductors are used
192.
193. The maximum efficiency of a 3–phase transformer will
occur at a loading at which:
(1) There are no iron losses and copper losses
(2) Iron losses are 3 – times the copper losses
(3) When the voltage on primary and secondary terminals
is rated value and the currents are in proportion of 3:1
in secondary and primary sides
(4) When the iron losses are equal to the copper losses
193.
194. Harmonic restraint in differential protection for
transformers is provided to prevent mal-operation
caused due to:
(1) Magnetizing in-rush current
(2) Unmatched CT current imbalance
(3) Demagnetizing flux
(4) Voltage imbalance during faults as detected by
V Ts connected
194.
195. The rotor slots are usually given a slight skew in the
squirrel cage induction motor:
(1) To increase the tensile strength of the rotor bars at
high speed
(2) To reduce the locking tendency of the rotor and
reduce hum
(3) To prevent rotating in the reverse direction
(4) To save copper used and is easier and economical to
fabricate
195.
fiatjh çsj.k eksVj esa ?kw.kZd LykVksa dks lkekU;r% gYdk Vs<+k fd;k tkrk
gS%
(1) mPp xfr ij ?kw.khZ NM+ksa dh ruu lkeZF; c<+kus ds fy,
(2) ?kw.kZd dh ykWfdax ço`fÙk dks de djus rFkk xqatu dks de djus
ds fy,
(3) foijhr fn”kk esa ?kw.kZu dks jksdus ds fy,
(4) ç;qä rkez dks cpkus ds fy, rFkk bls cukuk vklku vkSj de
[kphZyk gS
196. The iron loss of a transformer connected to a variable
load on the secondary is:
(1) Varying with the load
(2) equal to 1/ 2 times the copper losses
(3) Constant throughout and independent of the load
3 /2 times the full load loss
(4)
196.
f}rh;d ij pj Hkkj ls la;ksftr VªkUlQkeZj dh ykSg {kfr%
(1) Hkkj ds lkFk ifjorhZ gS
(2) rkez {kfr ds 1/ 2 xqus ds cjkcj gS
(3) lnSo fLFkj gS rFkk Hkkj ls LorU= gS
(4) iw.kZ Hkkj {kfr dk 3 /2 xquk gS
197. Two resistances R1 and R2 have a combined
resistance of 4.5 ohms when in series and 1 ohm when
in parallel. The resistances R1 and R2 are:
(1) 3 and 6 ohms
(2) 3 and 9 ohms
(3) 1.5 and 3 ohms
(4) 1.5 and 0.5 ohms
197.
nks çfrjks/kd R1 rFkk R2 4.5 vkse dk la;qä çfrjks/k j[krs gSa tc
Ja[kyk esa gksrs gSa rFkk 1 vkse dk la;qä çfrjks/k j[krs gSa tc
lekukUrj gksrs gSaA çfrjks/kd R1 rFkk R2 gSa%
(1) 3 rFkk 6 vkse
(2) 3 rFkk 9 vkse
(3) 1.5 rFkk 3 vkse
(4) 1.5 rFkk 0.5 vkse
ECL-136 [A–25]
198.
198. Thyristor is a:
(1)
(2)
(3)
(4)
Current operated device
Voltage operated device
Power operated device
All the above
199. The inverse time characteristics,
characteristics shown below is:
(1) 1
(3) 3
out
of
the
199.
(2) 2
(4) 4
(1) 1
(3) 3
200. Protection scheme of a motor feeder consists of an
inverse time relay with following characteristics:
Plug Setting Multiplier
2
5 10
Time in seconds
10 4.3
3
If the CT ratio is 200/1, adopted plug setting is 0.8 Amp
and Time Multiplier setting is 0.2, then for a fault current
of 1600 Amps, the operating time of relay will be:
(1) 4.3 sec
(2) 3.0 sec
(3) 0.6 sec
(4) 0.3 sec
200.
201. When the generator stator neutral is earthed through a
distribution transformer, the earth fault protection is
operative through:
(1) An under-voltage relay connected across the
secondary of the transformer
(2) An over-voltage relay connected across the secondary
of the transformer
(3) An over-current relay connected in the transformer
secondary
(4) Distance relay set to protect 90% phase winding of the
generator
201.
202. The short-circuit secondary current of the transformer
with 4% reactance during normal operations would be:
(1) 25 times the rated current
(2) 40 times the rated current
(3) 400 times the rated current
(4) 250 times the rated current
202.
203. If the charging reactance of a line of 100 km length is
750 Ω, then what will be the charging reactance for 50
km length of the line?
203.
(1) 1500 Ω
(3) 3000 Ω
In phase
45 degrees out of phase
90 degrees out of phase
180 degrees out of phase
204.
(2) 2
(4) 4
fdlh eksVj QhMj dh j{k.k ;kstuk fuEukafdr vfHky{kf.kdrkvksa lfgr
foykse le; fjys j[krh gS%
Iyx lsfVax eYVhIyk;j
2
5 10
lsds.M~l esa le;
10 4.3
3
;fn CT vuqikr 200/1 gS yh xbZ Iyx lSfVax 0.8 ,fEi;j gS rFkk
eYVhIyk;j lSfVax le; 0.2 gS rks 1600 ,fEi;j dh nks’k /kkjk ds
fy, fjys dk çpkyu gksxk%
(1) 4.3 lsds.M
(2) 3.0 lsds.M
(3) 0.6 lsds.M
(4) 0.3 lsds.M
tc forj.k VªkUlQkeZj ds ek/;e ls tfu= LVsVj U;wVªy dks
HkwlEifdZr fd;k tkrk gS rks HkwlEidZu nks’k j{k.k buesa ls fdlds }kjk
çpkfyr gksxk%
(1) VªkUlQkeZj ds f}rh;d ds ikj ,d vo&oksYVrk fjys la;ksftr gS
(2) VªkUlQkeZj ds f}rh;d ds ikj ,d vfr&oksYVrk fjys la;ksftr gS
(3) VªkUlQkeZj ds f}rh;d esa ,d vfr oksYVrk fjys la;ksftr gS
(4) tfu= dh 90% Qst dqaMyh ds j{k.k ds fy, nwj fjys lsV
lkekU; çpkyu ds nkSjku 4% çfr?kkr lfgr VªkUlQkeZj dh y?kqiFk
f}rh;d /kkjk gksxh%
(1) fu/kkZfjr /kkjk dk 25 xquk
(2) fu/kkZfjr /kkjk dk 40 xquk
(3) fu/kkZfjr /kkjk dk 400 xquk
(4) fu/kkZfjr /kkjk dk 250 xquk
;fn 100 km yEch ykbu dk vkos”ku çfr?kkr 750 Ω gS rks 50
fdyksehVj yEch ykbu ds fy, vkos”ku çfr?kkr D;k gksxk%
(1) 1500 Ω
(3) 3000 Ω
(2) 750 Ω
(4) 375 Ω
204. At resonance in a parallel RLC circuit, the source
current and the inductor current are:
(1)
(2)
(3)
(4)
FkkbZfjLVj gS%
(1) /kkjk çpkfyr ;qfä
(2) oksYVrk çpkfyr ;qfä
(3) “kfä çpkfyr ;qfä
(4) mi;qZä lHkh
uhps n”kkZ;h xbZ vfHky{kf.kdrkvksa esa ls foykse le; vfHky{kf.kdrk,a
gSa%
(2) 750 Ω
(4) 375 Ω
lekukUrj RLC ifjiFk esa vuqukn ij lzksr /kkjk vkSj çsjd /kkjk
dgk¡ ij gS\
(1) Qst esa
(2) Qst ds ckgj 45 fMxzh
(3) Qst ds ckgj 90 fMxzh
(4) Qst ds ckgj 180 fMxzh
ECL-136 [A–26]
205. The knee point of a current transformer is defined as:
205.
(1) 10% increase in excitation voltage results in 50%
increase in magnetising current
(2) 50% increase in excitation voltage results in 10%
increase in magnetising current
(3) 10% decrease in excitation voltage results in 25%
increase in magnetising current
(4) 50% increase in excitation voltage results in no
change in magnetising current
206. One kilowatt-hour of electrical energy is the same as:
5
(1) 36x10 erg
(3) 36x105 C.H.U.
206.
6
(1) 36x105 erg
(3) 36x105 C.H.U.
(2) 36x10 B.T.U.
(4) 36x105 joule
207. Which of the following material is not used as fuse
material:
(1) Aluminum
(2) Tin
(3) Lead
(4) Carbon
207.
208. Which of the following material is NOT a semiconductor?
(1) Silica
(2) Germanium
(3) Selenium
(4) Gallium–Arsenide
208.
209. The driving point impedance for the network shown
below is:
(1) 0.25 Ω
(2) 0.50 Ω
(3) 0.75 Ω
(4) 1.0 Ω
209.
210. The resonance frequency for the network shown
below is:
210.
(1)
(3)
1
π
1
4π
(2)
(4)
fdlh /kkjk VªkUlQkeZj ds tkuq fcUnq dks buesa ls fdl çdkj ifjHkkf’kr
fd;k tkrk gS%
(1) mÙkstu oksYVrk esa 10% o`f) dk ifj.kke pqEcdu /kkjk esa 50%
o`f) gksrh gS
(2) mÙkstu oksYVrk esa 50% o`f) dk ifj.kke pqEcdu /kkjk esa 10%
o`f) gksrh gS
(3) mÙkstu oksYVrk esa 10% gkzl dk ifj.kke pqEcdu /kkjk esa 25%
o`f) gksrh gS
(4) mÙkstu oksYVrk esa 50% o`f) ds ifj.kke Lo:i pqEcdu /kkjk esa
dksbZ ifjorZu ugha gksrk
,d fdyksokV çfr?kUVk dh fo|qr ÅtkZ buesa ls fdlds cjkcj gS%
fuEukafdr esa ls fdl inkFkZ dk ç;ksx ¶;wt inkFkZ ds :i esa ugha
fd;k tkrk gS%
(1) vY;qfefu;e
(2) fVu
(3) lhlk
(4) dkcZu
,d xR;kRed Le`fr vk¡dM+ksa dk HkaMkj.k fdlesa djrh gS%
(1) myV iyV
(2) bUMDVlZ
(3) /kkfjrk
(4) çfrjks/kd
uhps çnf'kZr usVodZ ds fy, Mªkbfoax Iokb±V çfrck/kk gksxh%
(1) 0.25 Ω
(3) 0.75 Ω
(3)
211. Neutral Displacement voltage occurs in:
(1) Unbalanced delta connected loads.
(2) Unbalanced star connected loads with neutral grounded
(3) Balanced star connected loads with neutral grounded.
(4) Unbalanced star connected loads with ungrounded neutral
211.
212. Which of the following is INCORRECT about semi–
conductors:
(1) The donor energy level lies close to the bottom of
conduction band in n–type semi–conductor.
(2) The holes in the valance band have negative effective
mass.
(3) The energy levels inside a band are quasicontinuous
and equally spaced
(4) The density of states at energy E near the bottom
conduction band (Ec) can be regarded to vary as
212.
(2) 0.50 Ω
(4) 1.0 Ω
uhps çnf'kZr usVodZ dh vuqukn vko`fÙk fdruh gksxh\
(1)
1
2π
4
π
(2) 36x106 B.T.U.
(4) 36x105 twy
1
π
1
4π
(2)
(4)
1
2π
4
π
fuçHkkou foLFkkiu oksYVrk fuEu esa ls fdlesa ikbZ tkrh ¼?kfVr gksrh½ gS\
(1) vlarqfyr f=dks.k ¼MsYVk½ ;ksftr Hkkj ¼yksM½ esa
(2) U;wVªy HkwlaifdZr ls vlarqfyr rkjk la;ksftr Hkkj
(3) U;wVªy HkwlaifdZr ls larqfyr rkjk la;ksftr Hkkj
(4) vHkwlaifdZr U;wVªy ls vlarqfyr rkjk la;ksftr Hkkj
v/kZpkydksa ds laca/k esa dkSu&lk dFku xyr gS\
(1) ,u Js.kh ds v/kZpkydksa esa pkyu cSaM ds v/kLFky ds fudV nkrk
ÅtkZ ry gksrk gS
(2) la;kstdrk cSaM ds fNæksa esa _.kkRed çHkkoh æO;eku gksrk gS
(3) cSaM ds vUrxZr ÅtkZ ry larrdYi ¼DoklhdkfUVuqvl½ ,oa
leku vUrjkodk'kh gS
(4) v/kLFky pkyu cSaM ¼EC½ ds fudV ÅtkZ E ij voLFkk ds
?kuRo ¼density of states½ dks (E – Ec )1/ 2 ds :i esa ifjorÊ
dgk tk ldrk gS
(E – Ec )1/ 2
ECL-136 [A–27]
213. Thermal effect is used for producing deflecting torque
is:
(1) Voltmeter
(3) Wattmeter
213.
(2) Ammeter
(4) Energy meter
214. For increasing the range of voltmeter, one should connect a:
(1) High value resistance in series with voltmeter
(2) Low value resistance in series with voltmeter
(3) High value resistance in parallel with voltmeter
(4) Low value resistance in parallel with voltmeter
214.
215. For testing the earth fault of an electric iron, the
reading of the megger is infinity. This indicates:
215.
(1)
(2)
(3)
(4)
Short circuit of the heating element.
Short circuit of the supply terminal.
Loose terminal connections.
Open circuit of the heating element.
216. Electrostatic instruments
measurement of:
(1) ac and dc voltages
(2) ac voltage and current
(3) dc voltage and current
(4) ac and dc currents
are
suitable
for
the
217. Schering bridge is used to measure:
(1)
(2)
(3)
(4)
(1)
(2)
(3)
(4)
216.
fLFkj oS|qr ¼bysDVªksLVSfVd½ ;a= fdlds ekiu ds fy, mi;qä gksrs gSa\
(1) ac vkSj dc oksYVrk
(2) ac oksYVrk vkSj /kkjk
(3) dc oksYVrk vkSj /kkjk
(4) ac vkSj dc /kkjk
217.
'kksfjax lsrq ¼Schering½ fdls ekius ds fy, ç;ksx fd;k tkrk gS\
(1) ijkoS|qr gkfu
(2) çsjdRo
(3) fuEu çfrjks/k
(4) vU;ksU; ¼mutual½ çsjdRo
fdlh VcksZ vkYVjusVj ¼çR;kofrZr½ dh vkesZpj yisV ¼okbfUMx½] LykVksa
¼ç[kk¡pksa½ esa lkekU;r% xgjkbZ esa O;ofLFkr dh tkrh gSaA ;g fdl
dkj.k fd;k tkrk gS%
(1) yisV dk {kj.k çfr?kkr c<+kus ds fy,
(2) yisV dh ;kaf=d lkeF;Z c<+kus ds fy,
(3) visf{kr fo|qr Lrj jks/ku nsus ds fy,
(4) yisV dk 'khryu lq/kkjus ds fy,
fdlh rkjk lEcfU/kr U;wVªy Hkw&laifdZr] rqY;dkfyd eksVj esa rhljk
vkSj ikpok¡ gkeksZfud ?kVd ykbu&ykbu oksYVrk esa vuqifLFkr gSaA bUgsa
fdl dks.k ij vkesZpj dqaMyh ds y?kq varjk;u }kjk çkIr fd;k tk
ldrk gS\
Dielectric loss
The inductance
Low resistance
Mutual inductance
218. The armature winding of a turbo alternator is normally
placed deeper in slots. This is done to:
218.
Increase the leakage reactance of the winding
Increase the mechanical strength of the winding
Provide the required insulation level
Improve the cooling of the winding
219. In a star connected, neutral grounded, synchronous
generator 3rd and 5th harmonic components are absent
in line to line voltage. This is achieved by short
pitching the armature coils by an angle of:
(1) 60°
(3) 30°
219.
(2) 36°
(4) 48°
(1) 60°
(3) 30°
220. During hunting of a synchronous motor:
(1) Negative sequence currents are generated.
(2) Harmonics are developed in the armature circuit.
(3) Damper bars develop torque
(4) Field excitation increases.
220.
221. Armature shunting method of speed control of dc
shunt motor is preferred over armature resistance
method due to:
221.
(1)
(2)
(3)
(4)
Better speed regulation
Less loss in external resistance
Simplicity in control circuit
Reduced cost of controller
fo{ksid cy vk?kw.kZ mRiUu djus ds fy, ç;qä rkih; çHkko dks D;k
dgrs gSa%
(1) oksYVekih
(2) ,sehVj
(3) okVekih
(4) ÅtkZekih
oksYVekih dk ifjlj c<+kus ds fy, gesa D;k la;ksftr djuk pkfg,\
(1) oksYVekih ls Jsf.k;ksa esa mPp eku çfrjks/k
(2) oksYVekih ls Jsf.k;ksa esa fuEu eku çfrjks/k
(3) oksYVekih ls lekukUrj esa mPp eku çfrjks/k
(4) oksYVekih ls lekukUrj esa fuEu eku çfrjks/k
,d fctyh ds çsl ds HkwlaidZu nks"k dh tk¡p ds fy, esxj dh jhfMax
vuUr gksrh gSaA ;g n'kkZrh gS%
(1) rkiu vo;o dk y?kq ifjiFk
(2) iwfrZ VfeZuy dk y?kq ifjiFk
(3) f'kfFky VfeZuy la;kstu
(4) rkiu vo;o dk foo`r ifjiFk
(2) 36°
(4) 48°
rqY;dkfyd eksVj ds pky nksyu ¼hunting½ ds nkSjku%
(1) _.kkRed Øe /kkjk,a tfur gksrh gSa
(2) vkesZpj ifjiFk esa gkeksZfud fodflr gksrs gSa
(3) voeand naM cy&vk?kw.kZ fodflr djrs gSa
(4) {ks= mÙkstu c<+rk gS
dc 'kaV eksVj ds pky fu;a=.k dh vkesp
Z j 'kaVdkjh i)fr dks fdl
dkj.k ls vkespZ j çfrjks/k i)fr ij rjt+hg nh tkrh gS%
(1) csgrj pky fu;a=.k
(2) ckgjh çfrjks/k esa de gkfu
(3) fu;a=.k ifjiFk esa ljyrk
(4) fu;a=d dh U;wuhÑr ykxr
ECL-136 [A–28]
222. A DC shunt motor is running at 1200 rpm, when
excited with 220V dc. Neglecting the losses and
saturation, the speed of the motor when connected to
a 175 V supply is:
(1)
(2)
(3)
(4)
70 rpm
900 rpm
1050 rpm
1200 rpm
223.
More than full load copper losses
Equal to full load copper losses
Less than full load copper losses
Negligible compared to full load copper losses.
224. Hollow conductors are used in the transmission lines to:
(1)
(2)
(3)
(4)
225.
Counterpoises are used
Grounding rods are used
Grounding mats are used
Peterson coil is used
226. A semiconductor is electrically neutral because it has:
(1)
(2)
(3)
(4)
224.
Improve heat dissipation
Reduce corona loss
Reduce skin effect
Reduce the line inductance
225. For the grounding of an entire sub–station:
(1)
(2)
(3)
(4)
226.
No majority carrier
No minority carrier
No free charges
Equal number of negative and positive charges.
227. A circuit requires a capacitor of 100µf, 25V. The
capacitor can be:
(1) Paper capacitor
(2) Electrolytic capacitor
(3) Ceramic capacitor
(4) Any type of capacitor
227.
228. The purpose of a coupling capacitor in an amplifier is to:
228.
(1)
(2)
(3)
(4)
Control the output
Provide impedance matching
Provide DC isolation between amplifier and load
Increase the bandwidth
229. If the delay introduced by one inverter gate is τ sec
then the time period of the output V0 of the following
circuit would be:
(1) 3τ
(3) Zero
tc
ij ,d dc 'kaV eksVj dks mÙksftr fd;k tkrk gS og
pyrh gSA gkfu;ksa vkSj lar`fIr;ksa dh vuns[kh djrs
gq, tc eksVj dks 175 V çnk; ij la;ksftr fd;k tkrk gS rc eksVj
dh pky fdruh rpm gksxh\
220 V dc
1200 rpm ij
(1)
(2)
(3)
(4)
223. Distribution transformers have core losses:
(1)
(2)
(3)
(4)
222.
229.
70 rpm
900 rpm
1050 rpm
1200 rpm
forj.k ifj.kkfe= esa fdruh ØksM gkfu gksrh gS\
(1) iw.kZ Hkkj rkez gkfu;ksa ls vf/kd
(2) iw.kZ Hkkj rkez gkfu;ksa ds cjkcj
(3) iw.kZ Hkkj rkez gkfu;ksa ls de
(4) iw.kZ Hkkj rkez gkfu;ksa dh rqyuk esa ux.;
lapkj.k ykbuksa esa [kks[kys pkyd D;ksa ç;ksx fd, tkrs gSa\
(1) Å"ek folj.k ¼fodh.kZu½ dks lq/kkjus ds fy,
(2) dksjksuk gkfu dks de djus ds fy,
(3) Rokfpd çHkko dks de djus ds fy,
(4) ykbu çsjdRo dks de djus ds fy,
laiw.kZ lc&LVs'ku ds Hkw&laidZu ds fy,%
(1) çfrrksy ç;ksx fd, tkrs gSa
(2) Hkw&laidZu NM+ ç;ksx fd, tkrs gSa
(3) Hkw&laidZu eSV ç;ksx fd, tkrs gSa
(4) ihVjlu dqaMyh ç;ksx dh tkrh gS
v/kZpkyd fo|qrh; :i ls U;wVªy gksrs gSa D;ksafd blesa%
(1) cgqla[;d okgd ugha gksrs gSa
(2) vYila[;d okgd ugha gksrs gSa
(3) eqä vkos'kh ugha gS
(4) cjkcj la[;k esa _.kkRed vkSj /kukRed vkos'kh gSa
fdlh ifjiFk dks 100µf, 25V ds la/kkfj= dh vko';drk gksrh gSA
la/kkfj= fdl çdkj dk gks ldrk gS%
(1) dkxt la/kkfj=
(2) fo|qr vi?kVuh la/kkfj=
(3) fljsfed la/kkfj=
(4) fdlh Hkh çdkj dk la/kkfj=
fdlh ço/kZd esa la/kkfj=ksa ds ;qXeu dk mís';%
(1) vkmViqV ¼fuxZe½ ij fu;a=.k djuk
(2) çfrck/kk lqesyu çnku djuk gS
(3) ço/kZd vkSj yksM ds chp dc fo;kstu çnku djuk gS
(4) cSaM&foLrkj c<+kuk gS
;fn fdlh çrhid xsV }kjk çofrZr foyEc τ sec gS rc fuEufyf[kr
ifjiFk dh vkmViqV V0 dkykof/k fdruh gksxh%
(1) 3τ
(3) 'kwU;
(2) 6τ
(4) 2τ
230. The addressing mode used in STAX B instruction is:
(1) Direct addressing mode
(2) Indirect addressing mode
(3) Implied addressing mode
(4) Register addressing mode
vuqns'k esa ç;qä irkfHkxeu eksM dkSu&lk gS\
çR;{k irkfHkxeu eksM
vçR;{k irkfHkxeu eksM
vUrfuZfgr irkfHkxeu eksM
jftLVj irkfHkxeu eksM
230. STAX B
(1)
(2)
(3)
(4)
ECL-136 [A–29]
(2) 6τ
(4) 2τ
(1)
(2)
(3)
(4)
(1)
(2)
(3)
Gate voltage is reduced to zero
Gate current is reduced below holding current
Anode current is reduced below latching current
Anode current is reduced below holding current
232. A chopper is connected in parallel with a fixed
resistance to control the speed of slip ring induction
motor. The motor speed increases as:
(1)
(2)
(3)
(4)
The chopper duty cycle decreases
The chopper duty cycle increases
The chopper frequency increases
The chopper frequency decreases
233. The type–2 system has:
(1)
(2)
(3)
(4)
No net pole at origin
Net pole at origin
Simple pole at the origin
Two poles at the origin.
234. Sinusoidal oscillators are:
(1) Stable
(3) Marginally stable
(2) Unstable
(4) Conditionally stable
235. A series inductor is normally added in a thyrister
circuit for achieving protection against:
(1) High current
(3) High di/dt
(2) High voltage
(4) High dv/dt
236. V/f is maintained constant in the following case of
speed control of induction motor:
(1) Below base speed with voltage control
(2) Below base speed with frequency control
(3) Above base speed with frequency control
(4) None of the above
237. The resultant flux density in the air gap of a
synchronous generator is the lowest during:
(1) Open circuit
(3) Full load
(2) Solid short circuit
(4) Half load
238. The hysteresis Motor:
(1)
(2)
(3)
(4)
Has a D.C. winding on the rotor
Rotor is made out of hard magnetic material
Has squirrel-cage winding on the rotor
Is not-self starting
239. An ideal amplifier has:
(1)
(2)
(3)
(4)
Zero input resistance and zero output resistance
Infinite input resistance and zero output resistance
Zero input resistance and infinite output resistance
Infinite input resistance and infinite output resistance
240. Phase relays are used to provide protection against:
(1)
(2)
(3)
(4)
Single phase to ground fault only
Double phase to ground fault only
Phase faults involving two and more phases
Three phase fault only
dks dc can dj fn;k tkrk gS\
tc xsV ¼}kj½ oksYVrk dks de dj 'kwU; fd;k tkrk gS
tc xsV /kkjk dks ?kVkdj /kkj.k /kkjk ls de fd;k tkrk gS
tc ,suksM /kkjk dks ?kVkdj flVduh ¼latching½ /kkjk ls de
fd;k tkrk gS
(4) tc ,suksM /kkjk dks ?kVkdj /kkj.k /kkjk ls de fd;k tkrk gS
232. liÊ oy; çsj.k eksVj dh pky dks fu;af=r djus ds fy, fu;r
çfrjks/k lfgr ladrÊ dks ik'oZ esa la;ksftr fd;k tkrk gS] crkb, fd
eksVj LihM fdl :i esa c<+rh gS\
(1) ladrÊ dk deZ&pØ ?kVrk gS
(2) ladrÊ dk deZ&pØ c<+rk gS
(3) ladrÊ dh vko`fÙk c<+rh gS
(4) ladrÊ dh vko`fÙk ?kVrh gS
233. Vkbi&2 ra= esa%
(1) ewy ij dksbZ usV iksy ugha gksrk gS
(2) ewy ij usV iksy gksrk gS
(3) ewy ij lk/kkj.k iksy gksrk gS
(4) ewy ij nks iksy gksrs gSa
234. T;koØh; nksfy=%
(1) LFkk;h gksrs gSa
(2) vLFkk;h gksrs gSa
(3) vikfUrd vLFkk;h
(4) çfrcfU/kr LFkk;h
235. buesa ls fdlls lqj{kk çkIr djus ds fy, ,d Js.kh çsjd esa lkekU;r%
,d FkkbfjLVj ifjiFk tksM+k tkrk gS%
(1) mPp /kkjk
(2) mPp oksYVrk
(3) mPp di/dt
(4) mPp dv/dt
236. çsj.k eksVj dh xfr fu;a=.k dh fuEukafdr esa ls fdl fLFkfr esa V/f
dks vpj j[kk tkrk gS%
(1) vk/kkj xfr ls de oksYVrk fu;a=.k lfgr
(2) vk/kkj xfr ls de vko`fÙk fu;a=.k lfgr
(3) vk/kkj xfr ls vf/kd vko`fÙk fu;a=.k lfgr
(4) buesa ls dksbZ ugha
237. rqY;dkfyd tsujsVj ds ok;q vUrjky esa ifj.kkeh ¶yDl ?kuRo buesa
ls dc U;wure gksrk gS%
(1) eqä ifjiFk
(2) Bksl y?kqiFk
(3) iw.kZ Hkkj
(4) v)ZHkkj
238. fgLVsfjfll eksVj esa%
(1) ?kw.kZd ij Mh-lh- yisV gksrh gS
(2) ?kw.kZd dBksj pqEcdh; lkexzh ls curk gS%
(3) ?kw.kZd ij fLDojy&dst yisV gksrh gS
(4) Lo&çkjEHk ugha gksrk
239. ,d vkn”kZ ço/kZd ¼Amplifier½ esa buesa ls D;k gksrk gS%
(1) “kwU; fuos”k çfrjks/k rFkk “kwU; fuxZe çfrjks/k
(2) vifjfer fuos”k çfrjks/k rFkk “kwU; fuxZe çfrjks/k
(3) “kwU; fuos”k çfrjks/k rFkk vifjfer fuxZe çfrjks/k
(4) vifjfer fuos”k çfrjks/k rFkk vifjfer fuxZe çfrjks/k
240. Qst fjyst dk ç;ksx lqj{kk çnku djus ds fy, fd;k tkrk gS%
(1) dsoy flaxy Qst ls xzkmaM Qst ds fo:)
(2) dsoy Mcy Qst ls xzkmaM Qst ds fo:)
(3) Qst QkYVl ds fo:) tgk¡ nks vFkok vf/kd Qst gSa
(4) dsoy 3 Qst QkYV ds fo:)
231. SCR
231. An SCR is turned off when:
ECL-136 [A–30]