Physics 701 - Solutions 5 Department of Physics University of New Hampshire (1) Griffiths 2.13 a. [5] We find A by simply normalizing the wave function. 1 = hΨ(0) |Ψ(0)i = 9 hψ0 |Ψ0 i + 12 hψ0 |Ψ1 i + 12 hψ1 |Ψ0 i + 16 hψ1 |Ψ1 i or, Z ∞ 2 = A 9|ψ0 (x)|2 + 12ψ0∗ (x)ψ1 (x) + 12ψ1∗ (x)ψ0 (x) + 16|ψ1 (x)|2 dx −∞ 2 = A (9 + 0 + 0 + 16) = 25A2 ⇒ A = 1/5 b. [5] You can immediately get the coefficients: c0 = 3A and c1 = 4A, and also using En = h ¯ ω(n + 12 ) you get Ψ(x, t) = A 3ψ0 (x)e−iωt/2 + 4ψ1 (x)e−i3ωt/2 |Ψ(x, t)|2 = A2 9|ψ0 (x)|2 + 12ψ0∗ (x)ψ1 (x)e−iωt + 12ψ0 (x)ψ1∗ (x)eiωt + 16|ψ1 (x)|2 1 = 9ψ0 (x)2 + 24ψ0 (x)ψ1 (x) cos(ωt) + 16ψ1 (x)2 25 c. [10] In this problem you are asked to verify Ehrenfest’s theorem, so you cannot use it to obtain the answer. To get the answer you can do a 1 straight integration: Z ∞ 2 hˆ xi = A x 9ψ0 (x)2 + 24ψ0 (x)ψ1 (x) cos(ωt) + 16ψ1 (x)2 dx −∞ Z ∞ 2 xψ0 (x)ψ1 (x)dx = 24A cos(ωt) −∞ r Z ∞ 24 mω √ h ¯ 2 = ξ 2 e−ξ dξ 2 cos(ωt) 25 π¯ h mω −∞ r 24 h ¯ = cos(ωt) 25 2mω ∞ d d −iωt iωt hˆ pi = 12A ψ0 (x) ψ1 (x)e + ψ1 (x) ψ0 (x)e dx i −∞ dx dx r Z i ¯ ∞h mω √ h 2 −ξ 2 −iωt 2 2 −ξ 2 iωt 2 (1 − ξ )e e = 12A −ξ e e dξ π¯ h i −∞ r 24 m¯ hω sin(ωt) = − 25 2 ¯ 2h Z Alternatively, and probably much quicker, you can use the ladder operators: r h ¯ x ˆ= (ˆ a+ − ˆ a− ) 2mω However, we must be careful. The ladder operators only raise the eigenstate wavefunctions, not the time components! You can see this by explicitly working it out: r h ¯ ∂ −iEn t/¯ h ˆ a± ψn (x)e = ∓ + mωx ψn (x)e−iEn t/¯h 2mω ∂x √ n + 1ψn+1 (x)e−iEn t/¯h √ = nψn−1 (x)e−iEn t/¯h Now using this, in Dirac notation, and writing altogether too many 2 steps, we get: hˆ xi = hΨ(t) |ˆ x| Ψ(t)i r h ¯ = hΨ(t) |ˆ a+ + ˆ a− | Ψ(t)i 2mω r h ¯ = (hΨ(t) |ˆ a+ | Ψ(t)i + hΨ(t) |ˆ a− | Ψ(t)i) r 2mω h ¯ = |A|2 9 hψ0 |ˆ a+ | ψ0 i + 12 hψ0 |ˆ a+ | ψ1 i e−iωt + 2mω 12 hψ1 |ˆ a+ | ψ0 i eiωt + 16 hψ0 |ˆ a+ | ψ0 i + 9 hψ0 |ˆ a− | ψ0 i + 12 hψ0 |ˆ a− | ψ1 i e−iωt + 12 hψ1 |ˆ a− | ψ0 i eiωt + 16 hψ0 |ˆ a− | ψ0 i r h ¯ |A|2 12 hψ1 |ˆ a+ | ψ0 i eiωt + 12 hψ0 |ˆ a− | ψ1 i e−iωt = r 2mω √ √ h ¯ = |A|2 12 1eiωt + 12 1e−iωt 2mω r h ¯ 24 cos(ωt) = 25 2mω And for the momentum: r h ¯ mω hˆ pi = i hΨ(t) |ˆ a+ − ˆ a− | Ψ(t)i 2 r √ √ −iωt h ¯ mω 2 iωt |A| 12 1e − 12 1e = i 2 r 24 h ¯ mω sin(ωt) = − 25 2 Check Ehrenfest’s theorem, Eq. [1.38]: r dhˆ xi 24 h ¯ m = − mω sin(ωt) = hˆ pi dt 25 2mω * + r ˆ dhˆ pi 24 m¯ hω dV = − ω cos(ωt) = −mω 2 hˆ xi = − dt 25 2 dˆ x Naively, with ψ2 (x) instead of ψ1 (x), the oscillating frequency for hˆ xi and hˆ pi would be 2ω instead. However, hˆ xi and hˆ pi are actually zero 3 because the oscillating cross terms vanish (The total wave function is even in x, or alternatively, the ladder operators don’t “reach that rung”). The actual frequency is zero. Z ∞ 2 xψ0 (x)ψ2 (x)dx hˆ xi = 24A cos(2ωt) −∞ = 0 It is also easy to see that the cross terms vanish because a ˆ and a ˆ† do not couple ψ0 with ψ2 , nor would they for ψ0 and state with n > 1. d. [5] The particle energy can be h ¯ ω/2 or 3¯ hω/2. P (E = h ¯ ω/2) = 9/25 P (E = 3¯ hω/2) = 16/25 (2) [5] Griffiths 2.18 We use the identity: eiθ = cos(θ) + i sin(θ), then: Aeikx + Be−ikx = A cos(kx) + iA sin(kx) + B cos(−kx) + iB sin(−kx) = A cos(kx) + iA sin(kx) + B cos(kx) − iB sin(kx) = (A + B) cos(kx) + (iA − iB) sin(kx) ⇒ C =A+B A = 12 (C − iD) ⇔ D = i(A − B) B = 12 (C + iD) (3) Griffiths 2.22 a. [5] Z 2 1 = |A| 2 ∞ 2 e−2ax dx −∞ r = |A| π 2a ⇒ A= 2a π 1/4 b. [5] Z ∞ −(ax2 +bx) e −∞ Z ∞ dx = −a(x+b/2a)2 +b2 /4a e −∞ 4 r dx = π b2 /4a e a The expansion coefficients are Z ∞ A 2 φ(k) = √ e−ax e−ikx dx 2π −∞ A 2 = √ e−k /4a . 2a Z ∞ 1 φ(k)eikx−iE(k)t/¯h dk Ψ(x, t) = √ 2π −∞ 2 Z ∞ A k i¯ hk 2 t = √ exp − − + ikx dk 4a 2m 4πa −∞ 1/4 −ax2 /(1+2ia¯ht/m) e 2a p = π 1 + 2ia¯ht/m c. [5] The width of the Gaussian wave packet (∼ w−1 ) increases with time. 1.0 |Ψ(x, t)|2 r 2 = 0.7 0.8 ❘ 0.9 |Ψ(x, t)| 0.6 r = 0.4 0.5 t 0.2 0.3 ➤ = 0.1 −10 −5 0 5 10 x 5 2 2 2a e−ax /(1−2ia¯ht/m) e−ax /(1+2ia¯ht/m) p p π 1 − 2ia¯ht/m 1 + 2ia¯ ht/m 2 2 2a e−2ax /[1+(2a¯ht/m) ] p π 1 + (2a¯ ht/m)2 r 2 −2w2 x2 we . π d. [5] hxi = Z ∞ x|Ψ(x, t)|2 dx = 0 (The integrand is odd.) −∞ Z ∂Ψ(x, t) h ¯ ∞ ∗ Ψ (x, t) dx = 0 (The integrand is odd.) hpi = i −∞ ∂x Z ∞ 2 hx i = x2 |Ψ(x, t)|2 dx r−∞ Z ∞ 2 1 2 2 = w x2 e−2w x dx = π 4w2 −∞ Z ∞ d2 hp2 i = −¯ h2 Ψ∗ (x, t) 2 Ψ(x, t)dx dx −∞ " r Z ∞ 2 # −ax2 /(1+iu) −ax2 /(1−iu) e 2ax 2a 2a e √ √ − dx = h ¯2 π −∞ 1 + iu 1 + iu 1 − iu 1 + iu r 2 # Z ∞" 2a 2a h ¯2 2ax 2 2 √ = − e−2ax /(1+u ) dx 2 π 1 + u −∞ 1 + iu 1 + iu " #r r 2 2a 2a h ¯2 1 2a (1 + u2 ) π(1 + u2 ) √ = − π 1 + u2 1 + iu 2 1 + iu 2a 2a = a¯ h2 , where u = 2a¯ ht/m. σx = 1/2w σp = √ a¯ h e. [5] At t = 0 the uncertainty limit is satisfied. σx σp = h ¯p h ¯ 1 + (2a¯ht/m)2 ≥ 2 2 6 (4) [5] Griffiths 2.42 Looking at the graph that we already made for Quiz2, you can see that for x > 0 we have the Harmonic Oscillator potential, while for x < 0 the potential is infinite. We thus have solutions that are the same as for the H.O. potential for x > 0, but with a boundary condition that ψ(0) = 0. That means we can only use the odd solutions, so En = h ¯ ω(n + 21 ) for odd n, or Em = h ¯ ω(2m + 3/2) for m any positive integer starting at zero. (5) Griffiths 2.45 Extra Problem This problem is actually a bit tricky. We start with the assumption that there are two solutions with the same energy E, and then see if this leads to a contradiction. Writing the time-independent Schr¨odinger’s equation for the two solutions and multiplying through with the other solution we get: ) h2 ¯ d2 − 2m ψ2 dx2 ψ1 + V ψ1 ψ2 = Eψ1 ψ2 ⇒ h2 ¯ d2 − 2m ψ1 dx = Eψ1 ψ2 2 ψ2 + V ψ1 ψ2 d2 d2 ψ2 2 ψ1 − ψ1 2 ψ2 = 0 ⇒ dx dx d d d = 0⇒ ψ2 ψ1 − ψ1 ψ2 dx dx dx d d ψ2 ψ1 − ψ1 ψ2 = K (1) dx dx where K is some constant independent of x. However, since this represents normalizable solutions, we must have ψ1 → 0 and ψ2 → 0 as |x| → ∞, and thus K must be zero. We then have: d d ψ2 ψ1 = ψ1 ψ2 ⇒ dx dx 1 d 1 d ψ1 = ψ2 ⇒ ψ1 dx ψ2 dx ln(ψ1 ) = ln(ψ2 ) + C ⇒ ψ1 = eC ψ2 So the two solutions are linearly dependent and thus not separate solutions. 7 Total number of points: 60 8
© Copyright 2024 ExpyDoc