Challenges and solutions for Impedance measurements Gustaaf Sutorius Application Engineer 1 Challenges and solutions for Impedance measurements Introduction & Objectives for today 2 Challenges and solutions for Impedance measurements 3 Agenda 1. Introduction 2. Impedance Basics & Measurement Methods 3. LCR Meters 4. Impedance Analyzers 5. Accessories/test-fixtures 6. Vector Network Analyzers • E5061B VNA as Impedance Analyzer 7. Reference Documents + Q&A 4 Agenda 1. Introduction 2. Impedance Basics & Measurement Methods 3. LCR Meters 4. Impedance Analyzers 5. Accessories/test-fixtures 6. Vector Network Analyzers • E5061B VNA as Impedance Analyzer 7. Reference Documents + Q&A 5 Objectives • Review Impedance Measurement Methods • LCR meter vs Impedance analyzer vs Network Analyzer • Review E5061B Network Analyzer/Impedance Analyzer. • “It’s also the test-fixture” 6 Impedance Measurement Applications Material Measurements On-wafer C-V Measurements MOS FET Measurements Diode Measurements Inductor Measurements Auto-balancing Bridge Capacitor Measurements In-circuit Tests RF I-V LCR Meters Impedance Analyzers (ZA) Wide Variety of Test Fixtures Battery Measurements 7 Cable Measurements Resonator Measurements Transformer Measurements Resistor Measurements www.agilent.com/find/impedance Solutions for Measuring Impedance Low-Cost LCR Meter High-Performance LCR Meter Capacitance Meter RF LCR Meter ZA RF ZA ‘60 4270A ‘70 4260A 4271A 4272A/73A ‘80 4261A 4274A/75A 4192A 4276A/77A 4262A 4191A ‘90 4278A ‘00 4263A/B 4284A/85A 4194A 4286A 4291A/B 4268A/88A 4294A 4287A ‘10 E4980A E4980AL 8 E4991A E4981A E4982A Installed Base of Legacy Products Agenda 1. Introduction 2. Impedance Basics & Measurement Methods 3. LCR Meters 4. Impedance Analyzers 5. Accessories/test-fixtures 6. Vector Network Analyzers • E5061B VNA as Impedance Analyzer 7. Reference Documents + Q&A 9 Impedance Z: Total opposition a device or circuit offers to the flow of AC Z = R + jX (rectangular-coord) Z = |Z| (polar form) Imaginary axis +j Z (R, X) X |Z| R = |Z| cos X = |Z| sin |Z| = R2 + X2 R Real axis = tan-1(X/R) Unit of impedance: ohm () 10 Series and Parallel Combinations Real and imaginary components are connected in series R jX Z = R + jX (Impedance is easier to express) R Real and imaginary components are connected in parallel jX jRX RX2 R2X +j Z= = 2 R + X2 R2 + X2 R + jX (Impedance is too complex) G Y = G + jB (Admittance is easier) jB Unit of admittance: Siemens (S) conductance, G and the susceptance, B 11 Inductive and Capacitive Reactance L (Inductance) XL= 2fL = L : Angular frequency (= 2f) R C (Capacitance) 1 1 = XC = 2fC C jXL R Z jXL -jXC R -jXC R (a) Inductive vector on impedance plane Q = quality factor= = tan 12 XL R = Z (b) Capacitive vector on impedance plane -XC R D = dissipation factor = = tan 1 Q Parasitics • No real components are purely resistive or reactive • Every component is a combination of R, C and L elements • The unwanted elements are called parasitics Intrinsic C Unwanted R and L of leads Unwanted R and C of dielectric Capacitor Equivalent Circuit 13 Series and Parallel Models Capacitor Equivalent Circuit Series Model R s C s Low-Impedance Device (Large C, Small L; |Z| 10 ) 14 Parallel Model R p C p High-Impedance Device (Small C, Large L; |Z| 10 k) Equivalent circuit models of components 15 Relationship between Series and Parallel mode 16 Component Dependency Factors • Measurement conditions that determine the measured impedance value • Effects depend on component materials and manufacturing processes • Four major factors: • Test signal frequency • Test signal level • DC voltage and current bias • Environment 17 X versus Test Signal Frequency Capacitor |X| C 1 XC = C L XL = L Resonant Frequency XC = X L 18 Frequency () Example Capacitor Resonance Impedance versus Frequency L 1 C |Z| fs 19 C versus Test Signal Level AC voltage dependency of ceramic SMD capacitors for various values of dielectric constant (K) C High K Mid K Low K Capacitance change due to AC voltage dependence of K value AC Test Signal level (Vac) 20 C versus DC Voltage Bias DC bias voltage dependency of type I and II SMD capacitors C Type I C0G or NPO (Low K) 0 Type II X7R,Y5V, or Z5U (High K) Capacitance change due to DC voltage dependence of K value DC bias voltage 21 L versus DC Current Bias DC bias current dependency of cored inductors L 0 Inductance roll-off due to magnetic saturation of inductor core DC bias current 22 C versus Temperature Temperature dependency of ceramic capacitors for different K values C Mid K 0 High K K: Dielectric Constant | 25 23 Temperature (C) Agenda 1. Introduction 2. Impedance Basics & Measurement Methods 3. LCR Meters 4. Impedance Analyzers 5. Accessories/test-fixtures 6. Vector Network Analyzers • E5061B VNA as Impedance Analyzer 7. Reference Documents + Q&A 24 (1) Auto-Balancing Bridge method Measurement Principle Virtual ground (driven at 0 V) Rr DUT HIGH Signal Source LOW I V1 Ir I = Ir + V2 = Z= 25 V2 - Ir Rr V1 Ir = - V1 Rr V2 (2) RF I-V method Measurement Principle Current detection Vi R R/2 Signal Source Voltage V detection v I V R Z DUT x R = 50 Test Head (High-Impedance type) Zx= V I As V = Vv – Vi 26 = R Vv ( 2 Vi and I = 2Vi /R - 1) (3) Network Analysis method Measurement Principle VINC DUT VINC V V Vr Vr Reflected Signal OSC Directional Bridge or Coupler Incident Signal ZX = Vr VINC ZX - Z0 Z = X+ Z0 Zo: 50 or 75 27 Summary of Measurement Methods Impedance () Auto-Balancing Bridge RF I-V Network An. Frequency (Hz) 28 Method Frequency Range Impedance Range Terminal Connections # of Ports AutoBalancing Bridge 20 f 110 MHz 1 m Z 100 M (10% acc) 4-terminal pair, BNC 1 RF I-V 1 MHz f 3 GHz 0.2 Z 20 k (10% acc) 7 mm 1 Network Analysis f 300 kHz Z Z0 7 mm, N-type N1 Measurement Methods and Agilent products Measurement Method Auto-Balancing Bridge RF I-V Network Analysis 29 Agilent Product Frequency Range 4263B LCR Meter E4981A C Meter E4980A Precision LCR Meter 4285A Precision LCR Meter 4294A Precision Impedance Analyzer 100 Hz to 100 kHz spot 120 Hz/1 kHz/1 MHz spot 20 Hz to 2 MHz 75 kHz to 30 MHz 40 Hz to 110 MHz E4982A RF LCR Meter E4991A Impedance/Material Analyzer 1 MHz to 3 GHz 1 MHz to 3 GHz ENA Series Vector Network Analyzers 5 Hz to 20 GHz PNA Series uW Vector Network Analyzers 300 kHz to 1.1 THz Impedance Measurement Methods and Instrument selection 1) Frequency 2) DUT impedance These determine the most suitable method 3) Required measurement accuracy 4) Electrical test conditions 5) Measurement parameters 6) Physical characteristics of DUT 30 These determine the proper instrument and test fixture Agenda 1. Introduction 2. Impedance Basics & Measurement Methods 3. LCR Meters 4. Impedance Analyzers 5. Accessories/test-fixtures 6. Vector Network Analyzers • E5061B VNA as Impedance Analyzer 7. Reference Documents + Q&A 31 Historical Product Overview LCR Over 40 Years Experience Low-Cost LCR Meter High-Performance LCR Meter Capacitance Meter RF LCR Meter ZA ZA RF ZA ‘60 4270A ‘70 4260A 4271A 4272A/73A ‘80 4261A 4274A/75A 4192A 4276A/77A 4262A 4191A ‘90 4278A ‘00 4263A/B 4284A/85A 4194A 4286A 4291A/B 4268A/88A 4294A 4287A ‘10 E4980A E4980AL 32 E4991A E4981A E4982A Installed Base of Legacy Products Current Product Portfolio for Impedance www.agilent.com/find/impedance LCR meter 4263B LCR meter Impedance Analyzer E4980AL precision LCR meter 4294A Precision impedance analyzer E4981A Capacitance meter E5071C ENA network analyzer E4980A precision LCR meter E4982A LCR meter 33 Network Analyzer E4991A RF impedance/material analyzer E5061B ENA-L network analyzer Product Overview LCR Meters & Impedance Analyzers & Network Analyzers LCR Meters & Impedance Analyzers Specialized to measure LCR & impedance High impedance accuracy Wide impedance measurement range Main target application: • Capacitors, inductors, resonators • Materials • Semiconductor • In-circuit (4294A w/42941A) 34 Network Analyzers Measure S-parameter, also can be used for impedance measurement Higher Frequency range Main target application: • Filters, Antennas • DC-DC converters • Amplifiers, Mixers Product Overview Main Usage R&D Lab General Purpose LCR Meters & Impedance Analyzers Product Portfolio 4263B LCR meter 100 Hz – 100 kHz E4980AL LCR E4980A 4294A Precision impedance analyzer 40 Hz – 110 MHz Precison LCR meter 20 Hz – 300 kHz/500 kHz/1 MHz/2 MHz 4339B High-R meter High Volume Manufacturing 4285A Precision LCR meter 75 kHz – 30 MHz E4982A RF LCR meter 1 MHz – 3 GHz + Wide Variety of Accessories E4981A Capacitance meter 120 Hz, 1 kHz, 1 MHz $10k 35 ZA E4991A RF impedance/material analyzer 1 MHz – 3 GHz Unit Price [$] $20k $30k $40k $50k LCR Meters LCR meter 4263B LCR meter Impedance Analyzer E4980AL precision LCR meter 4294A precision impedance analyzer E4981A capacitance meter 4339B high-R meter 36 Network Analyzer E5071C ENA network analyzer E4980A precision LCR meter E4982A LCR meter E4991A RF impedance/material analyzer E5061B ENA-L network analyzer LCR Meters What Is LCR & Impedance Measurement? Measure Z, then calculate LCR value… X Z δ D, Q Phase () R Capacitance (Cs, Cp) Inductance (Ls, Lp) Resistance (R) Reactance (X) E4980A (Cp-D measurement) 37 LCR Meters Overview • • • • • Spot frequency measurement Numeric only display Low cost High speed Application specific E4980A Measurement Display E4982A Measurement Display 1 MHz – 3 GHz 20 Hz – 2 MHz E4982A LCR meter E4980A precision LCR meter 20 Hz – 300 kHz/500 kHz/1 MHz E4980AL precision LCR meter 100 Hz – 100 kHz 4263B LCR meter 120 Hz, 1 kHz, 1 MHz E4981A capacitance meter Frequency (Hz) 10 38 100 1k 10k 100k 1M 10M 100M 1G 10G LCR Meters List Sweep : the poor mans Impedance Analyzer” • Instrument: E4980A • DUT: 100 nF ceramic capacitor & 100 uH chip inductor • Key Word: – Adapter Compensation – ALC function – List Sweep 39 LCR Meters Key Products Overview E4982A LCR Meter 1 MHz to 3 GHz • • • • An industrial standard in RF impedance/material measurements up to 3 GHz Target applications – passive components Target customers – manufacturing Migration opportunities – 4286A, 4287A E4980AL/A Precision LCR Meter 20 Hz to 300 kHz, 500 kHz, 1 MHz / 2 MHz • • • • A new standard for low-frequency impedance measurements up to 2 MHz Target applications – passive components, semiconductors, MEMS, materials Target customers – R&D, manufacturing, QA, incoming inspection Migration opportunities – 4279A, 4284A E4981A Capacitance Meter 120/1k/1MHz • • • • A new standard for ceramic capacitor (C) production tests Target applications – capacitors Target customers – manufacturing Migration opportunities – 4278A, 4268A, 4288A 4263B Low-Cost LCR Meter 100/120/1k/10k/100kHz (20kHz option) • • • • 40 Cost effective solution for low-frequency impedance measurements up to 100 kHz Target applications – passive components, transformers, electrolytic capacitors Target customers – R&D, manufacturing Migration opportunities – 4263A Agenda 1. Introduction 2. Impedance Basics & Measurement Methods 3. LCR Meters 4. Impedance Analyzers 5. Accessories/test-fixtures 6. Vector Network Analyzers • E5061B VNA as Impedance Analyzer 7. Reference Documents + Q&A 41 Impedance Analyzers LCR meter 4263B LCR meter Impedance Analyzer E4980AL precision LCR meter 4294A precision impedance analyzer E4981A capacitance meter 4339B high-R meter 42 Network Analyzer E5071C ENA network analyzer E4980A precision LCR meter E4982A LCR meter E4991A RF impedance/material analyzer E5061B ENA-L network analyzer Impedance Analyzers Parasitics • No real components are purely resistive or reactive • Every component is a combination of R, C and L elements • The unwanted elements are called parasitics Intrinsic C Unwanted R and L of leads Unwanted R and C of dielectric Capacitor Equivalent Circuit 43 Impedance Analyzers Impedance |X| X versus Test Signal Frequency XC = C 1 C XL = L Resonant Frequency 44 L Frequency () Impedance Analyzers Example Capacitor Resonance Impedance versus Frequency L 1 C |Z| 45 Impedance Analyzers Overview • Sweeps parameter, displays graphics – Frequency – DC Bias – AC level • Use model – Frequency characteristics analysis – Resonant analysis – Circuit modeling E4991A RF impedance/material analyzer 1 MHz – 3 GHz 4294A precision impedance analyzer 40 Hz – 110 MHz Frequency (Hz) 10 46 100 1k 10k 100k 1M 10M 100M 1G 10G Impedance Analyzers 4294A Impedance Analyzer Key numbers… Frequency range: 40 Hz ~ 110 MHz Basic measurement accuracy: 0.08 % Versatile Analysis Functions Z-Q C A B C C L Ca Ca Ca L L R D Frequency R R E DC LVL Cb Frequency Sweep L Ca DC Bias Sweep R L EQV R 38.6347 mΩ EQV L 2.19795 nH Ca R EQV Ca 82.1028 nF EQV Cb F Equivalent Circuit Calculation 47 AC LVL AC Level Sweep Impedance Analyzers allow to measure: – Frequency dependency of the capacitor – Influence of the residual inductance – Resonant frequency – Equivalent circuit simulation – Limit Test 48 Impedance Analyzers Key Products Overview E4991A RF Impedance/Material Analyzer 1 MHz to 3 GHz • An industrial standard in RF impedance/material measurements • Target applications – passive components, semiconductors, materials • For – R&D, QA, incoming inspection • Replaces 4291A 4294A Precision Impedance Analyzer 40 Hz to 110 MHz • An industrial standard in mid-freq. impedance measurements • Target applications – passive components, semiconductors, materials, in-circuit • For– R&D, QA, incoming inspection • Replaces – 4192A, 4194A 49 Summary: Impedance Analyzer versus LCR Meter Impedance Analyzer • Full measurement conditions • Limited measurement conditions • Freq/Osc/DC bias sweep • No or limited sweep • Wide frequency coverage • Spot/multiple frequencies • Versatile analysis capability • Markers, List Sweep, Limit Test, EQT CKT, IBASIC, LAN • Graphic display • Measurement traces Suitable for deep evaluation or multipurpose use 50 LCR Meter • Limited analysis capability • GO/NO GO testing • Numerical display • Only numbers displayed Suitable for simple testing Summary: Frequency range Impedance Analyzer & LCR Meter Low-cost LCR 100 Hz 0.1% 4263B 20 Hz 0.05% 100 kHz E4980A Precision LCR 2 MHz 75 kHz 0.1% 4285A 1 MHz Impedance Analyzer 0.08% E4982A 1% 4294A 40 Hz 1k 10k 100k 3 GHz 110 MHz 1 MHz 0.8% 100 51 30 MHz 1M E4991A 10M 100M 3 GHz 1G (Hz) Agenda 1. Introduction 2. Impedance Basics & Measurement Methods 3. LCR Meters 4. Impedance Analyzers 5. Accessories/test-fixtures 6. Vector Network Analyzers • E5061B VNA as Impedance Analyzer 7. Reference Documents + Q&A 52 Accessories Introduction • MUST be used to connect DUTs – Fixtures, Probes – Test leads – DC bias – Cal std… • Benefits of Agilent Accessories – Minimum residual error for better accuracy – Clearly defined error compensation for error correction – Strict measurement specifications 53 Accessories Wide Variety of Fixtures to Cover Various Applications 54 Accessories Top 3 Fixtures for Auto balancing Bridge Instruments 16334A SMD/chip Tweezers Frequency: ≤15 MHz Maximum dc bias: ±42 V Applicable SMD size: Minimum 1.6 (L) ´ 0.8 (W) mm 16089B Medium Kelvin Clip Leads Clip type: Kelvin alligator clips (small) Frequency: 5 Hz to 100 kHz Maximum dc bias: ±42 V peak Cable length: 0.94 m 16047A Test Fixture (Axial and Radial) Frequency: ≤13 MHz Maximum dc bias: ±35 V Four-terminal (Kelvin) contacts 55 Agenda 1. Introduction 2. Impedance Basics & Measurement Methods 3. LCR Meters 4. Impedance Analyzers 5. Accessories/test-fixtures 6. Vector Network Analyzers E5061B VNA as Impedance Analyzer 7. Reference Documents + Q&A 56 Vector Network Analyzers for measuring Impedance one of the 3 Key Impedance Measurement Methods Network Analysis LCR meter Impedance Analyzer Network Analyzer Auto-Balancing Bridge 4263B • Wide frequency coverage (LF to HF) E4981A • High accuracy over aLCR widemeter impedance range 4294A Capacitance meter • Variety of fixture selections Precision impedance analyzer • Higher frequency range not available E4980A precision LCR meter RF I-V • High accuracy and wide impedance range • HF and RF • Variety of fixture selections • Lower frequency range is limited by the transformer 4287A E4991A used in the test head RF LCR meter RF impedance/material analyzer 57 • Covers highest E5071C frequencies ENA Network Analyzer • High accuracy around the characteristic impedance (Z0) • Narrow impedance measurement E5061Brange • Low Q ENA LFaccuracy Network in Analyzer (D) measurement E5061A/62A ENA-L Network Analyzer Network Analysis Measurement Range Impedance Accuracy versus frequency 100M 10M E4981A 4263B E4980A/AL 4294A Auto-Balancing Bridge 1M Impedance (Ω) 100k 10k RF I-V 1k 100 E4982A E4991A Network Analysis 10 1 E5061B 100m Note: PNA Network Analyzer covers 300 kHz to 1.1 THz 10m 1m 10 100 1k 10k 100k 1M 10M 100M 1G Frequency (Hz) 10% accuracy range for each measurement technique 58 E5071C 10G Measurement Frequency Range Summary Note: PNA Network Analyzer covers 300 kHz to 1.1 THz Product Type Network Analyzer Impedance Analyzer LCR Meter Capacitance Meter 59 Basic Accuracy Model Measurement Method E5071C Network E5061B Network 130 m – 20 kohm E4991A RF I-V 0.08 % 25 m – 40 Mohm 4294A ABB 1 MHz – 3 GHz 0.8 % 140 m – 4.8 kohm E4982A RF I-V High performance/ Multi function 20 Hz – 2 MHz 0.05 % 10 m – 100 Mohm E4980A ABB Low cost/ Multi function 20 Hz – 300 kHz/500 kHz/1 MHz 0.05 % 10 m – 100 Mohm E4980AL ABB Low cost/ Multi function 100 Hz/120 Hz/1 kHz/10 kHz/20 kHz/100 kHz 0.1 % 1 m – 100 Mohm 4263B ABB Capacitor measurement 120 Hz/1 kHz/1 MHz 0.07 % 0.001 p to 2 mF E4981A ABB Purpose Frequency Range S-parameter/ Impedance S-parameter/ Gain–phase/ Impedance High performance/ Multi function 9 kHz/100 kHz – 20 GHz 1 MHz – 3 GHz 0.8 % High performance/ Multi function 40 Hz – 110 MHz Inductor measurement N/A Z Meas. Range (10% Accy. Range) NA 5 Hz – 3GHz E5061B-3L5 LF-RF Network Analyzer E5061B-3L5 • 5 Hz to 3 GHz Zin=1 MΩ #1 or 50 ohm ATT=20 dB or 0 dB • Wide dynamic range • Built-in DC bias source (0 to ±40 Vdc, max 100 mAdc) • A S-parameter test port (5 Hz to 3 GHz, 50 Ω) • B Gain-phase test port (5 Hz to 30 MHz, Zin=1 MΩ / 50 Ω switchable) • C Impedance analysis function (Option 005) Gain-phase S-parameter test port test port 60 T R ATT ATT Zin Zin T R DC bias source LF OUT Gain-phase test port (5 Hz to 30 MHz) R1 R2 T1 T2 Port-1 Port-2 S-parameter test port (5 Hz to 3 GHz) 6 A: E5061B as VNA for S-Parameters (5Hz to 3GHz) - Filter - Antenna - Amplifier - Cable 61 6 B: E5061B as gain-phase analyzer (5 Hz – 30 MHz) Detail: E5061B’s R and T receiver ports are semi-floated This eliminates the measurement error associated with the source-to-receiver test cable ground loop. As receivers are semi-floated with the impedance |Zg|, which is about 30 Ω in the lowfrequency range below 100 kHz. Similarly to the case of using the magnetic core, we can intuitively understand that the shield current is blocked with the impedance |Zg|. More details in appnote http://cp.literature.agilent.com/litweb/pdf/5990-5578EN.pdf AC current T port LF OUT Rc2 Vo VT = Vo + Vc2 = Vo + (Va/(Zg+Rc2)) x Rc2 = Vo, because Zg >> Rc2 VT VR Va |Zg| = about 30 Ω at low freq. range Rc2 = 10 mΩ or several 10 mΩ Zsh V=Vc2 Zg Zg Common-mode noise R port Measured attenuation DUT’s true attenuation Freq 62 Easy & accurate solution for • High attenuation DUTs (<-80 dB) • milliohm-|Z| of LF PDN components 6 C: E5061B as Impedance Analyzer using Option E5061B-005 ZA firmware • Fully supports basic functions of impedance analyzer (ZA) • Displays Z parameters • Calibration + Fixture compensation • Equivalent circuit analysis • Covers variety of ZA applications with multiple meas. techniques Advantages of Z measurement with E5061B NA plus ZA in one box Milliohm Z-measurement Very broad freq range 63 Reflection method (for low to mid-Z) Series-thru method (for mid to high-Z) Shunt-thru method (for very low-Z) E5061B Impedance Measurement methods Both test ports are available for impedance measurements S-Parameter test port Port 1 Port 2 T R LF OUT S-Parameter Test port Gain-Phase 5 Hz - 3 GHz Frequency range 5 Hz - 30 MHz • Reflection • Series-thru • Shunt-thru 64 Gain-Phase test port Measurement configurations • Series-thru • Shunt-thru Reflection method Z = 50 x ((1 + S11) / (1 - S11)) S-Parameter S11 Vector voltage ratio relationship to impedance VS VDUT VT/VR (S11, S21, TR) [dB] 0 -10 50Ω -20 -30 Mid-Z -40 -50 0.1 1.E+00 1 10 100 1.E+03 1k 10k 1.E-01 1.E+01 1.E+02 1.E+04 Impedance [Ω] 65 Series-thru method Z = (50 x 2) x ((1 - S21) / S21) S-Parameter S21 Vector voltage ratio relationship to impedance V I Gain-Phase V T/R I VT/VR (S11, S21, TR) [dB] 0 -10 -20 -30 Mid to High-Z -40 -50 0.1 1.E+00 1 10 100 1.E+03 1k 10k 1.E-01 1.E+01 1.E+02 1.E+04 Impedance [Ω] 66 Shunt-thru method Z = (50 / 2) x (S21 / (1 - S21)) S-Parameter S21 Vector voltage ratio relationship to impedance VS VDUT Gain-Phase VS 67 T/R VDUT VT/VR (S11, S21, TR) [dB] 0 -10 -20 -30 Low to Mid-Z -40 -50 0.1 1.E+00 1 10 100 1.E+03 1k 10k 1.E-01 1.E+01 1.E+02 1.E+04 Impedance [Ω] Measurement method & impedance range Covers wide impedance range: mΩ to 100 kΩ using 3 methods in combination Configuration Applicable impedance range Mid - High Series-thru Mid Reflection Low - Mid Shunt-thru 1m 10 m 100 m 1 10 100 1k Impedance [ohm] 68 10 k 100 k 10% measurement accuracy range S-Parameter test port 1.E+06 1.E+05 100 kΩ Impedance [Ohm] 1.E+04 10 kΩ Port 1-2 Series 1 1.E+03 kΩ 1.E+02 100 Ω Port 1 Refl 1.E+01 10 Ω 1 1.E+00 Ω 1.E-01 100 mΩ Port 1-2 Shunt 1.E-02 10 mΩ 1 1.E-03 mΩ 1.E-04 1.0E+00 1.0E+01 10 Hz 1.0E+02 100 Hz 1.0E+03 1 kHz 1.0E+04 10 kHz 1.0E+05 100 kHz 1.0E+06 1 MHz 1.0E+07 10 MHz 1.0E+08 100 MHz 1.0E+09 1 GHz Frequency [Hz] Supplemental performance data (SPD): It is not guaranteed by the product warranty. Represents the value of a parameter that is most likely to occur; the expected mean or average. 69 1.0E+10 10% measurement accuracy range Gain-Phase test port 1.E+06 1.E+05 100 kΩ Impedance [Ohm] 1.E+04 10 kΩ 1 1.E+03 kΩ GP Series 1.E+02 100 Ω 1.E+01 10 Ω 1 1.E+00 Ω 1.E-01 100 mΩ GP Shunt 1.E-02 10 mΩ 1 1.E-03 mΩ 1.E-04 1.0E+00 1.0E+01 10 Hz 1.0E+02 100 Hz 1.0E+03 1 kHz 1.0E+04 10 kHz 1.0E+05 100 kHz 1.0E+06 1 MHz 1.0E+07 10 MHz 1.0E+08 100 MHz 1.0E+09 1 GHz Frequency [Hz] Supplemental performance data (SPD): It is not guaranteed by the product warranty. Represents the value of a parameter that is most likely to occur; the expected mean or average. 70 1.0E+10 Measurement Methods Summary Configuration & Impedance range Test port & Method S-Parameter (5 Hz - 3 GHz) Port 1-2 Series Series-thru, Mid - High User Gain-Phase (5 Hz - 30 MHz) GP Series (T: 50Ω, R: 1MΩ) 4-terminal pair Port 1 Refl Reflection, Mid 7-mm Port 1-2 Shunt Shunt-thru, Low - Mid User GP Shunt (T: 50Ω, R: 50Ω) User (Splitter) 71 Test Fixtures (1) 7 mm test fixture with 16201A Reflection method (S-Parameter, Port 1) 5 Hz to 3 GHz 16092A 16201A 4-terminal pair test fixture Series-thru method (Gain-Phase, T 50Ω, R 1MΩ) 5 Hz to 30 MHz 16047E 72 Test Fixtures (2) S-Parameter test port (Reflection method) Test Fixtures available in actual FW: (None), 16191A, 16192A, 16193A, 16194A, 16196A/B/C, 16197A, (User) 73 Test Fixtures (3) Gain-Phase test port (Series-thru method) 74 E5061B demonstration Next pages contain slides for supporting discussion during demonstration 75 Calibration and Fixture Compensation (1) 76 Calibration and Fixture Compensation (2) Impedance calibration The impedance calibration executes the open/short/load (and optional low-loss-C) calibration in the impedance domain after the measured S-parameter or gain-phase ratio data is converted to impedance. [Cal] > Calibrate > Impedance Calibration Low-Loss Capacitor Calibration When you measure Q, D, and ESR of RF capacitors and RF inductors by using the reflection method (with the 16201A), performing the low-loss capacitor (LLC) calibration in addition to the open/short/load improves the accuracy at high frequencies over 1GHz. The LLC provides a reference for calibration with respect to the 90°-phase component of impedance. LLC is available with 16195B CalKit. Fixture compensation - The open/short (and optional load) compensation eliminates the fixture’s residual impedance and stray admittance. -The electrical length compensation (selecting fixture type, or Z port extension) eliminates the phase shift error that occurs at 7 mm fixtures in the RF range. [Cal] > Fixture Compen > Compensate 77 Open/Short Compensation and Z Port Extension The recommended fixture compensation method up to a few hundreds of MHz is the open/short compensation. For the measurement at higher frequencies over a few hundreds of MHz, it is recommended to perform the combination of the fixture electrical length compensation and the open/short compensation. Z measurement with Network Analyzer (1) Reflection method Middle Zdut S11=VT/VR 50 50 Zdut 78 50 VT 50 VR 50 VNA Uncertainties Calculator S11 Magnitude Accuracy E5061B 3L5 (RSS) with 85033E Calibration Kit 0.05 S21 = S12 = 0; Cal power = -10 dBm; Meas power = -10 dBm IF Bandwidth = 1 Hz; Average Factor = 1 1MHz Uncertainty (Linear) 0.04 0.03 0.02 0.01 0 0 0.2 0.4 0.6 Reflection Coefficient (Linear) 79 0.8 1 Impedance Uncertainty Reflection method: Impedance Uncertainty 30.0 25.0 Uncertainty (%) 20.0 15.0 10.0 5.0 0.0 1.0E-01 80 1.0E+00 1.0E+01 1.0E+02 Impedance (Ohm) 1.0E+03 1.0E+04 Reflection method Configuration example 1609x test fixture • For middle Z-range • Need Open/Short/Load cal 16201A/001) + 16195B short P/N 0699-2829 SMD 50 ohm 10 uH inductor measurement Test freq=100 kHz to 100 MHz Source= -10 dBm, IFBW=Auto / 100 Hz-limit Open/Short/Load cal at fixture DUT 1 kohm 10 uH |Z| [ohm] Ls [henry] 60 dB (=1 kohm) 20*log |Z| [dB] 81 Typical configuration examples for S-Parameter Reflection method (Low-Mid Z, up to 3 GHz) - E5061B options E5061B Network Analyzer E5061B-3L5 LF-RF NA with DC bias E5061B-005 Impedance analysis function for LF-RF NA (*1) --------------------------------------------------------------E5061B-1E5 High stability time base E5061B-020 Standard hard disk drive E5061B-810 Add key board E5061B-820 Add mouse - Adapter for connecting fixtures 16201A 7 mm terminal adapter kit 16201A-001(*2) 7 mm terminal adapter kit for E5061B - 7 mm calibration kit 16195B (open/short/load + low-loss capacitor) - 7 mm test fixtures 16092A (SMD & leaded component, 500 MHz) 16092A (*1) E5061B-005 is not applicable to the E5061B RF NA option: 1x5 / 2x5 / 1x7 / 2x7. (*2) Option 001 is the only option for the 16201A. Must choose this option when ordering the 16201A. 82 Reflection method: Home-made fixtures SMA receptacle To Port-1 Cal devices Copper foil (GND) DUT (soldered between center pin and GND) 83 Open Short Load 50 ohm resistor Z measurement with Network Analyzer (2) Series-thru method Middle to large Zdut, no grounded DUT 50 Zdut 50 S21=VT/VR 50 84 VT 50 VR 50 10% measurement accuracy range (E5061B, S-Parameter test port) E5061B (SPD) S-Parameter, Series-thru 100 kΩ 1.E+05 10 kΩ 1.E+04 1 kΩ E5061B (SPD) S-Parameter, Reflection Impedance [Ohm] 1.E+03 100 Ω 1.E+02 10 Ω 1.E+01 1Ω 1.E+00 100 mΩ 1.E-01 10 mΩ 1.E-02 1 mΩ 1.E-03 1.E-04 1.E+00 Definitions 10 Hz 1.E+01 100 Hz 1.E+02 1 kHz 1.E+03 100 1 MHz kHz 1.E+04 1.E+05 1.E+06 Frequency [Hz] 10 kHz 10 MHz 1.E+07 100 MHz 1.E+08 1 GHz 1.E+09 1.E+10 - Specification (Spec): Warranted performance. Specifications include guardbands to account for the expected statistical performance distribution, measurement uncertainties, and changes in performance due to environmental conditions. - Supplemental performance data (SPD): Represents the value of a parameter that is most likely to occur; the expected mean or average. It is not guaranteed by the product warranty. For more details about conditions for defining accuracy, please refer to the Data Sheet. 85 10% measurement accuracy range (E5061B, Gain-Phase test port) 1.E+05 100 kΩ 10 kΩ 1.E+04 E5061B (SPD) Gain-Phase, Series-thru 1 kΩ 1.E+03 Impedance [Ohm] 100 Ω 1.E+02 4-terminal pair test fixture 10 Ω 1.E+01 1Ω 1.E+00 100 1.E-01 mΩ 10 mΩ 1.E-02 1 mΩ 1.E-03 1.E-04 1.E+00 10 Hz 1.E+01 100 1.E+02 Hz 1 kHz 1.E+03 100 10 kHz 1 MHz 1.E+04 1.E+05 1.E+06 kHz Frequency [Hz] 10 MHz 1.E+07 100 1.E+08 MHz 1 GHz 1.E+09 1.E+10 Definitions - Specification (Spec): Warranted performance. Specifications include guardbands to account for the expected statistical performance distribution, measurement uncertainties, and changes in performance due to environmental conditions. - Supplemental performance data (SPD): Represents the value of a parameter that is most likely to occur; the expected mean or average. It is not guaranteed by the product warranty. For more details about conditions for defining accuracy, please refer to the Data Sheet. 86 Series-thru method with gain-phase test port (<=30 MHz) • For middle to large Z-range • Need Open/Short/Load cal at fixture 4-Terminal-Pair type fixture Lc Lp Zdut Hp T 50 Hc LF OUT R Zin=50 ohm 4TP fixture 1 nF capacitor measurement Zin=1 Mohm Test freq=100 Hz to 30 MHz Source=7 dBm, IFBW=Auto / 20 Hz-limit + VR VT Internal DC bias applicable to capacitive DUTs |Z| [ohm] 1 nF Calibration open Examples of load: Cp [farad] 100 kohm P/N 0699-2829 SMD 50 ohm short bar 50 ohm R 87 P/N 0699-2014 Axial-lead 50 ohm (ESL = approx. 14 nH with minimum lead length) 100 dB (=100 kohm) 20*log(|Z|) [dB] Typical configuration examples for Gain-Phase Series-thru method (Mid-High Z, up to 30 MHz) - E5061B options E5061B Network Analyzer E5061B-3L5 LF-RF NA with DC bias E5061B-005 Impedance analysis function for LF-RF NA (*1) --------------------------------------------------------------E5061B-720 50 Ω resistor set E5061B-720 50 Ω resistor set contains the following items for the impedance calibration at the test fixture: - SMD 50 Ω (0699-2929), 10 ea - Leaded 50 Ω (5012-8646), 2 ea - Tweezers (8710-2018), 1 ea E5061B-1E5 E5061B-020 E5061B-810 E5061B-820 High stability time base Standard hard disk drive Add key board Add mouse - 4-terminal pair test fixtures 16047E (leaded component) 16034E (SMD), or 16034G (for SMD) 16034E 16047E (*1) E5061B-005 is not applicable to the E5061B RF NA option: 1x5 / 2x5 / 1x7 / 2x7. 88 Series-thru method: Home-made fixtures short wire 50 ohm resistor DUT Terminal block To R-port (Zin=1 Mohm) Cal devices From LF OUT To T-port (Zin=50 ohm) Copper board (GND) 89 BNC(f) receptacle Z measurement with Network Analyzer (3) Shunt-thru method Small Zdut S21=VT/VR 50 50 50 90 VT Zdut 50 VR 50 10% measurement accuracy range (E5061B, S-Parameter test port) 1.E+05 100 kΩ 10 kΩ 1.E+04 E5061B (SPD) S-Parameter, Reflection 1 kΩ 1.E+03 Impedance [Ohm] 100 Ω 1.E+02 10 Ω 1.E+01 1Ω 1.E+00 100 1.E-01 mΩ 10 mΩ 1.E-02 E5061B (SPD) 1 mΩ 1.E-03 1.E-04 1.E+00 S-Parameter, Shuntthru 10 Hz 1.E+01 100 1.E+02 Hz 1 kHz 1.E+03 10 kHz 1.E+04 100 1 MHz 1.E+05 1.E+06 kHz Frequency [Hz] 10 MHz 1.E+07 100 1.E+08 MHz 1 GHz 1.E+09 1.E+10 Definitions - Specification (Spec): Warranted performance. Specifications include guardbands to account for the expected statistical performance distribution, measurement uncertainties, and changes in performance due to environmental conditions. - Supplemental performance data (SPD): Represents the value of a parameter that is most likely to occur; the expected mean or average. It is not guaranteed by the product warranty. For more details about conditions for defining accuracy, please refer to the Data Sheet. 91 10% measurement accuracy range (E5061B, Gain-Phase test port) 1.E+05 100 kΩ 10 kΩ 1.E+04 1 kΩ 1.E+03 Impedance [Ohm] 100 Ω 1.E+02 10 Ω 1.E+01 1Ω 1.E+00 100 1.E-01 mΩ 10 mΩ 1.E-02 E5061B (SPD) 1 mΩ 1.E-03 1.E-04 1.E+00 Gain-Phase, Shuntthru 10 Hz 1.E+01 100 1.E+02 Hz 1 kHz 1.E+03 100 10 kHz 1 MHz 1.E+04 1.E+05 1.E+06 kHz Frequency [Hz] 10 MHz 1.E+07 100 1.E+08 MHz 1 GHz 1.E+09 1.E+10 Definitions - Specification (Spec): Warranted performance. Specifications include guardbands to account for the expected statistical performance distribution, measurement uncertainties, and changes in performance due to environmental conditions. - Supplemental performance data (SPD): Represents the value of a parameter that is most likely to occur; the expected mean or average. It is not guaranteed by the product warranty. For more details about conditions for defining accuracy, please refer to the Data Sheet. 92 Shunt-thru method • For small Z-range (down to milliohms / submilliohms) • Calibration method depending on measurement configuration and test With S-param. test port (<= 3 GHz): freq For most of capacitors, and PCB measurements |Z| [ohm] (Linear scale) 20*log(|Z|) [dB] Test board Z-phase [deg] With gain-phase test port (<= 30 MHz): For very-large capacitors (milli-farad order), DC-DC converters MLCC (Multi-layer ceramic chip) measurement in broad freq. range - Test freq=100 Hz to 1 GHz. T: Zin=50 ohm R: Zin=50 ohm 93 S21 [dB] Equivalent Circuit Analysis (1) Equivalent Circuit Analysis Simulate = “ON” memory trace e.g., Ceramic Resonator (Type E circuit) # Equivalent Circut # ----C0---# -| |# -L1-C1-R1Type, E R1, 6.94624374266e+000 L1, 6.79827222119e-003 C1, 2.45000000000e-011 C0, 3.47238726000e-010 94 Equivalent Circuit Analysis (2) Equivalent Circuit Analysis Generally suitable for… Inductors with high core loss Inductors with high winding resistance or resistors with low resistance value Resistors with high resistance value Typical freq. characteristics *1 *1 *1 Capacitors *1 Resonator *2 *1. *2. 95 End of E5061B demonstration 96 Methods and Fixtures Summary S-Parameter Test port Reflection (5 Hz - 3 GHz) Gain-Phase (5 Hz - 30 MHz) 1Ω 1 kΩ High-Z ~ 100 kΩ Applicable Z-range S1 1 Mid 7-mm type fixtures Series S2 1 GP Series (T 50Ω, R 1MΩ) 1MΩ input TR Mid High Port 1-2 Shunt Shunt 1 mΩ ~ Mid-Z Port 1 Refl / Port 2 Refl Port 1-2 Series Configuration Low-Z S21 GP Shunt (T 50Ω, R 50Ω) Power splitter 4-Terminal Pair type fixtures Shunt Series TR Low Mid User fixtures are required 97 Summary of Impedance measurement methods 98 Impedance Analysis (E5061B-005) Summary NA+ZA in one box Provides comprehensive solutions as general R&D tool: - Characterize components (ZA) - Evaluate system performance (NA: S21, T/R) - Cost effective 5 Hz to 3 GHz impedance analyzer with moderate performance Migrate legacy combo analyzer (4195A, 4395/96x, 4194A, 4192A) Easy to migrate by supporting conventional test fixtures: - 7 mm test fixtures (S-Parameter Reflection method) - 4TP test fixtures (Gain-Phase Series-thru method) 99 Supports ZA functions Fully supports traditional ZA functions as shown below: - Display Z parameters (Z, θz, Ls, Cp, Rs, D, Q, …) - Impedance Cal. & Fixture Compen - Equivalent circuit analysis Covers moderate Z range Covers various ZA applications with three measurement techniques using both S-Parameter and Gain-Phase test ports (up to several tens kΩ, down to around mΩ): - Reflection method (S-Para.) - Series-thru method (S-Para./Gain-Phase) - Shunt-thru method (S-Para./Gain-Phase) Agenda 1. Introduction 2. Impedance Basics & Measurement Methods 3. LCR Meters 4. Impedance Analyzers 5. Accessories/test-fixtures 6. Vector Network Analyzers • E5061B VNA as Impedance Analyzer 7. Reference Documents + Q&A 100 Key Reference Document Selection Guide 5952-1530E: Agilent LCR Meters, Impedance Analyzers, and Test Fixtures Selection Guide Brief introduction of Agilent LCR and Impedance measurement solution Test accessories / fixtures compatibility chart 101 Key Reference Document Accessories Selection Guide 5965-4792E: Accessories Selection Guide For Impedance Measurements Tips for selecting appropriate accessories Detailed information on each accessories 102 Key Reference Document Impedance Measurement Handbook 5950-3000; Impedance Measurement Handbook Deep discussion on each measurement method Tips for accurate fixturing 103 Thank You! 104
© Copyright 2024 ExpyDoc