Impedance Analyzers

Challenges and solutions for
Impedance measurements
Gustaaf Sutorius
Application
Engineer
1
Challenges and solutions for Impedance measurements
Introduction & Objectives for today
2
Challenges and solutions for Impedance measurements
3
Agenda
1. Introduction
2. Impedance Basics & Measurement Methods
3. LCR Meters
4. Impedance Analyzers
5. Accessories/test-fixtures
6. Vector Network Analyzers
•
E5061B VNA as Impedance Analyzer
7. Reference Documents + Q&A
4
Agenda
1. Introduction
2. Impedance Basics & Measurement Methods
3. LCR Meters
4. Impedance Analyzers
5. Accessories/test-fixtures
6. Vector Network Analyzers
•
E5061B VNA as Impedance Analyzer
7. Reference Documents + Q&A
5
Objectives
• Review Impedance Measurement Methods
• LCR meter vs Impedance analyzer vs Network
Analyzer
• Review E5061B Network Analyzer/Impedance
Analyzer.
• “It’s also the test-fixture”
6
Impedance Measurement Applications
Material
Measurements
On-wafer C-V
Measurements
MOS FET
Measurements
Diode
Measurements
Inductor
Measurements
Auto-balancing Bridge
Capacitor
Measurements
In-circuit
Tests
RF I-V
LCR Meters
Impedance Analyzers (ZA)
Wide Variety of Test Fixtures
Battery
Measurements
7
Cable
Measurements
Resonator
Measurements
Transformer
Measurements
Resistor
Measurements
www.agilent.com/find/impedance
Solutions for Measuring Impedance
Low-Cost
LCR Meter
High-Performance
LCR Meter
Capacitance
Meter
RF LCR Meter
ZA
RF ZA
‘60
4270A
‘70
4260A
4271A
4272A/73A
‘80
4261A
4274A/75A
4192A
4276A/77A
4262A
4191A
‘90
4278A
‘00
4263A/B
4284A/85A
4194A
4286A
4291A/B
4268A/88A
4294A
4287A
‘10
E4980A
E4980AL
8
E4991A
E4981A
E4982A
Installed Base of Legacy Products
Agenda
1. Introduction
2. Impedance Basics & Measurement Methods
3. LCR Meters
4. Impedance Analyzers
5. Accessories/test-fixtures
6. Vector Network Analyzers
•
E5061B VNA as Impedance Analyzer
7. Reference Documents + Q&A
9
Impedance
Z: Total opposition a device or circuit offers to the flow of AC
Z = R + jX (rectangular-coord)
Z = |Z|  (polar form)
Imaginary axis
+j
Z (R,
X)
X
|Z|
R = |Z| cos 
X = |Z| sin 
|Z| = R2 + X2

R
Real axis
 = tan-1(X/R)
Unit of impedance: ohm ()
10
Series and Parallel Combinations
Real and imaginary
components are
connected in series
R
jX
Z = R + jX
(Impedance is easier to express)
R
Real and imaginary
components are
connected in parallel
jX
jRX
RX2
R2X
+j
Z=
= 2
R + X2 R2 + X2
R + jX
(Impedance is too complex)
G
Y = G + jB
(Admittance is easier)
jB
Unit of admittance: Siemens (S)
conductance, G and the susceptance, B
11
Inductive and Capacitive Reactance
L (Inductance)
XL= 2fL = L
: Angular frequency (= 2f)
R
C (Capacitance)
1
1
=
XC =
2fC C
jXL
R
Z
jXL
-jXC
R




-jXC
R
(a) Inductive vector
on impedance plane
Q = quality factor=
= tan 
12
XL
R
=
Z
(b) Capacitive vector
on impedance plane
-XC
R
D = dissipation factor =
= tan 
1
Q
Parasitics
• No real components are purely resistive or reactive
• Every component is a combination of R, C and L elements
• The unwanted elements are called parasitics
Intrinsic C
Unwanted
R and L of
leads
Unwanted R and C
of dielectric
Capacitor Equivalent Circuit
13
Series and Parallel Models
Capacitor Equivalent
Circuit
Series
Model
R
s
C
s
Low-Impedance Device
(Large C, Small L; |Z|  10 )
14
Parallel
Model
R
p
C
p
High-Impedance Device
(Small C, Large L; |Z|  10 k)
Equivalent circuit models of components
15
Relationship between Series and Parallel mode
16
Component Dependency Factors
• Measurement conditions that determine the measured
impedance value
• Effects depend on component materials and manufacturing
processes
• Four major factors:
• Test signal frequency
• Test signal level
• DC voltage and current bias
• Environment
17
X versus Test Signal Frequency
Capacitor
|X|
C
1
XC =
C
L
XL = L
Resonant
Frequency
XC = X L
18
Frequency ()
Example Capacitor Resonance
Impedance versus Frequency
L
1
C
|Z|

fs
19
C versus Test Signal Level
AC voltage dependency of ceramic SMD capacitors
for various values of dielectric constant (K)
C
High K
Mid K
Low K
Capacitance change due to
AC voltage dependence of
K value
AC Test Signal level (Vac)
20
C versus DC Voltage Bias
DC bias voltage dependency of
type I and II SMD capacitors
C
Type I
C0G or NPO (Low K)
0
Type II
X7R,Y5V, or Z5U (High K)
Capacitance change due to
DC voltage dependence of K value
DC bias voltage
21
L versus DC Current Bias
DC bias current dependency of
cored inductors
L
0
Inductance roll-off due to
magnetic saturation of inductor core
DC bias current
22
C versus Temperature
Temperature dependency of ceramic
capacitors for different K values
C
Mid K
0
High K
K: Dielectric Constant
|
25
23
Temperature (C)
Agenda
1. Introduction
2.
Impedance Basics & Measurement
Methods
3. LCR Meters
4. Impedance Analyzers
5. Accessories/test-fixtures
6. Vector Network Analyzers
•
E5061B VNA as Impedance Analyzer
7. Reference Documents + Q&A
24
(1) Auto-Balancing Bridge method
Measurement Principle
Virtual ground (driven at 0 V)
Rr
DUT
HIGH
Signal
Source
LOW
I
V1
Ir
I = Ir
+
V2 =
Z=
25
V2
- Ir Rr
V1
Ir
=
- V1 Rr
V2
(2) RF I-V method
Measurement Principle
Current detection
Vi
R
R/2
Signal
Source
Voltage V
detection v
I
V
R
Z
DUT
x
R = 50 
Test Head (High-Impedance type)
Zx=
V
I
As V = Vv – Vi
26
=
R Vv
(
2
Vi
and I = 2Vi /R
- 1)
(3) Network Analysis method
Measurement Principle
VINC
DUT
VINC
V
V
Vr
Vr
Reflected
Signal
OSC
Directional Bridge
or Coupler
Incident
Signal
ZX
=
Vr
VINC
ZX - Z0
Z
= X+
Z0
Zo: 50  or 75 
27
Summary of Measurement Methods
Impedance ()
Auto-Balancing Bridge
RF I-V
Network An.
Frequency (Hz)
28
Method
Frequency
Range
Impedance
Range
Terminal
Connections
# of
Ports
AutoBalancing
Bridge
20  f  110 MHz
1 m  Z  100 M
(10% acc)
4-terminal pair,
BNC
1
RF I-V
1 MHz  f  3 GHz
0.2  Z  20 k
(10% acc)
7 mm
1
Network
Analysis
f  300 kHz
Z  Z0
7 mm, N-type
N1
Measurement Methods and Agilent products
Measurement Method
Auto-Balancing
Bridge
RF I-V
Network Analysis
29
Agilent Product
Frequency Range
4263B LCR Meter
E4981A C Meter
E4980A Precision LCR Meter
4285A Precision LCR Meter
4294A Precision Impedance Analyzer
100 Hz to 100 kHz spot
120 Hz/1 kHz/1 MHz spot
20 Hz to 2 MHz
75 kHz to 30 MHz
40 Hz to 110 MHz
E4982A RF LCR Meter
E4991A Impedance/Material Analyzer
1 MHz to 3 GHz
1 MHz to 3 GHz
ENA Series
Vector Network Analyzers
5 Hz to 20 GHz
PNA Series
uW Vector Network Analyzers
300 kHz to 1.1 THz
Impedance Measurement Methods and Instrument selection
1) Frequency
2) DUT impedance
These determine the most
suitable method
3) Required measurement accuracy
4) Electrical test conditions
5) Measurement parameters
6) Physical characteristics of DUT
30
These determine the proper
instrument and test fixture
Agenda
1. Introduction
2. Impedance Basics & Measurement Methods
3. LCR Meters
4. Impedance Analyzers
5. Accessories/test-fixtures
6. Vector Network Analyzers
•
E5061B VNA as Impedance Analyzer
7. Reference Documents + Q&A
31
Historical Product Overview
LCR
Over 40 Years Experience
Low-Cost
LCR Meter
High-Performance
LCR Meter
Capacitance
Meter
RF LCR Meter
ZA
ZA
RF ZA
‘60
4270A
‘70
4260A
4271A
4272A/73A
‘80
4261A
4274A/75A
4192A
4276A/77A
4262A
4191A
‘90
4278A
‘00
4263A/B
4284A/85A
4194A
4286A
4291A/B
4268A/88A
4294A
4287A
‘10
E4980A
E4980AL
32
E4991A
E4981A
E4982A
Installed Base of Legacy Products
Current Product Portfolio for Impedance
www.agilent.com/find/impedance
LCR meter
4263B
LCR meter
Impedance Analyzer
E4980AL
precision LCR meter
4294A
Precision impedance analyzer
E4981A
Capacitance meter
E5071C
ENA network analyzer
E4980A
precision LCR meter
E4982A
LCR meter
33
Network Analyzer
E4991A
RF impedance/material analyzer
E5061B
ENA-L network analyzer
Product Overview
LCR Meters & Impedance Analyzers & Network Analyzers
LCR Meters & Impedance Analyzers
 Specialized to measure LCR & impedance
 High impedance accuracy
 Wide impedance measurement range
 Main target application:
• Capacitors, inductors, resonators
• Materials
• Semiconductor
• In-circuit (4294A w/42941A)
34
Network Analyzers
Measure S-parameter, also can be used for
impedance measurement
Higher Frequency range
Main target application:
• Filters, Antennas
• DC-DC converters
• Amplifiers, Mixers
Product Overview
Main Usage
R&D Lab
General Purpose
LCR Meters & Impedance Analyzers Product Portfolio
4263B
LCR meter
100 Hz – 100 kHz
E4980AL
LCR
E4980A
4294A
Precision impedance analyzer
40 Hz – 110 MHz
Precison LCR meter
20
Hz
–
300
kHz/500 kHz/1 MHz/2 MHz
4339B
High-R meter
High Volume
Manufacturing
4285A
Precision LCR meter
75 kHz – 30 MHz
E4982A
RF LCR meter
1 MHz – 3 GHz
+ Wide Variety of
Accessories
E4981A
Capacitance meter
120 Hz, 1 kHz, 1 MHz
$10k
35
ZA
E4991A
RF impedance/material analyzer
1 MHz – 3 GHz
Unit Price [$]
$20k
$30k
$40k
$50k
LCR Meters
LCR meter
4263B
LCR meter
Impedance Analyzer
E4980AL
precision LCR meter
4294A
precision impedance analyzer
E4981A
capacitance meter
4339B
high-R meter
36
Network Analyzer
E5071C
ENA network analyzer
E4980A
precision LCR meter
E4982A
LCR meter
E4991A
RF impedance/material analyzer
E5061B
ENA-L network analyzer
LCR Meters
What Is LCR & Impedance Measurement?
Measure Z, then calculate LCR value…
X
Z
δ
D, Q
Phase ()

R
Capacitance
(Cs, Cp)
Inductance
(Ls, Lp)
Resistance (R)
Reactance (X)
E4980A
(Cp-D measurement)
37
LCR Meters
Overview
•
•
•
•
•
Spot frequency measurement
Numeric only display
Low cost
High speed
Application specific
E4980A Measurement Display
E4982A Measurement Display
1 MHz – 3 GHz
20 Hz – 2 MHz
E4982A LCR meter
E4980A precision LCR meter
20 Hz – 300 kHz/500 kHz/1 MHz
E4980AL precision LCR meter
100 Hz – 100 kHz
4263B LCR meter
120 Hz, 1 kHz, 1 MHz
E4981A capacitance meter
Frequency (Hz)
10
38
100
1k
10k
100k
1M
10M
100M
1G
10G
LCR Meters
List Sweep : the poor mans Impedance Analyzer”
• Instrument: E4980A
• DUT: 100 nF ceramic capacitor & 100 uH chip inductor
• Key Word:
– Adapter Compensation
– ALC function
– List Sweep
39
LCR Meters
Key Products Overview
E4982A LCR Meter 1 MHz to 3 GHz
•
•
•
•
An industrial standard in RF impedance/material measurements up to 3 GHz
Target applications – passive components
Target customers – manufacturing
Migration opportunities – 4286A, 4287A
E4980AL/A Precision LCR Meter 20 Hz to 300 kHz, 500 kHz, 1 MHz / 2 MHz
•
•
•
•
A new standard for low-frequency impedance measurements up to 2 MHz
Target applications – passive components, semiconductors, MEMS, materials
Target customers – R&D, manufacturing, QA, incoming inspection
Migration opportunities – 4279A, 4284A
E4981A Capacitance Meter 120/1k/1MHz
•
•
•
•
A new standard for ceramic capacitor (C) production tests
Target applications – capacitors
Target customers – manufacturing
Migration opportunities – 4278A, 4268A, 4288A
4263B Low-Cost LCR Meter 100/120/1k/10k/100kHz (20kHz option)
•
•
•
•
40
Cost effective solution for low-frequency impedance measurements up to 100 kHz
Target applications – passive components, transformers, electrolytic capacitors
Target customers – R&D, manufacturing
Migration opportunities – 4263A
Agenda
1. Introduction
2. Impedance Basics & Measurement Methods
3. LCR Meters
4. Impedance Analyzers
5. Accessories/test-fixtures
6. Vector Network Analyzers
•
E5061B VNA as Impedance Analyzer
7. Reference Documents + Q&A
41
Impedance Analyzers
LCR meter
4263B
LCR meter
Impedance Analyzer
E4980AL
precision LCR meter
4294A
precision impedance analyzer
E4981A
capacitance meter
4339B
high-R meter
42
Network Analyzer
E5071C
ENA network analyzer
E4980A
precision LCR meter
E4982A
LCR meter
E4991A
RF impedance/material analyzer
E5061B
ENA-L network analyzer
Impedance Analyzers
Parasitics
• No real components are purely resistive or reactive
• Every component is a combination of R, C and L elements
• The unwanted elements are called parasitics
Intrinsic C
Unwanted
R and L of
leads
Unwanted R and C
of dielectric
Capacitor Equivalent Circuit
43
Impedance Analyzers
Impedance |X|
X versus Test Signal Frequency
XC =
C
1
C
XL = L
Resonant
Frequency
44
L
Frequency ()
Impedance Analyzers
Example Capacitor Resonance
Impedance versus Frequency
L
1
C
|Z|

45
Impedance Analyzers
Overview
• Sweeps parameter, displays graphics
– Frequency
– DC Bias
– AC level
• Use model
– Frequency characteristics analysis
– Resonant analysis
– Circuit modeling
E4991A RF impedance/material analyzer
1 MHz – 3 GHz
4294A precision impedance analyzer
40 Hz – 110 MHz
Frequency (Hz)
10
46
100
1k
10k
100k
1M
10M
100M
1G
10G
Impedance Analyzers
4294A Impedance Analyzer
Key numbers…
Frequency range:
40 Hz ~ 110 MHz
 Basic measurement accuracy: 0.08 %
Versatile Analysis Functions
Z-Q
C
A
B
C
C
L
Ca
Ca
Ca
L
L
R
D
Frequency
R
R
E
DC LVL
Cb
Frequency Sweep
L
Ca
DC Bias Sweep
R
L
EQV R 38.6347 mΩ
EQV L 2.19795 nH
Ca
R
EQV Ca 82.1028 nF
EQV Cb
F
Equivalent Circuit Calculation
47
AC LVL
AC Level Sweep
Impedance Analyzers allow to measure:
– Frequency dependency of the capacitor
– Influence of the residual inductance
– Resonant frequency
– Equivalent circuit simulation
– Limit Test
48
Impedance Analyzers
Key Products Overview
E4991A RF Impedance/Material Analyzer 1 MHz to 3 GHz
• An industrial standard in RF impedance/material measurements
• Target applications – passive components, semiconductors, materials
• For – R&D, QA, incoming inspection
• Replaces 4291A
4294A Precision Impedance Analyzer 40 Hz to 110 MHz
• An industrial standard in mid-freq. impedance measurements
• Target applications – passive components, semiconductors, materials, in-circuit
• For– R&D, QA, incoming inspection
• Replaces – 4192A, 4194A
49
Summary: Impedance Analyzer versus LCR Meter
Impedance Analyzer
• Full measurement conditions
• Limited measurement conditions
• Freq/Osc/DC bias sweep
• No or limited sweep
• Wide frequency coverage
• Spot/multiple frequencies
• Versatile analysis capability
• Markers, List Sweep, Limit
Test, EQT CKT, IBASIC, LAN
• Graphic display
• Measurement traces
Suitable for deep evaluation or
multipurpose use
50
LCR Meter
• Limited analysis capability
• GO/NO GO testing
• Numerical display
• Only numbers displayed
Suitable for simple testing
Summary:
Frequency range Impedance Analyzer & LCR Meter
Low-cost
LCR
100 Hz
0.1%
4263B
20 Hz 0.05%
100 kHz
E4980A
Precision
LCR
2 MHz
75 kHz
0.1%
4285A
1 MHz
Impedance
Analyzer
0.08%
E4982A
1%
4294A
40 Hz
1k
10k
100k
3 GHz
110 MHz
1 MHz 0.8%
100
51
30 MHz
1M
E4991A
10M
100M
3 GHz
1G (Hz)
Agenda
1. Introduction
2. Impedance Basics & Measurement Methods
3. LCR Meters
4. Impedance Analyzers
5. Accessories/test-fixtures
6. Vector Network Analyzers
•
E5061B VNA as Impedance Analyzer
7. Reference Documents + Q&A
52
Accessories
Introduction
• MUST be used to connect DUTs
– Fixtures, Probes
– Test leads
– DC bias
– Cal std…
• Benefits of Agilent Accessories
– Minimum residual error for better accuracy
– Clearly defined error compensation for
error correction
– Strict measurement specifications
53
Accessories
Wide Variety of Fixtures to Cover Various Applications
54
Accessories
Top 3 Fixtures for Auto balancing Bridge Instruments
16334A SMD/chip Tweezers
Frequency: ≤15 MHz
Maximum dc bias: ±42 V
Applicable SMD size: Minimum 1.6 (L) ´ 0.8 (W) mm
16089B Medium Kelvin Clip Leads
Clip type: Kelvin alligator clips (small)
Frequency: 5 Hz to 100 kHz
Maximum dc bias: ±42 V peak
Cable length: 0.94 m
16047A Test Fixture (Axial and Radial)
Frequency: ≤13 MHz
Maximum dc bias: ±35 V
Four-terminal (Kelvin) contacts
55
Agenda
1. Introduction
2. Impedance Basics & Measurement Methods
3. LCR Meters
4. Impedance Analyzers
5. Accessories/test-fixtures
6. Vector Network Analyzers
E5061B VNA as Impedance Analyzer
7. Reference Documents + Q&A
56
Vector Network Analyzers for measuring Impedance
one of the 3 Key Impedance Measurement Methods
Network Analysis
LCR meter
Impedance Analyzer
Network Analyzer
Auto-Balancing Bridge
4263B
• Wide frequency coverage
(LF to HF)
E4981A
• High accuracy over aLCR
widemeter
impedance range
4294A
Capacitance meter
• Variety of fixture selections
Precision impedance analyzer
• Higher frequency range not available
E4980A
precision LCR meter
RF I-V
• High accuracy and wide impedance range
• HF and RF
• Variety of fixture selections
• Lower
frequency range is limited by the transformer
4287A
E4991A
used
in the
test head
RF LCR
meter
RF impedance/material analyzer
57
• Covers
highest
E5071C
frequencies
ENA
Network Analyzer
• High accuracy
around the
characteristic
impedance (Z0)
• Narrow impedance
measurement
E5061Brange
• Low
Q
ENA
LFaccuracy
Network in
Analyzer
(D) measurement
E5061A/62A
ENA-L Network Analyzer
Network Analysis Measurement Range
Impedance Accuracy versus frequency
100M
10M
E4981A
4263B
E4980A/AL
4294A
Auto-Balancing Bridge
1M
Impedance (Ω)
100k
10k
RF I-V
1k
100
E4982A
E4991A
Network Analysis
10
1
E5061B
100m
Note: PNA Network Analyzer
covers 300 kHz to 1.1 THz
10m
1m
10
100
1k
10k
100k
1M
10M 100M
1G
Frequency (Hz)
10% accuracy range for each measurement technique
58
E5071C
10G
Measurement Frequency Range
Summary
Note: PNA Network Analyzer covers 300 kHz to 1.1 THz
Product
Type
Network
Analyzer
Impedance
Analyzer
LCR Meter
Capacitance
Meter
59
Basic
Accuracy
Model
Measurement
Method
E5071C
Network
E5061B
Network
130 m – 20 kohm
E4991A
RF I-V
0.08 %
25 m – 40 Mohm
4294A
ABB
1 MHz – 3 GHz
0.8 %
140 m – 4.8 kohm
E4982A
RF I-V
High performance/
Multi function
20 Hz – 2 MHz
0.05 %
10 m – 100 Mohm
E4980A
ABB
Low cost/
Multi function
20 Hz – 300 kHz/500
kHz/1 MHz
0.05 %
10 m – 100 Mohm
E4980AL
ABB
Low cost/
Multi function
100 Hz/120 Hz/1 kHz/10
kHz/20 kHz/100 kHz
0.1 %
1 m – 100 Mohm
4263B
ABB
Capacitor
measurement
120 Hz/1 kHz/1 MHz
0.07 %
0.001 p to 2 mF
E4981A
ABB
Purpose
Frequency Range
S-parameter/
Impedance
S-parameter/
Gain–phase/
Impedance
High performance/
Multi function
9 kHz/100 kHz – 20 GHz
1 MHz – 3 GHz
0.8 %
High performance/
Multi function
40 Hz – 110 MHz
Inductor
measurement
N/A
Z Meas. Range
(10% Accy. Range)
NA
5 Hz – 3GHz
E5061B-3L5 LF-RF Network Analyzer
E5061B-3L5
• 5 Hz to 3 GHz
Zin=1 MΩ #1 or 50 ohm
ATT=20 dB or 0 dB
• Wide dynamic range
• Built-in DC bias source (0 to ±40 Vdc, max 100 mAdc)
• A S-parameter test port (5 Hz to 3 GHz, 50 Ω)
• B Gain-phase test port
(5 Hz to 30 MHz, Zin=1 MΩ / 50 Ω switchable)
• C Impedance analysis function (Option 005)
Gain-phase S-parameter
test port
test port
60
T
R
ATT
ATT
Zin
Zin
T
R
DC bias
source
LF
OUT
Gain-phase test port
(5 Hz to 30 MHz)
R1
R2
T1
T2
Port-1
Port-2
S-parameter test port
(5 Hz to 3 GHz)
6 A: E5061B as VNA for S-Parameters (5Hz to 3GHz)
- Filter
- Antenna
- Amplifier
- Cable
61
6 B: E5061B as gain-phase analyzer (5 Hz – 30 MHz)
Detail: E5061B’s R and T receiver ports are semi-floated
This eliminates the measurement error associated with the source-to-receiver test
cable ground loop. As receivers are semi-floated with the impedance |Zg|, which is
about 30 Ω in the lowfrequency range below 100 kHz. Similarly to the case of
using the magnetic core, we can intuitively understand that the shield current is
blocked with the impedance |Zg|. More details in appnote
http://cp.literature.agilent.com/litweb/pdf/5990-5578EN.pdf
AC current
T port
LF OUT
Rc2
Vo
VT = Vo + Vc2
= Vo + (Va/(Zg+Rc2)) x Rc2
= Vo, because Zg >> Rc2
VT
VR
Va
|Zg| = about 30 Ω at low freq. range
Rc2 = 10 mΩ or several 10 mΩ
Zsh
V=Vc2
Zg
Zg
Common-mode noise
R port
Measured attenuation
DUT’s true
attenuation
Freq
62
Easy & accurate solution for
• High attenuation DUTs (<-80 dB)
• milliohm-|Z| of LF PDN components
6 C: E5061B as Impedance Analyzer using Option E5061B-005 ZA firmware
• Fully supports basic functions of
impedance analyzer (ZA)
• Displays Z parameters
• Calibration + Fixture compensation
• Equivalent circuit analysis
• Covers variety of ZA applications
with multiple meas. techniques
Advantages of Z measurement with E5061B
 NA plus ZA in one box
 Milliohm Z-measurement
 Very broad freq range
63
Reflection
method
(for low to mid-Z)
Series-thru
method
(for mid to high-Z)
Shunt-thru
method
(for very low-Z)
E5061B Impedance Measurement methods
Both test ports are available for impedance measurements
S-Parameter test port
Port 1
Port 2
T
R
LF OUT
S-Parameter
Test port
Gain-Phase
5 Hz - 3 GHz
Frequency range
5 Hz - 30 MHz
• Reflection
• Series-thru
• Shunt-thru
64
Gain-Phase test port
Measurement
configurations
• Series-thru
• Shunt-thru
Reflection method
Z = 50 x ((1 + S11) / (1 - S11))
S-Parameter
S11
Vector voltage ratio relationship to impedance
VS
VDUT
VT/VR (S11, S21, TR) [dB]
0
-10
50Ω
-20
-30
Mid-Z
-40
-50
0.1 1.E+00
1
10
100 1.E+03
1k
10k
1.E-01
1.E+01
1.E+02
1.E+04
Impedance [Ω]
65
Series-thru method
Z = (50 x 2) x ((1 - S21) / S21)
S-Parameter
S21
Vector voltage ratio relationship to impedance
V
I
Gain-Phase
V
T/R
I
VT/VR (S11, S21, TR) [dB]
0
-10
-20
-30
Mid to High-Z
-40
-50
0.1 1.E+00
1
10
100 1.E+03
1k
10k
1.E-01
1.E+01
1.E+02
1.E+04
Impedance [Ω]
66
Shunt-thru method
Z = (50 / 2) x (S21 / (1 - S21))
S-Parameter
S21
Vector voltage ratio relationship to impedance
VS
VDUT
Gain-Phase
VS
67
T/R
VDUT
VT/VR (S11, S21, TR) [dB]
0
-10
-20
-30
Low to Mid-Z
-40
-50
0.1 1.E+00
1
10
100 1.E+03
1k
10k
1.E-01
1.E+01
1.E+02
1.E+04
Impedance [Ω]
Measurement method & impedance range
Covers wide impedance range: mΩ to 100 kΩ
using 3 methods in combination
Configuration
Applicable impedance range
Mid - High
Series-thru
Mid
Reflection
Low - Mid
Shunt-thru
1m
10 m
100 m
1
10
100
1k
Impedance [ohm]
68
10 k
100 k
10% measurement accuracy range
S-Parameter test port
1.E+06
1.E+05
100
kΩ
Impedance [Ohm]
1.E+04
10
kΩ
Port 1-2 Series
1 1.E+03
kΩ
1.E+02
100
Ω
Port 1 Refl
1.E+01
10
Ω
1 1.E+00
Ω
1.E-01
100
mΩ
Port 1-2 Shunt
1.E-02
10
mΩ
1 1.E-03
mΩ
1.E-04
1.0E+00
1.0E+01
10 Hz
1.0E+02
100 Hz
1.0E+03
1 kHz
1.0E+04
10 kHz
1.0E+05
100
kHz
1.0E+06
1 MHz
1.0E+07
10 MHz
1.0E+08
100
MHz
1.0E+09
1 GHz
Frequency [Hz]
Supplemental performance data (SPD): It is not guaranteed by the product warranty.
Represents the value of a parameter that is most likely to occur; the expected mean or average.
69
1.0E+10
10% measurement accuracy range
Gain-Phase test port
1.E+06
1.E+05
100
kΩ
Impedance [Ohm]
1.E+04
10
kΩ
1 1.E+03
kΩ
GP Series
1.E+02
100
Ω
1.E+01
10
Ω
1 1.E+00
Ω
1.E-01
100
mΩ
GP Shunt
1.E-02
10
mΩ
1 1.E-03
mΩ
1.E-04
1.0E+00
1.0E+01
10 Hz
1.0E+02
100 Hz
1.0E+03
1 kHz
1.0E+04
10 kHz
1.0E+05
100
kHz
1.0E+06
1 MHz
1.0E+07
10 MHz
1.0E+08
100
MHz
1.0E+09
1 GHz
Frequency [Hz]
Supplemental performance data (SPD): It is not guaranteed by the product warranty.
Represents the value of a parameter that is most likely to occur; the expected mean or average.
70
1.0E+10
Measurement Methods Summary
Configuration &
Impedance range
Test port & Method
S-Parameter (5 Hz - 3 GHz)
Port 1-2 Series
Series-thru,
Mid - High
User
Gain-Phase (5 Hz - 30 MHz)
GP Series (T: 50Ω, R: 1MΩ)
4-terminal pair
Port 1 Refl
Reflection,
Mid
7-mm
Port 1-2 Shunt
Shunt-thru,
Low - Mid
User
GP Shunt (T: 50Ω, R: 50Ω)
User
(Splitter)
71
Test Fixtures (1)
7 mm test fixture with
16201A
Reflection method
(S-Parameter, Port 1)
5 Hz to 3 GHz
16092A
16201A
4-terminal pair test
fixture
Series-thru method
(Gain-Phase, T 50Ω, R 1MΩ)
5 Hz to 30 MHz
16047E
72
Test Fixtures (2)
S-Parameter test port (Reflection method)
Test Fixtures available in actual FW: (None), 16191A, 16192A, 16193A, 16194A, 16196A/B/C, 16197A,
(User)
73
Test Fixtures (3)
Gain-Phase test port (Series-thru method)
74
E5061B demonstration
Next pages contain slides for supporting discussion during
demonstration
75
Calibration and Fixture Compensation (1)
76
Calibration and Fixture Compensation (2)
Impedance calibration
The impedance calibration executes the
open/short/load (and optional low-loss-C)
calibration in the impedance domain after
the measured S-parameter or gain-phase
ratio data is converted to impedance.
[Cal] > Calibrate > Impedance Calibration
Low-Loss Capacitor Calibration
When you measure Q, D, and ESR of RF
capacitors and RF inductors by using the
reflection method (with the 16201A), performing
the low-loss capacitor (LLC) calibration in
addition to the open/short/load improves the
accuracy at high frequencies over 1GHz. The
LLC provides a reference for calibration with
respect to the 90°-phase component of
impedance. LLC is available with 16195B CalKit.
Fixture compensation
- The open/short (and optional load)
compensation eliminates the fixture’s
residual impedance and stray admittance.
-The
electrical
length
compensation
(selecting fixture type, or Z port extension)
eliminates the phase shift error that occurs
at 7 mm fixtures in the RF range.
[Cal] > Fixture Compen > Compensate
77
Open/Short Compensation and Z Port
Extension
The recommended fixture compensation method
up to a few hundreds of MHz is the open/short
compensation.
For the measurement at higher frequencies over
a few hundreds of MHz, it is recommended to
perform the combination of the fixture electrical
length compensation and the open/short
compensation.
Z measurement with Network Analyzer (1)
Reflection method
Middle Zdut
S11=VT/VR
50
50
Zdut
78
50
VT
50
VR
50
VNA Uncertainties Calculator
S11 Magnitude Accuracy
E5061B 3L5 (RSS) with 85033E Calibration Kit
0.05
S21 = S12 = 0; Cal power = -10 dBm; Meas power = -10 dBm
IF Bandwidth = 1 Hz; Average Factor = 1
1MHz
Uncertainty (Linear)
0.04
0.03
0.02
0.01
0
0
0.2
0.4
0.6
Reflection Coefficient (Linear)
79
0.8
1
Impedance Uncertainty
Reflection method: Impedance Uncertainty
30.0
25.0
Uncertainty (%)
20.0
15.0
10.0
5.0
0.0
1.0E-01
80
1.0E+00
1.0E+01
1.0E+02
Impedance (Ohm)
1.0E+03
1.0E+04
Reflection method
Configuration example
1609x test fixture
• For middle Z-range
• Need Open/Short/Load cal
16201A/001) +
16195B
short
P/N 0699-2829
SMD 50 ohm
10 uH inductor measurement
Test freq=100 kHz to 100 MHz
Source= -10 dBm, IFBW=Auto / 100 Hz-limit
Open/Short/Load cal at fixture
DUT
1 kohm
10 uH
|Z| [ohm]
Ls [henry]
60 dB
(=1 kohm)
20*log |Z| [dB]
81
Typical configuration examples
for S-Parameter Reflection method (Low-Mid Z, up to 3 GHz)
- E5061B options
E5061B
Network Analyzer
E5061B-3L5 LF-RF NA with DC bias
E5061B-005 Impedance analysis function for LF-RF NA (*1)
--------------------------------------------------------------E5061B-1E5 High stability time base
E5061B-020 Standard hard disk drive
E5061B-810 Add key board
E5061B-820 Add mouse
- Adapter for connecting fixtures
16201A
7 mm terminal adapter kit
16201A-001(*2)
7 mm terminal adapter kit for E5061B
- 7 mm calibration kit
16195B (open/short/load + low-loss capacitor)
- 7 mm test fixtures
16092A (SMD & leaded component, 500 MHz)
16092A
(*1) E5061B-005 is not applicable to the E5061B RF NA option: 1x5 / 2x5 / 1x7 / 2x7.
(*2) Option 001 is the only option for the 16201A. Must choose this option when ordering the 16201A.
82
Reflection method: Home-made fixtures
SMA receptacle
To
Port-1
Cal devices
Copper foil (GND)
DUT
(soldered between
center pin and GND)
83
Open
Short
Load
50 ohm
resistor
Z measurement with Network Analyzer (2)
Series-thru method
Middle to large Zdut, no grounded DUT
50
Zdut
50
S21=VT/VR
50
84
VT
50
VR
50
10% measurement accuracy range (E5061B, S-Parameter test
port)
E5061B (SPD)
S-Parameter, Series-thru
100
kΩ
1.E+05
10 kΩ
1.E+04
1 kΩ
E5061B (SPD)
S-Parameter, Reflection
Impedance [Ohm]
1.E+03
100 Ω
1.E+02
10 Ω
1.E+01
1Ω
1.E+00
100
mΩ
1.E-01
10 mΩ
1.E-02
1 mΩ
1.E-03
1.E-04
1.E+00
Definitions
10 Hz
1.E+01
100
Hz
1.E+02
1 kHz
1.E+03
100
1 MHz
kHz
1.E+04
1.E+05
1.E+06
Frequency [Hz]
10 kHz
10 MHz
1.E+07
100
MHz
1.E+08
1 GHz
1.E+09
1.E+10
- Specification (Spec): Warranted performance. Specifications include guardbands to account for the expected statistical performance distribution,
measurement uncertainties, and changes in performance due to environmental conditions.
- Supplemental performance data (SPD): Represents the value of a parameter that is most likely to occur; the expected mean or average. It is not
guaranteed by the product warranty.
For more details about conditions for defining accuracy, please refer to the Data Sheet.
85
10% measurement accuracy range (E5061B, Gain-Phase test
port)
1.E+05
100
kΩ
10 kΩ
1.E+04
E5061B (SPD)
Gain-Phase, Series-thru
1 kΩ
1.E+03
Impedance [Ohm]
100 Ω
1.E+02
4-terminal pair test
fixture
10 Ω
1.E+01
1Ω
1.E+00
100
1.E-01
mΩ
10 mΩ
1.E-02
1 mΩ
1.E-03
1.E-04
1.E+00
10 Hz
1.E+01
100
1.E+02
Hz
1 kHz
1.E+03
100
10 kHz
1 MHz
1.E+04
1.E+05
1.E+06
kHz
Frequency [Hz]
10
MHz
1.E+07
100
1.E+08
MHz
1 GHz
1.E+09
1.E+10
Definitions
- Specification (Spec): Warranted performance. Specifications include guardbands to account for the expected statistical performance distribution,
measurement uncertainties, and changes in performance due to environmental conditions.
- Supplemental performance data (SPD): Represents the value of a parameter that is most likely to occur; the expected mean or average. It is not
guaranteed by the product warranty.
For more details about conditions for defining accuracy, please refer to the Data Sheet.
86
Series-thru method with gain-phase test port (<=30 MHz)
• For middle to large Z-range
• Need Open/Short/Load cal at fixture
4-Terminal-Pair type fixture
Lc
Lp
Zdut
Hp
T
50
Hc
LF OUT
R
Zin=50 ohm
4TP fixture
1 nF capacitor measurement
Zin=1 Mohm
Test freq=100 Hz to 30 MHz
Source=7 dBm, IFBW=Auto / 20 Hz-limit
+
VR
VT
Internal DC bias
applicable to
capacitive DUTs
|Z| [ohm]
1 nF
Calibration
open
Examples of load:
Cp [farad]
100 kohm
P/N 0699-2829
SMD 50 ohm
short bar
50 ohm R
87
P/N 0699-2014
Axial-lead 50 ohm
(ESL = approx. 14 nH
with minimum lead length)
100 dB
(=100 kohm)
20*log(|Z|) [dB]
Typical configuration examples
for Gain-Phase Series-thru method (Mid-High Z, up to 30 MHz)
- E5061B options
E5061B
Network Analyzer
E5061B-3L5 LF-RF NA with DC bias
E5061B-005 Impedance analysis function for LF-RF NA (*1)
--------------------------------------------------------------E5061B-720 50 Ω resistor set
E5061B-720
50 Ω resistor set contains the following items for
the impedance calibration at the test fixture:
- SMD 50 Ω (0699-2929), 10 ea
- Leaded 50 Ω (5012-8646), 2 ea
- Tweezers (8710-2018), 1 ea
E5061B-1E5
E5061B-020
E5061B-810
E5061B-820
High stability time base
Standard hard disk drive
Add key board
Add mouse
- 4-terminal pair test fixtures
16047E (leaded component)
16034E (SMD), or 16034G (for SMD)
16034E
16047E
(*1) E5061B-005 is not applicable to the E5061B RF NA option: 1x5 / 2x5 / 1x7 / 2x7.
88
Series-thru method: Home-made fixtures
short
wire
50 ohm
resistor
DUT
Terminal
block
To R-port
(Zin=1 Mohm)
Cal devices
From
LF OUT
To T-port
(Zin=50 ohm)
Copper board (GND)
89
BNC(f)
receptacle
Z measurement with Network Analyzer (3)
Shunt-thru method
Small Zdut
S21=VT/VR
50
50
50
90
VT
Zdut
50
VR
50
10% measurement accuracy range (E5061B, S-Parameter test
port)
1.E+05
100
kΩ
10 kΩ
1.E+04
E5061B (SPD)
S-Parameter,
Reflection
1 kΩ
1.E+03
Impedance [Ohm]
100 Ω
1.E+02
10 Ω
1.E+01
1Ω
1.E+00
100
1.E-01
mΩ
10 mΩ
1.E-02
E5061B (SPD)
1 mΩ
1.E-03
1.E-04
1.E+00
S-Parameter, Shuntthru
10 Hz
1.E+01
100
1.E+02
Hz
1 kHz
1.E+03
10 kHz
1.E+04
100
1 MHz
1.E+05
1.E+06
kHz
Frequency [Hz]
10
MHz
1.E+07
100
1.E+08
MHz
1 GHz
1.E+09
1.E+10
Definitions
- Specification (Spec): Warranted performance. Specifications include guardbands to account for the expected statistical performance distribution,
measurement uncertainties, and changes in performance due to environmental conditions.
- Supplemental performance data (SPD): Represents the value of a parameter that is most likely to occur; the expected mean or average. It is not
guaranteed by the product warranty.
For more details about conditions for defining accuracy, please refer to the Data Sheet.
91
10% measurement accuracy range (E5061B, Gain-Phase test
port)
1.E+05
100
kΩ
10 kΩ
1.E+04
1 kΩ
1.E+03
Impedance [Ohm]
100 Ω
1.E+02
10 Ω
1.E+01
1Ω
1.E+00
100
1.E-01
mΩ
10 mΩ
1.E-02
E5061B (SPD)
1 mΩ
1.E-03
1.E-04
1.E+00
Gain-Phase, Shuntthru
10 Hz
1.E+01
100
1.E+02
Hz
1 kHz
1.E+03
100
10 kHz
1 MHz
1.E+04
1.E+05
1.E+06
kHz
Frequency [Hz]
10
MHz
1.E+07
100
1.E+08
MHz
1 GHz
1.E+09
1.E+10
Definitions
- Specification (Spec): Warranted performance. Specifications include guardbands to account for the expected statistical performance distribution,
measurement uncertainties, and changes in performance due to environmental conditions.
- Supplemental performance data (SPD): Represents the value of a parameter that is most likely to occur; the expected mean or average. It is not
guaranteed by the product warranty.
For more details about conditions for defining accuracy, please refer to the Data Sheet.
92
Shunt-thru method
• For small Z-range (down to milliohms / submilliohms)
• Calibration method depending on
measurement configuration and test
With
S-param.
test port (<= 3 GHz):
freq
For most of capacitors, and PCB measurements
|Z| [ohm]
(Linear scale)
20*log(|Z|) [dB]
Test board
Z-phase [deg]
With gain-phase test port (<= 30 MHz):
For very-large capacitors (milli-farad order), DC-DC converters
MLCC (Multi-layer ceramic chip)
measurement in broad freq. range
- Test freq=100 Hz to 1 GHz.
T: Zin=50 ohm
R: Zin=50 ohm
93
S21 [dB]
Equivalent Circuit Analysis (1)
Equivalent
Circuit Analysis
Simulate =
“ON”
memory trace
e.g., Ceramic
Resonator (Type E
circuit)
# Equivalent Circut
#
----C0---# -|
|#
-L1-C1-R1Type, E
R1, 6.94624374266e+000
L1, 6.79827222119e-003
C1, 2.45000000000e-011
C0, 3.47238726000e-010
94
Equivalent Circuit Analysis (2)
Equivalent
Circuit
Analysis
Generally suitable for…
Inductors with high core
loss
Inductors with high winding resistance
or resistors with low resistance value
Resistors with high resistance
value
Typical freq. characteristics
*1
*1
*1
Capacitors
*1
Resonator
*2
*1.
*2.
95
End of E5061B demonstration
96
Methods and Fixtures Summary
S-Parameter
Test port
Reflection
(5 Hz - 3 GHz)
Gain-Phase
(5 Hz - 30 MHz)
1Ω
1 kΩ
High-Z
~ 100
kΩ
Applicable
Z-range
S1
1
Mid
7-mm type fixtures
Series
S2
1
GP Series (T 50Ω, R 1MΩ)
1MΩ input
TR
Mid High
Port 1-2 Shunt
Shunt
1 mΩ ~
Mid-Z
Port 1 Refl / Port 2 Refl
Port 1-2 Series
Configuration
Low-Z
S21
GP Shunt (T 50Ω, R 50Ω)
Power
splitter
4-Terminal Pair type
fixtures
Shunt
Series
TR
Low Mid
User fixtures are required
97
Summary of Impedance measurement methods
98
Impedance Analysis (E5061B-005) Summary
NA+ZA in one box
Provides comprehensive solutions as general R&D
tool:
- Characterize components (ZA)
- Evaluate system performance (NA: S21, T/R)
- Cost effective 5 Hz to 3 GHz impedance analyzer
with moderate performance
Migrate legacy combo analyzer
(4195A, 4395/96x, 4194A, 4192A)
Easy to migrate by supporting conventional test
fixtures:
- 7 mm test fixtures (S-Parameter Reflection
method)
- 4TP test fixtures (Gain-Phase Series-thru method)
99
Supports ZA functions
Fully supports traditional ZA functions as shown
below:
- Display Z parameters (Z, θz, Ls, Cp, Rs, D, Q, …)
- Impedance Cal. & Fixture Compen
- Equivalent circuit analysis
Covers moderate Z range
Covers various ZA applications with three
measurement techniques using both S-Parameter
and Gain-Phase test ports (up to several tens kΩ,
down to around mΩ):
- Reflection method (S-Para.)
- Series-thru method (S-Para./Gain-Phase)
- Shunt-thru method (S-Para./Gain-Phase)
Agenda
1. Introduction
2. Impedance Basics & Measurement Methods
3. LCR Meters
4. Impedance Analyzers
5. Accessories/test-fixtures
6. Vector Network Analyzers
•
E5061B VNA as Impedance Analyzer
7. Reference Documents + Q&A
100
Key Reference Document
Selection Guide
5952-1530E: Agilent LCR Meters, Impedance Analyzers, and Test Fixtures Selection Guide
Brief introduction of Agilent
LCR and Impedance
measurement solution
Test accessories / fixtures
compatibility chart
101
Key Reference Document
Accessories Selection Guide
5965-4792E: Accessories Selection Guide For Impedance Measurements
Tips for selecting
appropriate
accessories
Detailed information on
each accessories
102
Key Reference Document
Impedance Measurement Handbook
5950-3000; Impedance Measurement Handbook
Deep discussion on each
measurement method
Tips for accurate fixturing
103
Thank You!
104