COLLEGIO CARLO ALBERTO STOCHASTIC PROCESSES 2014 2.E WIENER PROCESS GIOVANNI PISTONE 1. Exercise. The random variables (1) Wt1 , pWt2 ´ Wt1 q, . . . , pWtn ´ Wtn´1 q are independent if 0 ď t1 ď ¨ ¨ ¨ ď tn . Proof. Note that we can assume 0 ă t1 ă cdots ă tn . Proceed by induction on n: ˘ ` (2) E f1 pWt1 qf2 pWt2 ´ Wt1 q ¨ ¨ ¨ fn pWtn ´ Wtn´1 q “ ˇ ` ` ˘˘ E f1 pWt1 qf2 pWt2 ´ Wt1 q ¨ ¨ ¨ E fn pWtn ´ Wtn´1 q ˇFtn1 “ ` ˘ E pf1 pWt1 qf2 pWt2 ´ Wt1 q ¨ ¨ ¨ q E fn pWtn ´ Wtn´1 q . 2. Exercise. ˘The random vector pWt1 , . . . , Wtn q, 0 ă t1 ă ¨ ¨ ¨ ă tn is Gaussian with covariance ` Cov Wti , Wtj “ minpti , tj q. The density exists. Proof. The increments (1) are independent and Np0, tj ´ tj´1 q, j “ 1, . . . , n, t0 “ 0, with joint density ˆ ˙ n ź 1 ´1{2 ´1{2 2 ppx1 , . . . , xn q “ p2πq ptj ´ tj´1 q exp ´ x 2ptj ´ tj´1 q j j“1 ˜ ¸´1{2 ˜ ¸ n n ź x2j 1ÿ ´n{2 “ p2πq ptj ´ tj´1 q exp ´ (3) 2 j“1 tj ´ tj´1 j“1 The transformation from the » 1 —1 — (4) y “ —1 – .. . increments x to the values y, A : fi » 1 0 0 0 ¨¨¨ —´1 1 1 0 ¨ ¨ ¨ffi — ffi x x “ — 0 ´1 1 1 ¨ ¨ ¨ffi – fl .. . x ÞÑ y is fi 0 ¨¨¨ 0 ¨ ¨ ¨ffi ffi y 1 ¨ ¨ ¨ffi fl The determinant of A is 1, hence ˜ ¸´1{2 ˜ ¸ n n 2 ź ÿ py ´ y q 1 j j´1 ppy1 , . . . , yn q “ p2πq´n{2 ptj ´ tj´1 q exp ´ , t0 “ 0 2 j“1 tj ´ tj´1 j“1 ˜ ¸´1{2 ˜ ¸ n n 2 ź ´ 2yj´1 yj 1 ÿ yj2 ` yj´1 ´n{2 (5) . “ p2πq ptj ´ tj´1 q exp ´ 2 j“1 tj ´ tj´1 j“1 Date: June 9, 2014. 1 The quadratic form n 2 ÿ yj2 ` yj´1 ´ 2yj´1 yj “ (6) y ÞÑ tj ´ tj´1 j“1 ˙ n´1 ˆ n ÿ 1 2 ÿ 1 1 1 1 y1 ` ` yj2 ` yn2 ´ 2 yj´1 yj t1 tj ´ tj´1 tj`1 ´ tj tn ´ tn´1 t ´ tj´1 j“2 j“1 j is better described in terms of the covariance matrix Γ “ CovpWt1 , . . . , Wtn q (7) ´ ¯ ´ ¯ ` ˘ Γij “ Cov Wti , Wtj “ Cov Wminpti ,tj q , Wmaxpti ,tj q “ Cov Wminpti ,tj q , Wminpti ,tj q “ minpti , tj q, and (8) Γ “ A diag `a ˘ `a ˘ tj ´ tj´1 : j “ 1, . . . , n pA diag tj ´ tj´1 : j “ 1, . . . , n qT “ A diag pptj ´ tj´1 q : j “ 1, . . . , nq AT and ˆ (9) ´1 Γ “ pA ´1 T q diag ˙ 1 : j “ 1, . . . , n pA´1 q tj ´ tj´1 3. Exercise. The distribution of Wt given W1 “ 0, t ă 1 is equal to the distribution of the Brownian bridge Wt ´ tW1 . ˆ „ ˙ „ t t t t Proof. The joint distribution of pWt , W1 q is N2 0, , with det “ t ´ t2 and t 1 t 1 „ ´1 „ t t 1 ´t 1 “ t´t . The joint density is 2 t 1 ´t t ˆ ˙ ` 2 ˘ 1 2 ´1 2 ´1{2 (10) pt,1 py1 , y2 q “ p2πq pt ´ t q exp ´ y ´ 2ty1 y2 ` ty2 2pt ´ t2 q 1 and the conditional density is ´ ˘¯ ` 2 1 2 p2πq´1 pt ´ t2 q´1{2 exp ´ 2pt´t 2 q y1 ´ 2ty1 y2 ` ty2 ´ 2¯ (11) pWt |W1 py1 |y2 q “ “ y p2πq´1{2 exp ´ 22 ˆ ˙ ` 2 ˘ 1 ´1{2 2 ´1{2 2 2 2 p2πq pt ´ t q exp ´ y ´ 2ty1 y2 ` ty2 ´ pt ´ t qy2 “ 2pt ´ t2 q 1 ˆ ˙ ` 2 ˘ 1 ´1{2 2 ´1{2 2 2 p2πq pt ´ t q exp ´ y ´ 2ty1 y2 ` t y2 . 2pt ´ t2 q 1 In particular, because of the continuity, we can define (12) ´1{2 pWt |W1 py1 |0q “ p2πq 2 ´1{2 pt ´ t q ˆ exp ´ ˙ ` 2˘ 1 y . 2pt ´ t2 q 1 We have Var pWt ´ tW1 q “ Var pWt q ` t2 Var pW1 q ´ 2t Cov pWt , W1 q “ t ` t2 ´ 2t2 “ t ´ t2 . 4. Exercise. The Wiener process is a Markov process an a martingale. 2 Proof. For all φ such that φ ˝ Wt is integrable and s ă t (13) ˙ ˆ x2 ´1{2 ´1{2 ´ 2pt´sq E pφpWt q |Fs q “ E pφpWt ´ Ws ` Ws q |Fs q “ φpx`Ws q p2πq dx “ pt ´ sq e ˙ ˆ ż ż py´Ws q2 ´1{2 ´1{2 ´ 2pt´sq dy “ φpyqkpWs , yq dy, φpyq p2πq pt ´ sq e ż that is the conditional distribution of Wt given Fs is NpWs , t ´ sq. In particular, if φpyq “ y, then E pWt |Fs q “ Ws . 5. Exercise. Define δf pxq “ xf pxq ´ f 1 pxq and δ n 1 “ Hn pxq. For Z „ Np0, 1q, the random variables Hn pZq are orthogonal. Proof. As each Hn is a monic polynomial of degree n, and ż ż ¯ ` 1 ˘ d ´ 2 ´1{2 1 ´z 2 {2 ´1{2 gpzqe´z {2 dz “ (14) E f pZqgpZq “ p2πq f pzqgpzqe dz “ ´p2πq f pzq dz ˆ ˙ ż d 2 2 ´ p2πq´1{2 f pzq gpzqe´z {2 ´ zgpzqe´z {2 dz “ E pf pZqδgpZqq , dz for m ă n (15) E pHm pZqHn pZqq “ E pHm pZqδ n 1q “ E pdn Hm pZqq “ 0. 6. Exercise. Let φ : R ˆ R` Ñ R and φ P C 2,1 . Under integrability conditions, if t P R` and B 1 B2 2 By 2 φpy, tq ` Bt φpy, tq “ 0, then M “ φpW, ¨q is a martingale. ? 2 1 Proof. As kpx, y; s, tq “ ?t´s f ppy ´ xq{ t ´ sq with f pzq “ p2πq´1{2 e´z {2 , in the limit t Ó s # 0 if y ‰ x 2 2 (16) lim kpx, y; s, tq “ lim ue´u py´xq {2 “ “ kpx, y, s, sq. uÑ8 tÓs `8 if y “ x We have f 1 pzq “ ´zf pzq, f 2 pzq “ pz 2 ´ 1qf pzq and d ´1{2 dt pt ´ sq “ ´ 12 pt ´ sq´3{2 . It follows that (17) B2 B2 kpx, y; s, tq “ pt ´ sq´1{2 f ppt ´ sq´1{2 py ´ xqq “ pt ´ sq´3{2 f 2 ppt ´ sq´1{2 py ´ xqq “ By 2 By 2 pt ´ sq´3{2 ppt ´ sq´1 py ´ xq2 ´ 1qf ppt ´ sq´1{2 py ´ xqq and (18) B B kpx, y; s, tq “ pt ´ sq´1{2 f ppt ´ sq´1{2 py ´ xqq “ Bt Bt ˆ ˙ 1 1 ´ pt ´ sq´3{2 f ppt ´ sq´1{2 py ´ xqq ` pt ´ sq´1{2 f 1 ppt ´ sq´1{2 py ´ xqq ´ pt ´ sq´3{2 py ´ xq “ 2 2 1 1 ´ pt ´ sq´3{2 f ppt ´ sq´1{2 py ´ xqq ´ pt ´ sq´2 py ´ xqf 1 ppt ´ sq´1{2 py ´ xqq “ 2 2 1 1 ´3{2 ´1{2 ´ pt ´ sq f ppt ´ sq py ´ xqq ` pt ´ sq´5{2 py ´ xq2 f ppt ´ sq´1{2 py ´ xqq “ 2 2 ` ˘ 1 pt ´ sq´3{2 pt ´ sq´1 py ´ xq2 ´ 1 f ppt ´ sq´1{2 py ´ xqq, 2 hence B 1 B2 (19) kpx, y; s, tq “ kpx, y; s, tq. 2 By 2 Bt 3 ş We want to show that E pφpWşt , tq |Fs q “ φpWs , sq, that is φpy, tqkpWs , y; s, tq dy “ φpWs , sq, which, in turn, is implied by φpy, tqkpx, y; s, tq dy “ φpx, sq, x P R. The function t ÞÑ ş φpy, tqkpx, y; s, tq dy is defined for t ą s and with derivative equal to ż ż B B φpy, tqkpx, y; s, tq dy “ (20) φpy, tqkpx, y; s, tq dy “ Bt Bt ˙ ż ˆ B B φpy, tqkpx, y; s, tq ` φpy, tq kpx, y; s, tq dy “ Bt Bt ˙ ż ˆ B 1 B2 φpy, tqkpx, y; s, tq ` φpy, tq 2 kpx, y; s, tq dy “ Bt 2 By ż ż 1 B2 B φpy, tqkpx, y; s, tq dy ` φpy, tq 2 kpx, y; s, tq dy “ Bt 2 By ż ż 2 B 1 B φpy, tqkpx, y; s, tq dy “ φpy, tqkpx, y; s, tq dy ` Bt 2 By 2 ż ż B φpy, tqkpx, y; s, tq dy ´ φpy, tqkpx, y; s, tq dy “ 0. Bt For example, ˆ ˙ 1 B2 B (21) ` py 2 ´ tq “ 0 2 By 2 Bt ˆ ˙ 1 B2 B 2 (22) ` eay´a t{2 “ 0 2 2 By Bt Other proofs are possible, namely ż ż 2 (23) t ÞÑ φpy, tqkpx, y; s, tq dy “ phipx ` pt ´ sq1{2 z, tqp2πq´1{2 e´z {2 , has zero derivative for t ą s. 7. Exercise. The series of continuous function on r0, 1s n´1 ˆż ˙ 8 2ÿ 8 t ÿ ÿ pnq (24) t ÞÑ tZo ` hj,n psq ds Zj,n “ Wt , n“1 j“1 0 n“0 with Z0 , Zj,n , n P N, j “ 1 . . . 2n´1 , are IID Np0, 1q, and hj.n is the j-th Haar function of the n-th order, is a Wiener process on r0, 1s for its filtration. See [1, §2.3] Proof. (1) The Haar function are orthogonal in L2 r0, 1s because different functions of the same order have disjoint supports and functions of different orders are such that the one with lower order is constant on the support of the other. The proof of the completeness use a monotone class argument taking as a π-class the binary intervals. p0q p0q (2) Wt “ tZ0 has the correct distribution at t “ 1, i.e. W1 „ Np0, 1q. If W is a Wiener p0q p0q process, then Wt „ tW1 , in general pt ÞÑ Wt q „ pt ÞÑ tW1 q. n´1 (3) If n “ 1, 2 “ 1, and the Haar function is h1,1 psq “ p0 ď s ă 1{2q ´ p1{2 ď s ă 1q and şt the Shauder function is S1,1 ptq “ 0 h1,1 psq ds “ tp0 ď t ă 1{2q ` p1{2 ´ tqp1{2 ď t ă 1q. p1q (25) The approximation of order 1 is Wt “ tZ0 ` S1,1 ptqZ1,1 . At the points t “ 0, 1{2, 1 the Gaussian vector is » p1q fi » fi » fi » fi W0 0 0 0 „ 0Z0 ` S1,1 p0q ` ˘ — p1q ffi – 1 1 fl 1 1 1 1 fl Z0 – fl – “ 2 Z0 ` 2 Z1,1 “ 2 2 –W1{2 fl “ 2 Z0 ` S1,1 2 Z1,1 p1q 1Z ` S p1q Z0 1 0 0 1,1 W 1 4 with covariance fi fi » fiT » 0 0 0 0 0 0 0 p1q p1q p1q CovpW0 , W1{2 , W1 q “ –1{2 1{2fl –1{2 1{2fl “ –0 1{2 1{2fl , 1 0 1 0 1 0 21 » (26) p1q p1q p1q so that pW0 , W1{2 , W1 q „ pW0 , W1{2 , W1 q. ? (4) If n “ 2, then 2n´1 “ 2 and 2pn´1q{2 “ 2. The Haar function of order 2 are ? ? h1,2 psq “ 2p0 ď s ă 1{4q ´ 2p1{4 ď s ă 1{2q, (27) ? ? (28) h2,2 psq “ 2p1{2 ď s ă 3{4q ´ 2p3{4 ď s ă 1q, (29) (30) and the Shauder functions are ? ? S1,2 ptq “ 2tp0 ď t ă 1{4q ` 2p1{2 ´ tqp1{4 ď t ă 1{2q, ? ? S2,2 ptq “ 2pt ´ 1{2qp1{2 ď t ă 3{4q ` 2p1 ´ tqp3{4 ď t ă 1q. The approximation of order 2 is p2q (31) Wt “ tZ0 ` S1,1 ptqZ1,1 ` S1,2 ptqZ1,2 ` S2,2 ptqZ2,2 . At the binary points t “ 0, 1{4, 1{2, 3{4, 1 the Gaussian vector is » (32) fi p2q fi » W0 0 — p2q ffi ? —W ffi — — 1{4 ffi —p1{4qZ0 ` p1{4qZ1,1 ` p 2{4qZ1,2 ffi ffi — p2q ffi — ffi “ p1{2qZ0 ` p1{2qZ?1,1 —W1{2 ffi “ — ffi — p2q ffi – p3{4qZ0 ` p1{4qZ1,1 ` p 2{4qZ2,2 fl —W ffi – 3{4 fl Z0 p2q W1 » fi » fi 0 0 ?0 0 Z0 —1{4 1{4 ffi 2{4 0 ffi — — ffi —1{2 1{2 ffi —Z1,1 ffi 0 — ? 0 ffi –Z1,2 fl –3{4 1{4 2{4fl 0 Z2,2 1 with covariance (33) p2q p2q p2q p2q p2q CovpW0 , W1{4 , W1{2 , W3{4 , W1 q “ » fi » 0 0 ?0 0 0 ffi — —1{4 1{4 2{4 0 ffi —1{4 — —1{2 1{2 ffi — 0 0 — ? ffi —1{2 –3{4 1{4 0 2{4fl –3{4 1 0 0 0 1 » 0 0 0 0 —0 1{4 1{4 1{4 — —0 1{4 1{2 1{2 — –0 1{4 1{2 3{4 0 1{4 1{2 3{4 fiT 0 ?0 0 1{4 2{4 0 ffi ffi ffi 1{2 0 ? 0 ffi “ 1{4 0 2{4fl 0 0 0 fi 0 1 ffi ffi 1{2ffi ffi “ CovpW0 , W1{4 , W1{2 , W3{4 , W1 q. 3{4fl 1 (5) To proceed, we want a better organization of the computations. At order 0 we have a zero at t “ 0; at order 1 we have zeros at t “ 0, 1; at order 2 we have zeros at t “ 0, 1{2, 1. p2q p1q At the points t “ 0, 1{2, 1 we have Wt “ Wt . As the new point 1{4, 3{4 the values of p1q Wt are interpolated values, to which are added the vertex values of the new Shauder functions. The increments on binary points are: 5 » p2q p2q fi W1{4 ´ W0 (34) — p2q ffi —W ´ W p2q ffi — 1{2 1{4 ffi — p2q ffi “ —W ´ W p2q ffi 1{2 fl – 3{4 p2q W1 p2q ´ W3{4 fi p1{4 ´ 0qZ0 ` pS1,1 p1{4q ´ S1,1 p0qqZ1,1 ` pS1,2 p1{4q ´ S1,2 p0qqZ1,2 ` pS2,2 p1{4q ´ S2,2 p0qqZ2,2 —p1{2 ´ 1{4qZ0 ` pS1,1 p1{2q ´ S1,1 p1{4qqZ1,1 ` pS1,2 p1{2q ´ S1,2 p1{4qqZ1,2 ` pS2,2 p1{2q ´ S2,2 p1{4qqZ2,2 ffi ffi — –p3{4 ´ 1{2qZ0 ` pS1,1 p3{4q ´ S1,1 p1{2qqZ1,1 ` pS1,2 p3{4q ´ S1,2 p1{2qqZ1,2 ` pS2,2 p3{4q ´ S2,2 p1{2qqZ2,2 fl “ p1 ´ 3{4qZ0 ` pS1,1 p1q ´ S1,1 p3{4qqZ1,1 ` pS1,2 p1q ´ S1,2 p3{4qqZ1,2 ` pS2,2 p1q ´ S2,2 p3{4qqZ2,2 » fi p1{4qZ0 ` S1,1 p1{4qZ1,1 ` S1,2 p1{4qZ1,2 —p1{4qZ0 ` pS1,1 p1{2q ´ S1,1 p1{4qqZ1,1 ´ S1,2 p1{4qZ1,2 ffi ffi — –p1{4qZ0 ` pS1,1 p3{4q ´ S1,1 p1{2qqZ1,1 ` S2,2 p3{4qZ2,2 fl “ p1{4qZ0 ´ S1,1 p3{4qZ1,1 ´ S2,2 p3{4qqZ2,2 » fi p1{4qZ0 ` p1{2qS1,1 p1{2qZ1,1 ` S1,2 p1{4qZ1,2 — p1{4qZ0 ` p1{2qS1,1 p1{2qZ1,1 ´ S1,2 p1{4qZ1,2 ffi — ffi – p1{4qZ0 ´ p1{2qS1,1 p1{2qZ1,1 ` S2,2 p3{4qZ2,2 fl “ p1{4qZ0 ´ p1{2qS1,1 p1{2qZ1,1 ´ S2,2 p3{4qqZ2,2 » fi » fi 1 1 1 0 p1{4qZ0 —1 1 ´1 0 ffi —p1{2qS1,1 p1{2qZ1,1 ffi — ffi — ffi “ –1 ´1 0 1 fl – S1,2 p1{4qZ1,2 fl 1 ´1 0 ´1 S2,2 p3{4qZ2,2 fi » fi » p1{4qZ0 1 1 1 0 —1 1 ´1 0 ffi — p1{4qZ1,1 ffi ffi “ — ffi — ? –1 ´1 0 1 fl –p?2{4qZ1,2 fl 1 ´1 0 ´1 p 2{4qZ2,2 fi » » fi fi » 1{4 0 0 0 Z0 1 1 1 0 — —1 1 ´1 0 ffi — 0 1{4 ffi 0 ffi ?0 ffi —Z1,1 ffi — ffi — fl – –1 ´1 0 fl – 2{4 ? 0 Z1,2 fl 1 0 0 Z2,2 1 ´1 0 ´1 2{4 0 0 0 » and the covariance is (35) p2q p2q CovpW1{4 ´ W0 » 1 1 —1 1 — –1 ´1 1 ´1 p2q p2q p2q p2q p2q p2q , W1{2 ´ W1{4 , W3{4 ´ W1{2 , W1 ´ W3{4 q “ fiT fi » fi » 1 1 1 0 1 0 1{16 0 0 0 — ffi — 1{16 0 0 ffi ´1 0 ffi ffi —1 1 ´1 0 ffi “ ffi — 0 – – fl fl 1 ´1 0 1 fl 0 0 1{8 0 0 1 1 ´1 0 ´1 0 0 0 1{8 0 ´1 » fi » fiT 1{2 1{2 1 0 1 1 1 0 ffi — ffi 1— —1{2 1{2 ´1 0 ffi —1 1 ´1 0 ffi fl – – 1 ´1 0 1 fl 1 8 1{2 ´1{2 0 1 ´1 0 ´1 1{2 ´1{2 0 ´1 (6) Let us prove the convergence. This proof is due to [2] and uses the Borel-Cantelli lemma [3, §2.7]. First note that Z „ Np0, 1q implies the following estimate of the queues: (36) c ż c ż c ż 2 2 8 ´z 2 {2 2 8 z ´z 2 {2 2 e´x {2 ´1{2 ´z 2 {2 P p|Z| ą xq “ p2πq e dz “ e dz ď e dz “ . π x π x x π x |z|ąx 6 It follows that (37) ˆ ˙ P max |Zj,n | ą Apnq j “ P pYj t|Zj,n | ą Apnquq ď ÿ P p|Zj,n | ą nq “ 2n´1 P p|Z| ą Apnqq j c ď2 n´1 2 2 e´Apnq {2 . π Apnq References 1. Ioannis Karatzas and Steven E. Shreve, Brownian motion and stochastic calculus, second ed., Graduate Texts in Mathematics, vol. 113, Springer-Verlag, New York, 1991. MR 1121940 (92h:60127) 2. Henry P. McKean, Stochastic integrals, AMS Chelsea Publishing, Providence, RI, 2005, Reprint of the 1969 edition, with errata. MR 2169626 (2006d:60003) 3. David Williams, Probability with martingales, Cambridge Mathematical Textbooks, Cambridge University Press, Cambridge, 1991. E-mail address: [email protected] 7
© Copyright 2025 ExpyDoc