Trausti Saemundsson Reykjavik University Hjortur Bjornsson University of Iceland Gregory Chockler University of London, Royal Holloway Ymir Vigfusson Emory University Dynamic Performance Profiling of Cloud Caches Cache server MIMIR Item-to-bucket mapping Get/Set(e) Replacement algorithm Hit(e) HRC estimator Ghost list/ghost filter Miss(e) Set(e) Export-HRC() 𝒆𝟏 𝒆𝟐 ⋯ 𝒆𝑵 Aging policy Evict(e) ROUNDER Hit rate of current allocation Cumuluate hit rate Hit rate curve (CDF) 1 STACKER 0,5 0 0 5000 10000 Cache size (items) (answers “what if” questions) B Buckets 1 2 g,h,u f e,r,t Estimated # of hits LRU list Bucket #0 LRU extended with dataless “ghost” entries 3 b,c,d,a (i) LRU list before hit on item e (ii) PDF update Hit rate curve (PDF) Stack distance e e,g,h,u f g,h,u f r,t b,c,d,a r,t,b,c,d,a (iii) After request (iv) After aging >96% accuracy using standard traces Buckets (B) MAE 8 1.2% 16 0.6% 32 0.4% 64 0.3% 128 0.3% >98% accuracy on memcached YCSB High throughput in memcached
© Copyright 2024 ExpyDoc