Gravitational Scattering via Twistor Theory Tim Adamo DAMTP, University of Cambridge Frontiers of Fundamental Physics 14 14 July 2014 Work with L. Mason T Adamo (FFP14) [arXiv:1307.5043, 1308.2820] Twistor Gravity Amplitudes 14 July 2014 1 / 15 Motivation Why gravity scattering amplitudes? Provide important constraints on any theory of quantum gravity Theoretical ‘data’ May point to novel formulations of underlying theory or new ways to compute observables T Adamo (FFP14) Twistor Gravity Amplitudes 14 July 2014 2 / 15 Motivation Why gravity scattering amplitudes? Provide important constraints on any theory of quantum gravity Theoretical ‘data’ May point to novel formulations of underlying theory or new ways to compute observables c.f., ongoing progress in (planar) gauge theory T Adamo (FFP14) Twistor Gravity Amplitudes 14 July 2014 2 / 15 Today: tree-level (semi-classical) scattering amplitudes. Defined by the classical action of a theory: Definition (Tree-level amplitudes) Given an action functional S[φ], non-linear solution to the FEs (‘background’) φcl , and n solutions {φi } to the linearized FEs (‘scattering states’), then the tree-level scattering amplitude for the {φi } on φcl is: P n S φcl − ∂ φ i i i M0n (φ1 , . . . , φn ) = ∂1 · · · ∂n 1 =···n =0 T Adamo (FFP14) Twistor Gravity Amplitudes 14 July 2014 3 / 15 Today: tree-level (semi-classical) scattering amplitudes. Defined by the classical action of a theory: Definition (Tree-level amplitudes) Given an action functional S[φ], non-linear solution to the FEs (‘background’) φcl , and n solutions {φi } to the linearized FEs (‘scattering states’), then the tree-level scattering amplitude for the {φi } on φcl is: P n S φcl − ∂ φ i i i M0n (φ1 , . . . , φn ) = ∂1 · · · ∂n 1 =···n =0 Usually compute by summing Feynman diagrams...hard! Resulting formulae (drastically) simpler than expected! [DeWitt, Berends-Giele-Kuijf, Mason-Skinner, Nguyen-Spradlin-Volovich-Wen, Hodges, Cachazo-Skinner, Cachazo-He-Yuan, ...] T Adamo (FFP14) Twistor Gravity Amplitudes 14 July 2014 3 / 15 Today: tree-level (semi-classical) scattering amplitudes. Defined by the classical action of a theory: Definition (Tree-level amplitudes) Given an action functional S[φ], non-linear solution to the FEs (‘background’) φcl , and n solutions {φi } to the linearized FEs (‘scattering states’), then the tree-level scattering amplitude for the {φi } on φcl is: P n S φcl − ∂ φ i i i M0n (φ1 , . . . , φn ) = ∂1 · · · ∂n 1 =···n =0 Usually compute by summing Feynman diagrams...hard! Resulting formulae (drastically) simpler than expected! [DeWitt, Berends-Giele-Kuijf, Mason-Skinner, Nguyen-Spradlin-Volovich-Wen, Hodges, Cachazo-Skinner, Cachazo-He-Yuan, ...] Many of these simplifications are related to expressing amplitudes in twistor theory. T Adamo (FFP14) Twistor Gravity Amplitudes 14 July 2014 3 / 15 Questions to Answer: Is there some classical action principle giving rise to these simplifications? Can we learn anything about the associated twistor geometry? Are there new expressions for ‘amplitudes’ in backgrounds that aren’t asymptotically flat (e.g., de Sitter space)? T Adamo (FFP14) Twistor Gravity Amplitudes 14 July 2014 4 / 15 Twistor Toolbox Basic idea of twistor theory: Physical info on M ⇔ Geometric data on PT PT a (deformation of a) 3-dimensional complex projective manifold Points x ∈ M ↔ holomorphic rational curves X ⊂ PT x, y ∈ M null separated iff X , Y ⊂ PT intersect. T Adamo (FFP14) Twistor Gravity Amplitudes 14 July 2014 5 / 15 Twistor Toolbox Basic idea of twistor theory: Physical info on M ⇔ Geometric data on PT PT a (deformation of a) 3-dimensional complex projective manifold Points x ∈ M ↔ holomorphic rational curves X ⊂ PT x, y ∈ M null separated iff X , Y ⊂ PT intersect. Conformal structure on M ↔ C-structure on PT . T Adamo (FFP14) Twistor Gravity Amplitudes 14 July 2014 5 / 15 Does a twistor space exist for every M? T Adamo (FFP14) Twistor Gravity Amplitudes 14 July 2014 6 / 15 Does a twistor space exist for every M? No! Basic result is [Penrose, Ward] : Theorem (Non-linear Graviton) ∃ a 1:1 correspondence between: M with self-dual holomorphic conformal structure, and PT with integrable almost complex structure. Thing to remember: ∂¯2 = 0 on PT ⇔ ΨABCD = 0 on M. T Adamo (FFP14) Twistor Gravity Amplitudes 14 July 2014 6 / 15 Twistor theory good for describing self-duality T Adamo (FFP14) Twistor Gravity Amplitudes 14 July 2014 7 / 15 Twistor theory good for describing self-duality Is there a way to formulate GR as an expansion around the SD sector? T Adamo (FFP14) Twistor Gravity Amplitudes 14 July 2014 7 / 15 Conformal Gravity Start with an un-physical theory: Z 1 S[g ] = 2 dµ C µνρσ Cµνρσ ε M Z 2 = 2 dµ ΨABCD ΨABCD + top. terms ε M T Adamo (FFP14) Twistor Gravity Amplitudes 14 July 2014 8 / 15 Conformal Gravity Start with an un-physical theory: Z 1 S[g ] = 2 dµ C µνρσ Cµνρσ ε M Z 2 = 2 dµ ΨABCD ΨABCD + top. terms ε M Conformally invariant, with 4th -order equations of motion (non-unitary): B AB A0 B 0 A0 B 0 e (∇A A0 ∇B 0 + ΦA0 B 0 )ΨABCD = (∇A ∇B + ΦAB )ΨA0 B 0 C 0 D 0 = 0 T Adamo (FFP14) Twistor Gravity Amplitudes 14 July 2014 8 / 15 Conformal Gravity Start with an un-physical theory: Z 1 S[g ] = 2 dµ C µνρσ Cµνρσ ε M Z 2 = 2 dµ ΨABCD ΨABCD + top. terms ε M Conformally invariant, with 4th -order equations of motion (non-unitary): B AB A0 B 0 A0 B 0 e (∇A A0 ∇B 0 + ΦA0 B 0 )ΨABCD = (∇A ∇B + ΦAB )ΨA0 B 0 C 0 D 0 = 0 0 AA Ψ Note: Einstein (ΦAB ABCD ) and SD/ASD are subsectors of A0 B 0 = 0 = ∇ solutions. T Adamo (FFP14) Twistor Gravity Amplitudes 14 July 2014 8 / 15 Upshot: Perturbative expansion around SD sector. [Berkovits-Witten] Introduce Lagrange multiplier GABCD : Z Z ε2 ABCD S[g ] → S[g , G ] = dµ G ΨABCD − dµ G ABCD GABCD 2 M M Field Equations: ΨABCD = ε2 GABCD , T Adamo (FFP14) B AB (∇A A0 ∇B 0 + ΦA0 B 0 )GABCD = 0 Twistor Gravity Amplitudes 14 July 2014 9 / 15 Upshot: Perturbative expansion around SD sector. [Berkovits-Witten] Introduce Lagrange multiplier GABCD : Z Z ε2 ABCD S[g ] → S[g , G ] = dµ G ΨABCD − dµ G ABCD GABCD 2 M M Field Equations: ΨABCD = ε2 GABCD , B AB (∇A A0 ∇B 0 + ΦA0 B 0 )GABCD = 0 ε2 an expansion parameter around the SD sector. But we can formulate this in twistor space! T Adamo (FFP14) [Mason] Twistor Gravity Amplitudes 14 July 2014 9 / 15 Conformal Gravity in Twistor Space Translation: ΨABCD ↔ N[J] ∈ Ω0,2 (PT , TPT ), T Adamo (FFP14) GABCD ↔ b ∈ Ω1,1 (PT , O(−4)) Twistor Gravity Amplitudes 14 July 2014 10 / 15 Conformal Gravity in Twistor Space Translation: ΨABCD ↔ N[J] ∈ Ω0,2 (PT , TPT ), GABCD ↔ b ∈ Ω1,1 (PT , O(−4)) Action functional: Z Z ε2 3 dµ ∧ b1 ∧ b2 (σ1 σ2 )4 S[b, J] = D Z ∧ Nyb − 2 PT PT ×M PT Using standard results [Penrose, Atiyah-Hitchin-Singer] N[J] = ΨABCD σ A ΣBC ∂ , ∂σD : Z GABCD = σA σB σC σD b|X X Implies FEs on twistor space equivalent to those on space-time. T Adamo (FFP14) Twistor Gravity Amplitudes 14 July 2014 10 / 15 Why do we care? T Adamo (FFP14) Twistor Gravity Amplitudes 14 July 2014 11 / 15 Why do we care? Theorem (Anderson, Maldacena) For M asymptotically de Sitter, S CG [M] = − 2 Λ2 Λ κ2 EH V (M) = − S [M] , ren 3ε2 3ε2 ren and asymptotic Einstein states can be singled out in the conformal theory. T Adamo (FFP14) Twistor Gravity Amplitudes 14 July 2014 11 / 15 Why do we care? Theorem (Anderson, Maldacena) For M asymptotically de Sitter, S CG [M] = − 2 Λ2 Λ κ2 EH V (M) = − S [M] , ren 3ε2 3ε2 ren and asymptotic Einstein states can be singled out in the conformal theory. ⇒ for tree-level amplitudes, MEin = T Adamo (FFP14) 1 CG M |Ein Λ Twistor Gravity Amplitudes 14 July 2014 11 / 15 Einstein Gravity in Twistor Space Einstein degrees of freedom ⇒ break conformal invariance Infinity twistor: I αβ = ΛAB 0 0 0 A B 0 , Iαβ = AB 0 0 ΛA0 B 0 Obey I αβ Iβγ = Λδγα , induce geometric structures: τ = Iαβ Z α dZ β ∈ Ω1,0 (PT , O(2)), T Adamo (FFP14) Twistor Gravity Amplitudes {·, ·} = I αβ ∂α ∂β 14 July 2014 12 / 15 Einstein Gravity in Twistor Space Einstein degrees of freedom ⇒ break conformal invariance Infinity twistor: I αβ = ΛAB 0 0 0 A B 0 , Iαβ = AB 0 0 ΛA0 B 0 Obey I αβ Iβγ = Λδγα , induce geometric structures: τ = Iαβ Z α dZ β ∈ Ω1,0 (PT , O(2)), {·, ·} = I αβ ∂α ∂β (Like fixing the conformal factor for metric in Klein representation: ds 2 = αβγδ dX αβ dX γδ ) (Iαβ X αβ )2 T Adamo (FFP14) Twistor Gravity Amplitudes 14 July 2014 12 / 15 Write complex structure on PT as finite deformation of ‘flat’ structure. Compatability with I αβ , Iαβ ⇒ ∂¯ = ∂¯0 + I αβ ∂α h ∂β , b → Iαβ Z α dZ β h˜ = τ h˜ T Adamo (FFP14) h ∈ Ω0,1 (PT , O(2)) h˜ ∈ Ω0,1 (PT , O(−6)) Twistor Gravity Amplitudes 14 July 2014 13 / 15 Write complex structure on PT as finite deformation of ‘flat’ structure. Compatability with I αβ , Iαβ ⇒ ∂¯ = ∂¯0 + I αβ ∂α h ∂β , b → Iαβ Z α dZ β h˜ = τ h˜ h ∈ Ω0,1 (PT , O(2)) h˜ ∈ Ω0,1 (PT , O(−6)) Action becomes: ˜ h] = Λ S[b, J] → S[h, Z PT 1 D Z ∧ h˜ ∧ ∂¯0 h + {h, h} 2 Z 2 ε − dµ τ1 ∧ τ2 ∧ h˜1 ∧ h˜2 (σ1 σ2 )4 2 3 PT ×M PT T Adamo (FFP14) Twistor Gravity Amplitudes 14 July 2014 13 / 15 ˜ h] should compute tree-level Einstein gravity By earlier Theorem, Λ−1 S[h, amplitudes. Is this actually true? T Adamo (FFP14) Twistor Gravity Amplitudes 14 July 2014 14 / 15 ˜ h] should compute tree-level Einstein gravity By earlier Theorem, Λ−1 S[h, amplitudes. Is this actually true? Yes! Lots of technical detail, but upshots are [Adamo-Mason] : Second term is generating functional for MHV amplitudes Flat space limit = Hodges formulae New Λ 6= 0 formulae Apparent MHV formalism induced on twistor space T Adamo (FFP14) Twistor Gravity Amplitudes 14 July 2014 14 / 15 Further Directions Twistor action for Einstein gravity itself? More general (i.e., Nk MHV) amplitudes? What do the Λ 6= 0 formulae mean? Momentum space prescription for MHV formalism? T Adamo (FFP14) Twistor Gravity Amplitudes 14 July 2014 15 / 15 Further Directions Twistor action for Einstein gravity itself? More general (i.e., Nk MHV) amplitudes? What do the Λ 6= 0 formulae mean? Momentum space prescription for MHV formalism? Thanks! T Adamo (FFP14) Twistor Gravity Amplitudes 14 July 2014 15 / 15
© Copyright 2024 ExpyDoc