AVOCS, SEPTEMBER 2014, ENSCHEDE a , Reachability and Reward Checking for Stochastic Timed Automata TA s ,b , A PT DP M C M te s DT iscrebilitie A /T meocks cl d a b S ter- pro T L de n is nomin m E. Moritz Hahn, Arnd Hartmanns, Holger Hermanns Chinese Academy of Sciences, ChinaChecking / Saarlandfor University, Germany Arnd Hartmanns Reachability and Reward Stochastic Timed Automata Talk Outline 1 2 3 Stochastic Timed Automata ,b a , , Model Checking STA mcsta Experimental Results Arnd Hartmanns ๏ ๏ Reachability and Reward Checking for Stochastic Timed Automata Stochastic Timed Automata Nondeterministic = unquantified = uncertainty Probabilistic = quantified = uncertainty b a 1 2 1 , {๐ 2 ๐ โฅ 6, ๐ MDP โ 0} ๐ โฅ 8, ๐ LTS DTMC nondeter- discrete minism probabilities Arnd Hartmanns Reachability and Reward Checking for Stochastic Timed Automata Stochastic Timed Automata Nondeterministic Probabilistic Timed + clocks clock c; ๐โฅ6 guards invariants ๐ โค 8 b ๐ก๐๐ข๐ ๐ก๐๐ข๐ a ๐ โฅ 6, ๐ Pmax โ time/ TA clocks โ 0} ๐โค8 ๐ โฅ 8, ๐ โง ๐ก๐๐๐ < 8 = ? Arnd Hartmanns ๐ก๐๐ข๐ 1 2 1 , {๐ 2 PTA ๐ก๐๐ข๐ LTS MDP DTMC nondeter- discrete minism probabilities Reachability and Reward Checking for Stochastic Timed Automata Stochastic Timed Automata Nondeterministic Probabilistic Timed + sampling from arbitrary distributions ๐โค๐ฅ ๐ก๐๐ข๐ a ๐ โฅ 6, ๐ Pmax โ ๐ โฅ ๐ฅ, b 1 , {๐ 2 โ 0} โง ๐ก๐๐๐ < 8 = ? Arnd Hartmanns ๐ก๐๐ข๐ โ 0, ๐ฅ โ EX P (ฮป)} ๐ โฅ 8, ๐ arbitrary STA distributions PTA 1 , {๐ 2 ๐โค8 Stochastic ๐ก๐๐ข๐ time/ TA clocks LTS MDP DTMC nondeter- discrete minism probabilities Reachability and Reward Checking for Stochastic Timed Automata Stochastic Timed Automata + {๐ โ 0} wait for ๐ = 8 when it causes most problems? always wait until ๐ = 8? ๐โค๐ฅ ๐ก๐๐ข๐ a ๐ โฅ 6, ๐ Pmax โ ๐โค8 distributions ๐ โฅ ๐ฅ, b PTA ๐ก๐๐ข๐ 1 , {๐ 2 โ 0, ๐ฅ โ EX P (ฮป)} 1 , {๐ 2 โ 0} ๐โค8 ๐ โฅ 8, ๐ โง ๐ก๐๐๐ < 8 = ? Arnd Hartmanns + nondeterministic delay always go as soon as ๐ = 6 ? arbitrary STA ๐โฅ6 ๐ก๐๐ข๐ time/ TA clocks LTS MDP DTMC nondeter- discrete minism probabilities Reachability and Reward Checking for Stochastic Timed Automata Stochastic Timed Automata {๐ โ 0} + ๐โฅ6 + ๐โค8 {๐ โ 0, ๐ฅ โ UN I (6,8)} + ๐โฅ๐ฅ + ๐โค๐ฅ nondeterministic delay arbitrary STA stochastic delay distributions = specific resolution of the nondeterminism PTA ๐โค๐ฅ ๐ก๐๐ข๐ a ๐ โฅ 6, ๐ Pmax โ ๐ โฅ ๐ฅ, b 1 , {๐ 2 โ 0, ๐ฅ โ EX P (ฮป)} 1 , {๐ 2 โ 0} ๐โค8 ๐ โฅ 8, ๐ โง ๐ก๐๐๐ < 8 = ? Arnd Hartmanns ๐ก๐๐ข๐ ๐ก๐๐ข๐ time/ TA clocks LTS MDP DTMC nondeter- discrete minism probabilities Reachability and Reward Checking for Stochastic Timed Automata Stochastic Timed Automata Nondeterministic Probabilistic + rate and transition rewards โ: der ๐ค๐๐๐ก = 1 โโ: {๐๐๐ก๐๐๐๐ โ ๐๐๐ก๐๐๐๐ + 1} โ a ๐ก๐๐ข๐ ๐ โฅ 6, ๐ โโ Emax ๐ค๐๐๐ก | Arnd Hartmanns ๐ โฅ ๐ฅ, b ๐โค๐ฅ Timed arbitrary STA distributions PTA ๐ก๐๐ข๐ 1 , {๐ 2 โ 0, ๐ฅ โ EX P (ฮป)} 1 , {๐ 2 โ 0} ๐โค8 =? ๐ โฅ 8, ๐ โ Stochastic Priced ๐ก๐๐ข๐ time/ TA clocks LTS MDP DTMC nondeter- discrete minism probabilities Reachability and Reward Checking for Stochastic Timed Automata Stochastic Timed Automata continuous dynamics SHA Stochastic Hybrid Automata + complex continuous behaviour arbitrary STA distributions der(๐ฃ) = ๐ โง ๐ฃ โ ๐ฃ๐๐๐ฅ "Markovian" models = exponentially distributed delays MA PTA IMC time/ TA MDP clocks CTMC LTS DTMC exp. distr. nondeter- discrete minism probabilities delays Arnd Hartmanns Reachability and Reward Checking for Stochastic Timed Automata Stochastic Timed Automata nondeterministic probabilistic stochastic โ a ๐ก๐๐ข๐ ๐ โฅ 6, ๐ โโ × choices delays ๐ โฅ ๐ฅ, b ๐โค๐ฅ 1 , {๐ 2 โ 0} โ arbitrary STA distributions ๐ก๐๐ข๐ โ 0, ๐ฅ โ EX P (ฮป)} ๐ โฅ 8, ๐ rewards PTA 1 , {๐ 2 ๐โค8 + ๐ก๐๐ข๐ time/ TA clocks LTS MDP DTMC nondeter- discrete minism probabilities Arnd Hartmanns Reachability and Reward Checking for Stochastic Timed Automata Where are we? 1 2 3 Stochastic Timed Automata ,b a , , Model Checking STA mcsta Experimental Results Arnd Hartmanns ๏ ๏ Reachability and Reward Checking for Stochastic Timed Automata Model Checking STA Adapt existing method for SHA implemented in the prohver tool: upper bound on maximum reachability probabilities P(crash within 15 years) โค 10-5 ? + min probabilities + max/min rewards in theory Fränzle, Hahn, Hermanns, Wolovick, Zhang:nn Measurability and Safety Verification forn Stochastic Hybrid Systems (HSCC 2011) Arnd Hartmanns Reachability and Reward Checking for Stochastic Timed Automata Model Checking STA Overapproximation of continuous distributions ๐ฅ โ NO R M (๐, 1)} 0.2 0.2 0.2 0.2 0.2 discrete pr. choice of interval + nondeterministic value Arnd Hartmanns Reachability and Reward Checking for Stochastic Timed Automata Model Checking STA Overapproximation of continuous distributions ๐โค๐ฅ ๐ก๐๐ข๐ a ๐ โฅ 6, ๐ Arnd Hartmanns ๐ โฅ ๐ฅ, b ๐ก๐๐ข๐ 1 2, {๐ โ 0, ๐ฅ โ EX P (ฮป)} 1 2, {๐ โ 0} ๐โค8 ๐ โฅ 8, ๐ ๐ก๐๐ข๐ Reachability and Reward Checking for Stochastic Timed Automata Model Checking STA Overapproximation of continuous distributions ๐โค๐ฅ ๐ก๐๐ข๐ a 1 2, {๐ ๐ โฅ ๐ฅ, b ๐ก๐๐ข๐ โ 0, ๐ฅ โ EX P (ฮป)} 1 2, โฆ ๐ โฅ ๐ฅ, b ๐โค๐ฅ 1โ๐ โ๐ 2 , {๐ โ 0, ๐ฅ โ [0,1]} ๐ก๐๐ข๐ Arnd Hartmanns a 1 ,โฆ 2 ๐โค๐ฅ ๐ โ๐ 2 , {๐ ๐ก๐๐ข๐ ๐ โฅ ๐ฅ, b โ 0, ๐ฅ โ [1, โ)} Reachability and Reward Checking for Stochastic Timed Automata Model Checking STA Specialised method for STA upper bounds on max. reachability & rewards lower bounds on min. reachability & rewards prohver for SHA: Arnd Hartmanns Reachability and Reward Checking for Stochastic Timed Automata Where are we? 1 2 3 Stochastic Timed Automata ,b a , , Model Checking STA mcsta Experimental Results Arnd Hartmanns ๏ ๏ Reachability and Reward Checking for Stochastic Timed Automata Experimental Results Implementation: mcsta tool 1. Automatic overapproximation unit-width intervals, single parameter ฯฑ: "remaining probability" for unbounded distributions 2. On-the-fly digital clocks semantics 3. Explicit-state MDP model checking part of the Modest Toolset www.modestchecker.net Arnd Hartmanns Reachability and Reward Checking for Stochastic Timed Automata Experimental Results Example: M/G/1/6 queueing system arrivals: exponentially distributed service time: normal distribution P(queue full within time bound) = ? Arnd Hartmanns Reachability and Reward Checking for Stochastic Timed Automata Experimental Results Example: M/G/1/6 queueing system arrivals: exponentially distributed service time: normal distribution P(queue full within time bound) = ? Arnd Hartmanns Reachability and Reward Checking for Stochastic Timed Automata Experimental Results Example: M/G/1/6 queueing system arrivals: exponentially distributed service time: normal distribution Time-bounded reachability probability P(queue full within time bound) = ? ๏ ๏ Time-unbounded expected accumulated reward E(time until queue full) = ? [43.4, โ) (actually โ 61) ๏ ๏ E(#customers until queue full) = ? [3.52, โ) (actually โ 6.2) ๏ 136 K MDP Arnd Hartmanns states only Reachability and Reward Checking for Stochastic Timed Automata Experimental Results Example: tandem queueing system time dilation to reduce error Example: WLAN (CSMA/CA) uniform instead of nondeterministic transmission time Arnd Hartmanns Reachability and Reward Checking for Stochastic Timed Automata Experimental Results Example: file server with slow archival storage = exponentially distributed interarrival times for requests + uniformly distributed file size (= time to send reply) + 2 % chance for file to be in slow archival storage + time for archive retrieval nondeterministic in [30, 40] s + initial queue length follows discrete uniform distribution Arnd Hartmanns Reachability and Reward Checking for Stochastic Timed Automata Where are we? 1 2 3 Stochastic Timed Automata ,b a , , Model Checking STA mcsta Experimental Results Arnd Hartmanns ๏ ๏ Reachability and Reward Checking for Stochastic Timed Automata Summary Stochastic Timed Automata nondeterministic choices probabilistic × delays stochastic continuous dynamics SHA + rewards arbitrary STA distributions Model checking with mcsta PTA bounds for reachability probabilities & expected rewards State space nuclear explosion Over-/underapproximation ๏ www.modestchecker.net Arnd Hartmanns time/ TA clocks LTS MDP ? DTMC nondeter- discrete minism probabilities Reachability and Reward Checking for Stochastic Timed Automata
© Copyright 2025 ExpyDoc