Wilson Line Induced 3-Form Fluxes in Heterotic CY Compactifications Marco Zagermann (Leibniz Universität Hannover) Berlin, August 28, 2014 Samstag, 30. August 2014 Based on: Apruzzi, Gautason, Parameswaran, MZ (2014) (to appear) Samstag, 30. August 2014 Outline 1. Introduction 2. Complete intersection Calabi-Yaus (CICYs) 3. Computing HWL on CICYs 4. Explicit examples 5. Conclusions Samstag, 30. August 2014 1. Introduction Samstag, 30. August 2014 A particularly fruitful and popular region of the “string theory landscape”: Heterotic Calabi-Yau compactifications • Grand Unification naturally built in • Technically very “clean”: - No D-branes and O-planes - No RR sector - Lowest α‘ corrections simple and well known - Powerful tools from algebraic geometry Samstag, 30. August 2014 Almost perfect realizations of (MS)SM sector Gauge group breaking: E.g. Braun,He, Ovrut, Pantev (2005) Bouchard, Donagi (2005) Anderson, Gray, He, Lukas (2009) Anderson, Gray, Lukas, Palti (2012) E8 × E8 Vector bundle (nonstandard Emb.) i¯j Fij = F¯i¯j = 0, g Fi¯j = 0 GHidden × GGUT Wilson lines � � � F = 0, P exp i γ A �= 0 G�Hidden × GSM Samstag, 30. August 2014 More difficult: Moduli stabilization E.g. de Alwis, Cicoli, Westphal (2013) • No RR-fluxes, at most H-flux Wflux = � Ω3 ∧ H Can fix at most complex structure moduli • Dilaton stabilization via gaugino condensation Wg.c. ∼ e−aS • For integer quantized H (i.e. gen. �Wflux � = O(1) Samstag, 30. August 2014 1 4π 2 α� � Σ3 H = n ): DS W = 0 stabilizes S at Rohm, Seiberg, strong coupling! Dine,Witten (1985) Some suggested alternatives: ( 1 ) Use non-CY backgrounds with dJ2 �= 0 Wtree = � Ω3 ∧ (H + i dJ2 ) 2 Cardoso, Curio, Dall‘Agata, Lüst (2003) Problem: Model building not well understood ( 2 ) World sheet instantons Curio, Krause, Lüst (2005) Samstag, 30. August 2014 ( 3 ) Use gauge field background: α� (ω 3YM 4 H = dB − − ω3L ) � � ω3YM ≡ tr A ∧ F − 13 A ∧ A ∧ A (analogous for ω3L ) Two candidates: E8 × E8 Hol. vector bundle (non-standard Emb.) (a) GHidden × GGUT Wilson lines � GHidden Samstag, 30. August 2014 × GSM (b) ( a ) Use holomorphic vector bundle with NSE Anderson, Gray, Lukas, Ovrut (2010, 2011,2013) �Wflux � = 0 Generically not all c.s. moduli may be stabilized (see also de Alwis, Cicoli, Westphal (2013)) Samstag, 30. August 2014 ( b ) Use Wilson lines: H = H WL = α� WL − 4 ω3YM For some Σ3 one may have non-vanishing CS-invariants: 1 4π 2 α� � Σ3 H WL = 1 − 16π2 � WL ω Σ3 3YM =O � � 1 p (p = order of fund. group corresponding to the WL) H WL is fractionally quantized (and a top. invariant) �Wflux � = O(0.1 . . . 0.01) possible (for mod. large p) May ameliorate strong coupling problem of Gukov, Kachru, Liu, non-pert. dilaton stabilization Mc Allister (2003) Samstag, 30. August 2014 Possible issues and side effects of fractional H-flux: • Generically high scale SUSY breaking: M3/2 ∼ MGUT de Alwis, Cicoli, Westphal (2013) • Consistency with assumed CY-background unclear Dine, Rohm, Seiberg, Witten (1985) Lopes Cardoso, Curio, Dall‘Agata, Lüst (2003) Frey, Lippert (2005) Chatzistavrakidis, Lechtenfeld, Popov (2012) • Possible global 2D worldsheet anomalies Witten (1985) Gukov, Kachru, Liu, McAllister (2003) Samstag, 30. August 2014 Presence of HWL can have important consequences! Important point: For a given CY and a given set of WL‘s, H be chosen, but is completely determined! WL cannot Need to develop tools for computing HWL for a given CY and WL background → Topic of this talk Samstag, 30. August 2014 We focus on a simple class of CY spaces that are also particularly interesting for SM phenomenology: Complete intersection Calabi-Yau spaces (CICY‘s) Samstag, 30. August 2014 2. Complete intersection CY‘s (CICY‘s) Samstag, 30. August 2014 CICYs: Common zero loci of a set of homogeneous polynomials in products of projective spaces CP CY P1 (z) = 0 Samstag, 30. August 2014 P2 (z) = 0 n CICYs: Common zero loci of a set of homogeneous polynomials in products of projective spaces Simplest example: Fermat quintic � X1,101 = z ∈ CP4 | (h1,1 , h1,2 ) = (1, 101) Samstag, 30. August 2014 � 5 z i=1 i = 0 �5 General form described by a configuration matrix n1 CP CP n2 .. . m11 m21 .. . m12 m22 ··· ··· .. . CP nk mk1 mk2 ··· m1l m2l mkl i.e., l polynomials Pi (i = 1, . . . l) in the ambient space CPn1 × . . . × CPnk with mji powers of the coordinates of CPnj Ricci-flatness (i.e. CY-ness) Samstag, 30. August 2014 �l i=1 mji = nj + 1 CP n1 CP n2 .. . m11 m21 .. . m12 m22 CP nk mk1 mk2 ··· ··· .. . ··· m1l m2l mkl �l i=1 mji = nj + 1 Examples: ( 1 ) Quintic: X1,101 �l � i=1 Samstag, 30. August 2014 � � �5 4 = z ∈ CP | P1 (z) = i=1 z5i = 0 � CP4 |5 m1i = 5 = 4 + 1 = n1 + 1 CP n1 CP n2 .. . m11 m21 .. . m12 m22 CP nk mk1 mk2 ··· ··· .. . m1l m2l mkl ··· �l i=1 mji = nj + 1 Examples: ( 2 ) Split bicubic: X 19,19 � � = (t, ζ, η) ∈ CP × CP × CP | P1 (t, ζ) = P2 (t, η) = 0 P1 (t, ζ) = 1 t1 (ζ13 + ζ23 + 2 ζ33 ) 2 + t2 ζ 1 ζ 2 ζ 3 P2 (t, η) = t2 (η13 + η23 + η33 ) + t1 η1 η2 η3 Samstag, 30. August 2014 CP 1 CP 2 CP 2 1 3 0 1 0 3 Wilson lines Samstag, 30. August 2014 Wilson lines = a group homomorphism: WL : π1 (CY) → G, Samstag, 30. August 2014 � � � γ→ � P exp i γ A Wilson lines CICY‘s are simply connected! π1 (CY) = {1} → No Wilson lines possible Samstag, 30. August 2014 Wilson lines CICY‘s are simply connected! π1 (CY) = {1} → No Wilson lines possible Mod out by freely acting discrete isometry group Γ CY/Γ → π1 (CY/Γ) = Γ Wilson lines possible on CY/Γ Samstag, 30. August 2014 Wilson lines CICY‘s are simply connected! π1 (CY) = {1} → No Wilson lines possible Mod out by freely acting discrete isometry group Γ CY/Γ → π1 (CY/Γ) = Γ Wilson lines possible on CY/Γ Nice byproduct: CY/Γ has much smaller Hodge numbers Samstag, 30. August 2014 Typical form of discrete symmetries Γ Γ=R×S∼ = Zn+1 × Zn+1 Action of R and S on CPn generated by R gR : za �→ ω a za , S gS : za �→ za+1 Samstag, 30. August 2014 ω=e 2πi n+1 (Rotations) (Cyclic permutations) Examples: ( 1 ) Quintic: Γ = R × S = Z5 × Z5 X1,101 /Γ = X1,5 with π1 (X1,5 ) = Γ = Z5 × Z5 ( 2 ) Split bicubic: X Samstag, 30. August 2014 19,19 /Γ = X Γ = R × S = Z3 × Z3 3,3 3,3 π (X ) = Γ = Z3 × Z3 with 1 3. Computing HWL on CICYs Samstag, 30. August 2014 For HWL �= 0 there has to be at least one 3-cycle Σ3 with � � α WL H = − Σ3 4 � WL ω = � 0 3YM Σ3 Our approach: Compute CS-invariants on a well-understood class of explicitly known 3D submanifolds of the CICYs that exhaust the 3rd homology group → Special Lagrangian submanifolds (sLags) based on antiholomorphic isometric involutions Samstag, 30. August 2014 Special Lagrangian submanifolds (sLags) = real 3D submanifolds, Σ, of a CY manifold with J2 |Σ = 0, Samstag, 30. August 2014 iθ 2 Im(e Ω3 )|Σ = 0 Special Lagrangian submanifolds (sLags) = real 3D submanifolds, Σ, of a CY manifold with J2 |Σ = 0, iθ 2 Im(e Ω3 )|Σ = 0 • are volume minimizing in their homology class • Fixed point sets of isometric antiholomorphic involutions, σ, on CY are sLags: σ 2 = id, σ(J) = −J, σ(Ω) = eiθ Ω3 Σσ := Fix(σ) = a sLag Samstag, 30. August 2014 For a CICY: ∃ two simple classes of σ‘s with nontrivial fixed point sets: “A-type”: • σA : ���� z �→ z ∈CPn • σAU = U−1 ◦ σA ◦ U U : CPn → CPn & symmetry of polynomials Pi “C-type”: n n CY ⊂ . . . × CP × CP × . . . For � �� � � �� � �z �w • σC : (z, w) �→ (w, z) • Samstag, 30. August 2014 (U1 ,U2 ) σC = −1 −1 (U1 , U2 ) ◦ σC ◦ (U1 , U2 ) Examples: ( 1 ) Quintic: X1,101 = {z ∈ CP4 | Only A-type sLags �5 5 z i=1 i = 0} ( 2 ) Split bicubic: X 19,19 � � = (t, ζ, η) ∈ CP × CP × CP | P1 (t, ζ) = P2 (t, η) = 0 1 2 A-type and C-type sLags Samstag, 30. August 2014 2 Next step: • Classify on which A/C-type sLags the WLs on the quotient space CY/Γ may project nontrivially • Only for those sLags, the CS invariants could possibly be non-zero and need to be computed • A crucial criterion: The action of Γ on a given sLag Σ Samstag, 30. August 2014 Case 1: R , S : Σ �→ Σ� CY Σ CY/R, CY/S R, S Modding out R,S Σ‘ Σ = Σ‘ WL due to R,S projects trivially to Σ on CY/Γ No CS-invariant on Σ Can ignore such sLags Samstag, 30. August 2014 Case 2: R or S : Σ �→ Σ CY R or S Σ CY/R, CY/S Modding out R or S Σ/R, Σ/S WL due to R,S may project nontrivially to Σ/R, Σ/S Nontrivial CS-invariant on Σ/R, Σ/S not ruled out CS-invariant on Σ/R , Σ/S needs to be computed Samstag, 30. August 2014 This eliminates already many sLags as potential carriers of fractional H-flux! Compute Samstag, 30. August 2014 � Σ/Γ H WL only for the remaining sLags This eliminates already many sLags as potential carriers of fractional H-flux! Compute � Σ/Γ H WL only for the remaining sLags But how? Samstag, 30. August 2014 If Σ/Γ is a Seifert fibration or decomposes into Seifert fibrations upon “torus decomposition”, one can use formulas from Nishi (1998), Kirk, Klassen (1993) to compute the CS invariants Samstag, 30. August 2014 Seifert fibrations = Smooth 3D manifolds that can be viewed as a circle fibration over a 2D orbifold base B circle fibers possible orbifold singularities 2D base B = Important building blocks in the classification of E.g. Hatcher (2007), Brin (2007) 3D manifolds! Examples: Samstag, 30. August 2014 T3 , S2 × S1 , S3 , S3 /Zn , . . . Torus decomposition into Seifert fibrations 3D manifold that is not a Seifert fibration, but can be decomposed into Seifert fibrations by cutting along 2-tori Seifert fibrations with 2-torus boundaries Samstag, 30. August 2014 In all our examples, the relevant sLags turn out to be Seifert fibrations or can be torus decomposed into Seifert fibrations Samstag, 30. August 2014 4. Explicit examples Samstag, 30. August 2014 ( 1 ) Quintic: X1,5 = X1,101 / Z5 × Z5 ���� ���� R S π1 (X1,5 ) = R × S = Z5 × Z5 One finds: • Only one A-type sLag needs to be checked • It has topology S3 /Z10 • Only WLs related to S can project nontrivially on it • For WL that preserves we compute � Gvis = SU(3)c × SU(2)L × SU(2)R × U(1)2 3 2 WL H = k Σ 5 Samstag, 30. August 2014 �Wflux � = 3 2 c5k ( 2 ) Split bicubic: X3,3 = X19,19 / Z3 × Z3 ���� ���� R π1 (X 3,3 S ) = R × S = Z3 × Z3 We find: • A-type sLags do not have right topology to support a CS invariant • C-type sLags do not have the right topology to even support a Z3 WL HWL = 0 Samstag, 30. August 2014 �Wflux � = 0 5. Conclusions Samstag, 30. August 2014 • Wilson lines are important ingredients for realistic heterotic CY model building • Wilson lines�can give rise to fractionally quantized 3-form flux Σ HWL (fractional CS-fluxes) • Fractional CS-fluxes may have important phenomenological consequences (moduli stabilization, high susy breaking scale) and may raise self-consistency issues • Started to develop tools for computing HWL for a given WL and CY setup Samstag, 30. August 2014 • Some steps could be done in a general way, some still required case by case study. There is probably room for improvement! • Computed HWL for two concrete examples and found strong constraints on the possible HWL Samstag, 30. August 2014 “You cannot simply put a D-brane anywhere you want!” R. Blumenhagen Samstag, 30. August 2014 “You cannot simply put a D-brane anywhere you want!” R. Blumenhagen “You cannot simpy assume fractional CS-terms anywhere you want!” Samstag, 30. August 2014
© Copyright 2024 ExpyDoc