REDOX Equilibrium (III) C.P. Huang University of Delaware CIEG 632 1 Content 1. 2. 3. 4. Electrode Kinetics Oxidation reactions Reduction reaction AOP 2 III.1 Electrode Kinetics potential ‐- + A – e = A+ A + e = A- 3 iRu Ewk Power supply iRs E Auxiliary electrode Eaux Ref V Rs Ewk I Working electrode Reference electrode Eaux Ru 4 ElectrodeE = EKinetics Standard free energy o E > Eo (1)nfE Go,c nfE c G nfE Ga Go,a O + nE R cathodic Reaction corrdinate R O + ne anodic 5 E = Eo Eapp = Eo +E O+ne (1‐)nfE nfE tan = (1‐)nfE/x tan = nfE/x tan /tan = (1‐)/ x R tan =(1‐) tan tan = tan – tan = tan /(tan + tan ) Symmetrical =0, =0.5 Otherwise 0 <= <= 0.5 ½ <= <=1 6 = 0.5 O+ne > 0.5 R < 0.5 E 7 Electrode Kinetics kf O + ne R kb K = kf/kb kf: reduction (cathodic) reaction kb: oxidation (anodic) reaction E = Eo – (RT/nF) ln (CR*/CO*) CR*: bulk phase concentration of O CO*: bulk phase concentration of R CO(0,t)= concentration of oxidant at x = 0 and time t CR(0,t)= concentration of reductant at x = 0 and time t I = Ic ‐ Ia 8 Forcing a reduction reaction by applying E (Eapp) that is greater or smaller than Eo E app = Eo ‐ E Assume Arrhenius equation is applying At CO* CR* E = Eo kf Co* = kbCoR kf = kb o f k e f = F/RT nFE o RT= o b k e (1 ) nFE o RT kfo = kbo = ko 9 f = F/RT At T=25oC, f =16.9 ko = standard state constant = transfer coefficient 10 At E = Eo Io = Ic = Ia Io = Exchange current 11 i ic ia 0 1 d ln RT d ln k f RT kb 1 F dE F dE vf vb k f CO ( 0,t ) k bCR ( 0,t ) = Transfer coefficient ln k f ln CO ( 0,t ) ln k b ln CR (0, t ) CO ( 0,t ) ln k f ln k b ln C R ( 0,t ) ln k f ln k b ln K F E Eo RT α RT d ln k f F dE β 1 α RT d lnk b F dE d ln k f d ln k b E dE dE RT 12 log k kf (kred) kb (kox) E 13 log k kf = =0.5 kb E log k kf log k > 0.5; <0.5 kf < 0.5; >0.5 kb kb E E 14 v net I i k f CO ( 0,t ) k bCR ( 0,t ) nFA nF F ( E E ) (1 )F ( E E o RT i nF k f CO ( 0,t )e RT k boCR ( 0,t )e o k k k o o f o b o ) at E = Eo F ( E E ) (1 )F ( E E RT i nFk o CO ( 0,t )e RT CR ( 0,t )e o o ) Butler-Volmer Equation 15 i CO ( 0,t )e o nFk i e o nFk nF ( E E o ) i e o nFk RT nF ( E E o ) RT (1 )nF (E E o ) CR ( 0,t )e RT (1 )nF (E E o ) CO ( 0,t ) CR ( 0,t )e RT nF ( E E o ) RT CO ( 0,t ) CR ( 0,t )e CO ( 0,t ) CR ( 0,t )e nF ( E E o ) RT i e o nFk nF ( E E o ) RT nF ( E E o ) RT For large ko CO ( 0,t ) CR ( 0,t )e nF ( E E o ) RT Nernst equation 16 For large E – Eo = (1 ) nF nF ( E E o ) ( E E o ) CR ( 0,t )e RT i nFk o CO ( 0,t )e RT nF ( E E o ) i nFk o CO ( 0,t )e RT (1 ) nF ( E E o ) i nFk o CR ( 0,t )e RT a b log I ηc ac bc logIc ηa aa ba logIa Tafel equation 17 Io io nFk oCO* e A C C e * O C * α O * R αnF ( E E o ) RT C C nF ( E E o ) RT * 1 O C C * O C e * O nF RT ( E E o ) io nFk o α nF ( E E o ) * RT CR e α nF o ( E E ) α CR* e RT C * α O * R α * α R e αnF ( E E o ) RT i o nFk C o ko = standard rate constant Dependent on number of electron transferred; αnF fast when the number of electro transferred is * ( E E o ) α C * O RT CR * e small; CO Slow when the number of electron transferred is large. + Examples: anodic water oxidation 2H2O = O2 + 4H + 4e cathodic hydrogen evolution 2H+ + 2e = H2 C * α O 18 At equilibrium; I = 0 CO ( 0,t ) CO* CR ( 0,t ) CR* nFk oCO* e * O * R C e C αnF ( E E o ) RT nFk oCR* e (1 α )nF ( E E o ) RT nF ( E E o ) RT Nernst Equation 19 Polarization curve nF ( E E ) (1 ) nF ( E E RT RT i nFk o CO ( 0,t )e CR ( 0,t )e o ) C * 1 O i o nFk C o o * R ( E E o ) CO* RT e * CR nF nF (1 )nF i CO ( 0,t ) RT CO* CR ( 0,t ) RT CR* * * e * * e i o CO CR CO CR (1 ) nF CR ( 0,t ) (1RT)nF i CO ( 0,t ) RT * e * e i o CO CR 20 i e io nF RT e (1 )nF RT Large i e io i e io nF RT i 1 nF ln RT io ex = 1+x x << F i i o RT RT Rct i ioF (1 ) nF RT RT RT lni ln( i o ) 1 nF (1 )nF a b log(i ) 21 22 23 C x 0 i 1 * C il i i 1 i o i l ,c nF (1RT)nF RT i 1 e e i l ,a 1 RT 1 1 i nF i o i l ,c i l ,a i Rct Rmt ,c Rmt .a 24 Measurements of ORP Electrode kinetics 25 Stumm & Morgan ORP measurements Mixed potential 26 Stumm & Morgan Kinetics of corrosion V=kcorr[reactants] kcorr=Aexp(-G*/RT) G<0 for spontaneous reaction At T=298.K; P=1atm Mg+H2O+0.5O2 Mg(OH)2; Go =-596 kJ/mol Cu+H2O+0.5O2 Cu(OH)2; Go =-119 kJ/mol Au+1.5H2O+0.75O2Au(OH)3; Go = +66 kJ/mol Anode: M Mz++ze Cathode: pH <7 H+ +e H; 2HH2 pH >7 2H2O+O2+4e4OH27 ia<-ic Q zFM Faraday’s law dQ dm I zF dt dt J dm dt I zFJ 28 Polarization Cu<===> Cu2++2e i a i o Ao e G * RT Polarization: deviation from the equilibrium condition Combination of anodic polarization and catholic polarization 29 = total polarization Anodic polarization, Cathodic polarization: ( i a Ao e Ao e G * zF RT G * RT zF RT e ia ioe zF RT ia ioe Let f=zF/RT f 30 ln i a ln i o fa ia ln fa io ic 2.303 c log (1 )f io 2.303 i a a log f io a 2.303 16.91 f a: Anodic Tafel costant 2.303 16.91 ia a a a log f io a a log i o a log i a A a log i a = 0.03-0.3 c c log i o c log i c B c log i c c 2.303 16.91 (1 )f (1 ) 31 E Eo (H+,H2) Evan Diagram Io,c 2H+ 2e = H2 Er,a Fe=Fe2+ + 2e Ecorr Eo (Fe,Fe2+) Io,a Er,c I Icorr E corr Er ,a icorr io,a e βa E corr Er ,c icorr io,c e βc 32 MMz++ze c= -100 mv/decade Mz++ze M a=100 mv/decade io=0.01 A/m2 io 33 Diffusion process Electrode surface J D 2 1 Co 1: zero current 2: corrosion proceeds dC dx i zFJ dC dx Co C zFD x i zFD x At C = 0, I = imax i max Co zFD x Imax=il=limiting current 34 35 E1 E o 0.05915 logCo z E2 E o 0.05915 log C z E 2 E1 0.05915 C log z Co C i 1 Co i max 0.05915 i log1 z i max i imax i obs i ai c i o ef e (1 )f 36 Mixed potential theory: Evans Diagram 37 A metal M of valance, z, atomic weight, w, and density, D, is being corroded at io= A/cm2. Derive mm of metal loss per year over 1 m2. The number of Coulombs passes in one year, icorrx60x60x24x365 = 3.154x107xicorr 1 mol of metal of valance, z, gives zx96494 Coulombs # of mol per m2 lost per year = (3.154x107x icorr)/(zx96494) = (326.8xicorr)/z = (326.8xwxicorr)/(1000z) (kg/m2-y) For copper: io = 0.01 A/m2; z=2. w=63.5; D=8960 kg/m3 Loss =(326.8x63.5x0.01)/(2x1000)=0.104 (kg/m2-y) Depth loss (mm) = 326.8xwxicorrx1000)/(1000xzxD)=326.8xwxicorr/(zxD) Depth loss= (326.8x63.5x0.01)/(2x8960) = 0.012 mm/year 38 A metal M of valance, z, atomic weight, w, and density, D, is being corroded at io= A/cm2. Derive mm of metal loss per year over 1 m2. The number of Coulombs passes in one year, icorrx60x60x24x365 = 3.154x107xicorr 1 mol of metal of valance, z, gives zx96494 Coulombs # of mol per m2 lost per year = (3.154x107x icorr)/(zx96494) = (326.8xicorr)/z = (326.8xwxicorr)/(1000z) (kg/m2-y) For copper: io = 0.01 A/m2; z=2. w=63.5; D=8960 kg/m3 Loss =(326.8x63.5x0.01)/(2x1000)=0.104 (kg/m2-y) Depth loss (mm) = 326.8xwxicorrx1000)/(1000xzxD)=326.8xwxicorr/(zxD) Depth loss= (326.8x63.5x0.01)/(2x8960) = 0.012 mm/year 39 Given: a= 0.2 V/decade c= -0.2 V/decade io=20 mA/m2 a = 0.2V =log(i/io) a/a = 1 ia=10io=200mA/m2 c/c = -1 Find: Iobs ic=0.10 io=2mA/m2 Iobs=ia-ic = 200-2 =198 mA/m2 40 Passivity: Certain metals able to withstand corrosion in media where they are thermodynamically unstable Chemical passivity: Iron will dissolve in dilute HNO3 but in concentrate HNO3 a protective film is formed and dissolution stops Many other metals and alloys –Ni, Cr, Ta, Al in contact with oxidizing media from passive film Certain ions, Cl-, ends to cause breakdown of passivity 41 Electrochemical passivity As metal is polarized anodically, is rate of dissolution first increases, until a critical potential is reached, beyond this point, the rate of dissolution drops sharply E 3Fe + 3H2O = Fe3O4 + O2 + 12H+ + 12e Passive film is nonstoichiometric oxide which has high electron Conductivity; Electric field in The film is very slow. Tras-passive : oxygen evolution; conversion of possible film to a higher valance state which is soluble Fe + H2O = FeO + 2H+ + 2e Fe=Fe2+ + 2e Log I (uA/cm2) 42 III.2 Oxidation Reaction 43 44 Stumm & Morgan d Mn(II ) k o Mn(II ) k Mn(II )MnO2 dt slow Mn(II ) 12 O2 MnO2 (s ) fast Mn(II ) MnO2 (s ) Mn(II ).MnO2 (s ) slow Mn(II ).MnO2 (s ) 12 O2 2MnO2 (s ) 45 Stumm & Morgan 46 Stumm & Morgan Ozonation 47 Stumm & Morgan 48 Electro-Fenton Oxidation H+ + O 2 Fe+2 R e- H2 O2 Fe+3 + OH . R1 . + H 2 O O2 + 2H + + 2e- H2 O2 Eo = 0.695 V vs. NHE (2.24) O2 + 4H + + 4e- 2H2 O Eo = 1.229 V vs. NHE (2.25) 49 III.3 Reduction Reaction 50 51 Indirect perchlorate reduction e- Ti2+ Ti e- e- H2O; O2 Ti4+ Ti3+ TiO2(s) H2O; O2 e- Ti2+ Ti TiO2(s) eNO3- TiO2(s) Ti3+ NO2- eNO3- TiO2(s) Ti4+ NO2NO2 NO2 NO NO (Scheme IV) e- Ti2+ Ti TiO2(s) e- TiO2(s) e- ClO3- ClO3- ClO4 ClO2- ClO2- ClO2 ClO2 (Schemes II) ClO- ClO- eTi Ti2+ ClO4- e- NH4+ NH4+ Ti4+ Ti3+ ClO4- N2 N2 eTi3+ TiO2-xClx(s) ClO4 Cl- Cl- Ti4+ eTi - Ti2O3(s) Ti2+ NO3- e- eTi3+ TiO2-xNx(s) NO3 Ti4+ Ti2O3(s) 52 250 600 200 - ClO2 Cl- ClO4 ClT ClO3- 150 100 400 200 50 0 0 2 4 6 8 0 Concentration of ClO3 ,ClT(as Cl,ppb) Concentration Cl-, ClO2 ,ClO4 (as Cl, ppb) 800 300 Time (hr) Figure 2 Reduction of perchlorate at ultra-low concentration. Experimental conditions: Perchlorate concentration = 150 ppb; Supporting electrolyte = 4.5 ppm KClO3; temperature = 25 oC; pH = 7; Anode = Ti; Cathode = Fe; Voltage applied = 10 V; Current = 10 mA (or current density = 1.9 mA/cm2) 53 Zero Valent Iron (ZVI) Fe ( 0 ) RX H RH X Fe 2 Fe ( 0 ) O 2 2H 2O 2Fe 2 4OH Fe ( 0 ) 2H 2O Fe 2 H 2 2OH 2Fe 2 RX H 2Fe 3 RH X H 2 RX RH H X Anaerobic corrosion: Fe0 + 2H2O → Fe2+ + H2 + 2OHAerobic corrosion: 2Fe0 + O2 + 2H2O → 2Fe2+ + 4OH54 III.4 Advanced Oxidation 55 Oxidation-reduction potentials Reaction (Lide et al., 1992) Eo(volt @25 oC) F2 + 2e- = 2F- 2.87 OH. + H+ + e- = H2O 2.63 O3 + 2H+ + 2e- = O2 + H2O 2.07 H2O2 + 2H+ + 2e- = 2H2O 1.76 MnO4- + 4H+ + 3e- = MnO2 + 2H2O 1.68 MnO4- + 8H+ + 5e- = Mn2+ + 4H2O 1.49 HOCl + H+ + 2e- = Cl- + H2O 1.49 Cl2 + 2e- = 2 Cl- 1.36 O3 + H2O + 2e- = O2 + 2 OH- 1.24 ClO2 (gas) + e- = ClO2- 1.15 ClO2 (aq.) + e- = ClO2- 0.95 H2O2 + 2H3O + 2e- = 4H2O 0.87 O2 + 2H2O + 4e- = 4OH- 0.40 56 Hydroxyl Radical as an Oxidant Rate Constants for Hydroxyl Radical Attack on Aromatic Compounds (Buxton et al., 1988). Rate Constants Aromatic Compounds Phenol (pH 6 to 9) (107 M-1S-1) Fluorobenzene 1400 1000 Biphenyl 950 Phenylmethanol 840 Benzene 780 Styrene (Ethenylbenzene) 600 Chlorobenzene 550 Iodobenzene 500 Benzoic Acid (pH=3) 430 Nitrobenzene 390 Toluene 300 57 All AOTs 700 600 500 400 300 200 20 08 20 06 20 04 20 02 20 00 19 98 19 96 19 94 19 92 100 0 19 90 Journal Publication 800 O3 O3 +H2O2 O3+UV H2O2+UV O3+H2O2+UV Fenton Fenton+UV O3+Fenton Electro-Fenton US O3+US TiO2 Year 58 19 90 19 91 19 92 19 93 19 94 19 95 19 96 19 97 19 98 19 99 20 00 20 01 20 02 20 03 20 04 20 05 20 06 20 07 20 08 JournalPublication UV-O3-H2O2 Based AOPs 200 180 160 140 120 100 80 60 40 20 0 H2O2+UV O3 +H2O2 O3+H2O2+UV Year 59 All O3-based AOPs 800 O3 O3 +H2O2 O3+UV O3+H2O2+UV O3 +US O3 Fenton Journal Publication 700 600 500 400 300 200 100 0 0 0 2 2 1 1 0 2 3 3 5 5 7 3 9 9 17 12 4 Year 120 O3 +H2O2 O3+UV O3+H2O2+UV O3 +US O3 Fenton Journal Publication 100 80 60 40 20 0 0 0 2 2 1 1 0 2 3 3 Year 5 5 7 3 9 9 17 12 4 60 All H2O2-based AOTs 250 Journal Pulication 200 150 100 50 O3 +H2O2 H2O2+UV O3+H2O2+UV Fenton Fenton+UV Electro-Fenton US+ H2O2 0 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 Year 61 19 90 19 91 19 92 19 93 19 94 19 95 19 96 19 97 19 98 19 99 20 00 20 01 20 02 20 03 20 04 20 05 20 06 20 07 20 08 Journal Publication 19 90 19 91 19 92 19 93 19 94 19 95 19 96 19 97 19 98 19 99 20 00 20 01 20 02 20 03 20 04 20 05 20 06 20 07 20 08 Journal Publication All Fenton Systems 250 200 150 100 50 40 30 Fenton Fenton+UV O3+Fenton Electro-Fenton 50 0 70 Year 60 Fenton+UV O3+Fenton Electro-Fenton 20 10 0 Year 62 Year 20 08 20 06 20 04 600 20 02 1200 20 00 800 19 98 800 19 96 19 92 19 93 19 94 19 95 19 96 19 97 19 98 19 99 20 00 20 01 20 02 20 03 20 04 20 05 20 06 20 07 20 08 19 91 19 90 Number of Publication 1000 19 94 19 92 19 90 Journal Publication O3 versus H2O2 1200 All O3 All H2O2 All Fenton 600 400 200 0 Year 1000 All O3 All H2O2 + Fenton 400 200 0 63 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 300 1993 400 1992 1991 1990 Jounal Publication All TiO2 Systems 600 500 TiO2 TiO2 + H2O2 ALL TiO2 200 100 0 Yera 64 19 90 19 91 19 92 19 93 19 94 19 95 19 96 19 97 19 98 19 99 20 00 20 01 20 02 20 03 20 04 20 05 20 06 20 07 20 08 Journal Publication Sonochemical processes 45 40 35 30 25 20 15 10 5 0 US O3+US US+ H2O2 Year 65 Journal Publication Irradiation 450 400 350 300 250 200 150 100 50 0 All UV All US E Beam Corna Discharge 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Year 15 16 17 18 19 20 08 13 14 20 07 12 20 06 11 20 05 10 Year 20 04 9 20 03 8 20 02 7 20 01 6 20 00 5 19 99 4 19 98 3 19 97 2 19 96 1 19 95 0 19 94 10 19 93 20 19 92 30 All US All UV 19 91 All US E Beam Corna Discharge 40 450 400 350 300 250 200 150 100 50 0 19 90 50 Journal Publication Journal Publication 60 Year 66 Advanced Oxidation Processes “Advanced oxidation processes are defined as those which involve the generation of hydroxyl radicals in sufficient quantity to affect water purification.” William H. Glaze; Joon-Wun Kang; Douglas H. Chapin. Ozone: Science & Engineering, 9(4): 335-352 (1987). 67 How to Generate .OH? • Homogeneous systems – Without irradiation • • • • H2O2‐O3 H2O2‐Fe(II) O3‐OH‐ SCW – With irradiation • H2O2‐UV • O3‐UV • H2O2‐Fe(II)‐UV • US • US‐UV • US‐H2O2 • e‐Beam; corona discharge • Heterogeneous systems – Without irradiation • Electro‐Fenton • WAO‐catalyst – With irradiation • • • • • TiO2‐UV TiO2‐H2O2‐UV UV‐electro‐Fenton US‐Fenton BiVO4‐visible light • Photo‐electrochemical Modified from Huang et al. (1991) 68 x = x0 sin 2ft P(t) = Pa sin2ft I= Pa2/2c I = I0e-21 69 Pm( 1) T max T P 0 Pm( 1) P max P P T0 P {1 Q[( )1/ 3 γ 1] 1}3(γ1) Tmax Pmax Q is the ratio of the resonance amplitude to the static amplitude of vibration of the bubble / ( 1) T0 = ambient temperature = ratio of specific heats of the gas P = pressure in bubble at it’s maximum size Pm = pressure in the liquid at the moment of transient collapse Pmax = maximum pressure in the liquid at the moment of transient collapse 70 Sonophysics 71 Sonochemistry 200 – 6000 kHz 72 Polycyclic Aromatic Compounds Compound Name Empirical Formula Molecular Structure Molecular Wt. (g/mole) Melting Point ( °C ) Boiling Point (°C) Solubility in Water (mg/l) log Kow Specific gravity dibenzothiophene Phenanthrene benzothiophene naphthalene C12H8S C14H10 C8H6S C10H8 S S 184.26 178.22 134.20 128.16 98~100 100 29~32 80.2 332~333 340 221~222 217.9 1.4 1.2* 28~29 30 N/A 4.46 N/A 3.01 N/A 1.025 1.15 1.152 Color Gray flakes or powder colorless leaflets colorless white flakes or powder Biological effects Toxic Toxic Toxic Toxic 73 pH Controller Ultrasonic Generator Ultrasonic probe 1 2 Temperature Controller (Water bath) 1. Sample Port or Thermometer 2. pH probe & Acid/Base lines 74 5.2 kCal/mol -4.5 kCal/mol energy intensity = 226 watts/cm2, total volume = 40 mL, pH = 5, temperature = 25o C, ionic strength = 0.05 M NaClO4 75 Kim et al. Water Research, (2003) Scan 697 (10.006 min): 222BT120.D Abundance Abundance 150 TIC: 222BT120.D 160000 5000 10.25 10.07 150000 OH 4500 140000 4000 130000 S 120000 3500 110000 100000 4-hydroxybenzothiophene 3000 122 121 90000 2500 80000 70000 2000 10.20 60000 9.94 50000 1500 10.00 40000 10.88 30000 6.57 1000 11.04 20000 500 51 10000 0 6.00 6.50 7.00 7.50 8.00 8.50 9.00 9.50 0 m/z--> 10.00 10.50 11.00 11.50 50 63 61 60 69 77 96 93 82 70 80 90 100 110 120 130 140 150 160 Time--> Abundance Scan 690 (9.941 min): 222BT120.D 136 Abundance Scan 327 (6.566 min): 222BT120.D 134 13000 18000 O 12000 16000 11000 S 14000 10000 S 9000 12000 benzothiophene 8000 O benzothiophene-2,3-dione 10000 108 7000 8000 6000 5000 6000 4000 69 4000 3000 2000 1000 63 51 0 m/z--> 50 58 60 70 82 80 95 90 76 164 92 0 102 100 63 54 108 69 74 82 2000 89 110 120 130 140 150 160 50 60 70 80 90 100 110 120 130 140 150 160 m/z--> 76 170 Scan 723 (10.248 min): 222BT120.D Abundance Abundance 150 Scan 703 (10.062 min): 222BT120.D 150 38000 55000 36000 50000 34000 S 32000 45000 30000 28000 40000 OH 26000 24000 121 30000 3-hydroxybenzothiophene 20000 2-hydroxybenzothiophene 35000 S 22000 OH 18000 25000 16000 14000 121 20000 12000 15000 10000 8000 6000 4000 122 10000 78 51 2000 63 96 69 58 84 0 50 60 70 80 89 5000 105111 90 100 110 135 120 130 140 150 0 m/z--> 160 63 69 61 51 50 60 70 77 85 80 96 93 90 105 100 132 110 120 130 140 150 m/z--> Scan 718 (10.201 min): 222BT120.D Abundance Abundance 150 Scan 808 (11.041 min): 29BT90ND.D 137 5500 12000 5000 HO OH 4500 10000 8000 S S 4000 5-hydroxybenzothiophene 3500 OH 2,3-dihydroxybenzothiophene 109 3000 6000 2500 121 2000 166 4000 1500 2000 51 0 m/z--> 50 1000 63 60 69 77 82 96 93 63 118 89 74 500 105 133 134 102 82 0 50 60 70 80 90 100 110 120 130 140 150 50 60 70 80 90 100 110 120 130 140 150 160 m/z--> 77 170 1 ultrasonic energy intensity = 226 watts/cm2, total volume = 40 mL, pH = 7, C0 = 0.12 mM, temperature = 25 oC, ionic strength = 0.05 M NaClO4 (The solid lines are obtained from the equations 78 Kim et al. Water Research, (2003) H + OH. S + OH. - H. H (step 2) . S (step 1) benzothiophene OH OH S 3-hydroxybenzothiophene 3-hydroxy-2,3-dihydrobenzothiophene + OH. O OH + 2OH. -2H. S O (step 4) benzothiophene-2,3-dione . + OH. -H. S OH (step 3) 2,3-dihydroxybenzothiophene OH OH S H 2,3-dihydroxy-2-hydrobenzothiophen + OH. COOH SO3H sulfobenzoic acid O +OH., O2 OH OH 2,3-dihydroxybenzene + 2OH. -2H. O 2,3-quinone 79 O O C COOH COOH O C H C OH OH C H O 2,3-quinone muconic acid H OH C O acrylic acid maleic acid H H H C C HO H HO OH C CH2 CH2 C C C O acrylic acid HO O C H O 3-hydroxy propionic acid HO O malonic acid HO C O H CH2 C H C HO HO malonic acid C H C CO2 C O H + H O acetic acid H HO C O + C HO O H C OH C H O O + C HO O C HO O 80 acrylic acid oxalic acid glyoxylic acid formic acid S benzothiophene OH HO S 4-hydroxybenzothiophene 6-hydroxybenzothiophene 5-hydroxybenzothiophene S S HO S OH 7-hydroxybenzothiophene OH HO HO S 4,5-dihydroxybenzothiophene S HO 5,6-dihydroxybenzothiophene HO S OH 6,7-dihydroxybenzothiophene O O O S benzothiophene-4,5-dione HOOC HOOC O S benzothiophene-5,6-dione O S O benzothiophene-6,7-dione HOOC S thiophene-maleic acid HOOC S thiophene-maleic acid HOOC S HOOC thiophene-maleic acid HO HO S 2,3-dihydroxythiophene O O S thiophene-2,3-dione CO2, SO32- 81 OH S 4-hydroxybenzothiophene HO S 5-hydroxybenzothiophene other products (e.g., ring-cleaved products) k4 S HO 6-hydroxybenzothiophene S OH 7-hydroxybenzothiophene k1 S k2 OH 2-hydroxybenzothiophene OH S OH k5 S OH O k6 k7 S O other products (e.g., ring-cleaved products) 2,3-dihydroxybenzothiophene benzothiophene-2,3-dione benzothiophene S 3-hydroxybenzothiophene k3 other products 82 CBT CBT ,0 exp( k A t ) k1CBT ,0 C 4567HXBT [exp( k A t ) exp( k 4 t )] ( k 4 k A ) k 2CBT ,0 C 23HXBT [exp( k A t ) exp( k 5 t )] ( k 5 k A ) C 23 OH k1 = 8.0x10-5 s-1 k2 = 1.9x10-4 s-1 k3 = 0.8x10-4 s-1 kA = 3.5 x 10-4 s-1 k4 = 1.7x10-4 s-1 k5 = 2.0x10-4 s-1 k6 =1.8x10-4 s-1 k7 = 1.6x10-4 s-1 k k exp( k t ) k k exp( k t ) k k exp( k t ) A A 6 C BT ,0 2 5 2 5 2 5 ( k 6 k A )( k 5 k A ) ( k 6 k A )( k 5 k A ) ( k 6 k A )( k 5 k A ) k 6k 5 exp( k 5 t) CBT 23DN k 6k 5 exp( k 2 t) CBT ,0 (k 5 k 2 )(k 6 k 2 )(k 7 k 2 ) (k 5 k 2 )(k 6 k 5 )(k 7 k 5 ) k 5 (k 5 k 2 ) exp( k 6 t) k 6k 5 exp( k 7 t) (k 5 k 2 )(k 6 k 2 )(k 6 k 5 )(k 7 k 6 ) (k 5 k 2 )(k 6 k 2 )(k 6 k 5 )(k 7 k 2 ) k 6k 5 exp( k 7 t) k 5 (k 5 k 2 ) exp( k 7 t) (k 5 k 2 )(k 6 k 2 )(k 6 k 5 )(k 7 k 5 ) (k 5 k 2 )(k 6 k 2 )(k 6 k 5 )(k 7 k 6 ) 83 C_BT C_23HXBT C_4567HXBT C_BT23DN sum of 3 intermediates Carbon M. B. [ CO ], 8x1 Molar 0.00012 Concentration (Molar) 0.0001 8 10 -5 6 10 -5 4 10 -5 2 10 -5 2 0 0 1 2 3 4 5 6 7 3 Time (10 sec) ultrasonic energy intensity = 226 watts/cm2, total volume = 40 mL, pH = 7, C0 = 0.12 mM, temperature = 25 oC, ionic strength = 0.05 M NaClO4 (The solid 84 lines are obtained from the equations DBPs: Trihalomethanses 85 -11.42 kCal/mol 7.2 kCal/mol -6.95 kCal/mol 3.23 kCal/mol -6.95 kCal/mol 3.23 kCal/mol -5.21 kCal/mol 3.23 kCal/mol chloroform > dichlorobromomethane > dibromochloromethane > bromoform. Kim et al 2001 ultrasonic energy intensity = 226 watts/cm2, total volume = 40 mL, C0 = 3.7 M, pH = 7, temperature = 25oC, ionic strength = 0.05M NaClO4. 86 Residual BOD: Humic Substabce HO O OH OH OH O O COOH O OH HO OH COOH (A) O O HO HO C OH O C O C OH O C OH OH O C OH C OH O C O H OH O H O C OH OH C HO O HO C HO C O O H O O O HO C OH C C C OH O C OH O OH H O O OH HO O O O C O OH C OH C C OH O O C C HO C OH O OH O H OH OH OH (B) Schnitzer et al., (1972); Paciollar et al., (1999). 87 Experimental Conditions: ultrasonic energy intensity = 283 watts/cm2, total volume = 10 mL, C0 = TOC 10 mg/L, pH0 = 7, temperature = 25 oC, ionic strength = 0.05 M NaClO4. Kim et al 2000 88 ultrasonic energy intensity = 283 watts/cm2, total volume = 10 mL, H2O2 10mM, pH0 7, C0 = TOC 10 mg/L, temperature = 25 oC, ionic strength = 0.05 M NaClO4. Kim et al 2000 89 Cryptosporidium parvum Fayer,. et al, (1990). 90 -9.17 kCal/mol 7.94 kCal/mol 91 Huang and Myoda, ((2007) 92 Semiconductor Conduction Band Conduction Band Conduction Band Band gap Valance Band Valance Band Conductor Valance Band Semiconductor Insulator h Reduction Reaction O + electrons → R + by product e.g. 2H++2e-→H2 e- Conduction Band Oxidation Reaction Recombination, (release of thermal energy) Valance Band h+ R + holes → O + by product e.g. 2H2O + 4h+ →O2+4H+ Photocatalysis 93 TiO2/Ti-Pt (a) at 2.5 V in the dark; (b)-(e) at 0, 0.5, 1.5, and 2.5 V under UV illumination, respectively. (a) E-H2O2; (b) E-H2O2/UV; (c) TiO2 PEC; (d) E-H2O2/TiO2 PEC. Li et al. ES&T, 2005 94 Hoe et al. Science of Total Environment. 2009 95 C-doped TiO2 Band gap of TiO2 (3.0 to 3.2 eV); Solar spectrum constrains only 4~5% UV Zhou et al. App. Cata. B: Environ. 2010 96 [2,4-DCP] = 0.06 mM; Chamber (A) pH = 11, Chamber (B) pH = 2; λ = 350 nm; 0.1 M Na2SO4 as electrolyte Zhou et al. App. Cata. B: Environ., 2010 97 Fenton Reagents Fe2+ + H2O2 → Fe3+ + OH− + OH• (1) chain initiation OH• + H2O2 → HO2• +H2O (2) chain propagation Fe3+ + •HO2 → Fe2+ + H+ + O2 (3) chain propagation Fe2+ + •HO2 → Fe3+ + HO2− (4) termination Fe2+ + OH•→ Fe3+ + OH− (5) termination (Mn+) + H2O2 → (Mn+1) + OH− + OH• Fe2+ + H2O2 = FeO2+ + H2O (7) FeO2+ + H2O2 = Fe2+ + H2O + O2 (8) Fe2+ + OH•→ Fe3+ + OH− (9) Fe3+ + OH• → FeOH3+ (10) 98 Photochemical reactions 99 Stumm & Morgan 100 Stumm & Morgan
© Copyright 2025 ExpyDoc