Advanced Bioprocess Monitoring by Means of NIR Spectroscopy

Spectroscopy?
1
Spectroscopy: using light-matter
interaction to get information about
samples
Spectroscopy?
2
Near Infrared?
3
Monitoring &
Control?
4
Advanced Bioprocess
PDA:
A
Global
Monitoring by Means
of NIR Spectroscopy
Association
Christian Grimm
Marek Höhse
José Alves-Rausch
Process Risks
Cell culture process
6
Process Risks
Failed Batches
7
Process Risks
Malfunctions
8
Process Risks
Contamination
9
Process Risks
RISK
10
PAT / QbD approach
Risk
Analysis
• CQA‘s
+
CPP‘s
DoE
• Link
CPP‘s
CQA‘s
Process
Analyzers
• Sensors
Spectrometers
Process
Control
Tools
• Scada
Multivariate
Data
Analysis
•Process
Knowledge
11
PAT / QbD approach
Risk mitigation?
12
Cell Cultivation: CQA / CPP
Reactor
Parameter
Product
Cell
parameter
Nutrients
Metabolites:
13
Look into process
Spectroscopy is:
Contactless
Nondestructive
Use inline NIR
spectroscopy!
Fast &
Versatile
14
Inline Analytics (NIR)
Analyzer Requirements?
Robust device!
15
NIR – How to use?
1 absorption (molecules)
2
scattering (cells)
Glucose, Lactate,
Glutamine, Product
Cell parameter
Cell count, Viability
Contamination
Technology Limitations
Water band
• Fixed slit  constant volume
Low
sensitivity
• Low absorption  large volume
Low
selectivity
• Sum parameter analysis
Old
technology
• Robust design, proven in F&B
17
NIR – measuring principle
Spectra interpretation
whole chemical composition
broad absorption bands
Information overlap
Extract information => MVDA
Qualitative Analysis
Qualitative: only spectral data!
Cell
Culture
Spectra
Data
Analysis
(PCA)
Process
Monitoring
19
Qualitative Analysis - general
PCA – Score Plot (main spectral variation)
1
Batch start
2
Batch end
3
Glutamin
exhausted
PC1
Cell count
PC2
Metabolic
state
PC2
3
PC1
2
1
General
trends visible!
Qualitative Process Monitoring
score
contamination
low performer (oxygen limitation)
process time
“golden batch”
process trajectories
observe alteration
detect variations before real deviations occur
Guided Sampling
Guided sampling  event based process control
22
Score 1
Qualitative Process Monitoring
Score 2
1
2
3
4
5
1
End of lag
phase
2
Nutrient 1
exhausted
3
All nutrients
exhausted
4
Metabolites
exhausted
5
Production
phase
Qualitative Analysis
Information from spectra only!
General
OOS
• Contamination
Cell
Culture
Spectra
Data
Analysis
(PCA)
Batch
Trajectories
• Process
Profiles
• Important
Trends
Classification
• End Point
• Media
24
Quantitative Analysis
Quantitative: spectral data + reference!
Spectra
Cell
Culture
Reference
Data
Analysis
(PLS)
Analytes
25
Calibration / Validation
Model
1
2
Calibration set
n
Data
Analysis
(PLS)
Model
error
SEC
SECV
26
Calibration / Validation
Prediction
Model
1
n
Validation set:
calibration independent
batches!!!
Validation
error
SEP
Reference
27
Calibration / Validation
prediction (g/l)
Example: Glucose
reference (g/l)
Model
Glucose
(g/l)
Concentration Range
0–7
Algorithm
PCs
PLS
5
Validation
Testset
1 batch
Error of Prediction
(SEP)
0.24
Inline Prediction
6,5
6
5,5
5
4,5
4
3,5
3
2,5
2
1,5
Glucose
Reference
29
Inline Prediction
18
16
14
12
10
8
6
4
2
0
TCD
Reference
30
Inline Prediction
110
100
90
80
70
60
50
40
30
Viability
Reference
31
viability
(offline analysis)
viability
Inline Prediction - Viability
Score3
(spectral variations )
score
!strong correlation!
Inline Prediction
Titer
Reference
33
Quantitative Analysis
Analytes
• Glucose
• Sum Signals of
Nutrients &
Metabolites
Spectra
Cell
Culture
Reference
Data
Analysis
(PLS)
Cell
Parameter
• Total Cell
Count
• Viability
Product
• mAb Titer
34
Calibration Transfer
Transfer
Reactor Type A
NIR Device A
Transfer
possible?
Reactor Type B
NIR Device B
35
Calibration Transfer
9
8
7
6
5
4
3
2
1
Trend correct – values biased!
0
Glucose
Reference
36
Calibration Transfer
9
Adaption: 3 samples
from batch start
8
7
6
5
4
3
2
1
After adaption: Trend + values correct!
0
Glucose
Reference
37
Near Infrared
Spectroscopy?
38
Summary NIR Spectroscopy
Robust Device
Spectra
Multivariate Analysis
Process Trajectories
Control Parameters
Risk mitigation
39
Thank you!
40
How do you
control your
process in the
future?
41
Spectroscopy?
42
Additional Information
43
End point determination
Endpoint-spectra of batch
End point determination
optimal endpoint of current batch
Alternatively:
Using NIR prediction of
 cell count
 viability
 titer
instead of scores
Endpoint from several batches design space for optimal endpoint
current batch real time data of current batch
Media classification
2-m01
1-m01
1-m02
4-m01
3-m01
3-m02
4-m02
4-m03
3-m03
2-m02
2-m03
1-m03
Build model with high
performance batches
compare new batches
 significant deviations
detected
prediction (Mio cells / ml)
Quantitative Analysis
reference (Mio cells / ml)
Model
Total Cell Count
Cell count
Mio/ml
Concentration Range
0 – 16
Algorithm
PLS
PCs
1
Validation procedure
Testset 1 batch
Error of Prediction (SEP)
0.54
Quantitative Analysis
Model
Viability
Concentration Range
Algorithm
PCs
Viability
[%]
0 – 100
PLS
5
Validation procedure
Testset K05
Error of Prediction (SEP)
3
• scatter pattern from shape change
• correlation to cell lyses
• More metabolites in medium
viable
dead
Spectroscopy in Cell Culture
Selectivity
Sensitivity
Costs
Robustness
Raman
UV / VIS
MIR
NIR
49
Literature
•
•
•
•
•
•
•
•
•
•
ASTM International. E2629 - Standard Guide for Verification of Process Analytical Technology (PAT) Enabled
Control Systems. (2011).
European Medicines Agency. Guideline on the use of Near Infrared Spectroscopy (NIRS) by the pharmaceutical
industry and the data requirements for new submissions and variations. (2012).
European Medicines Agency. Addendum to EMA/CHMP/CVMP/QWP/17760/2009 Rev 2: Defining the Scope of an
NIRS Procedure. (2014).
Henriques J, Buziol S, Stocker E, Voogd A, Menezes JC. Monitoring mammalian cell cultivations for monoclonal
antibody production using near-infrared spectroscopy. In: Optical Sensor Systems in Biotechnology. Rao G (Ed.).
Springer Berlin Heidelberg, 73–97 (2010).
Sandor M, Rüdinger F, Bienert R, Grimm C, Solle D, Scheper T. Comparative study of non-invasive monitoring via
infrared spectroscopy for mammalian cell cultivations. J. Biotechnol. 168(4), 636–45 (2013).
Clavaud M, Roggo Y, Daeniken R Von, Liebler A, Schwabe J. Talanta Chemometrics and in-line near infrared
spectroscopic monitoring of a biopharmaceutical Chinese hamster ovary cell culture : Prediction of multiple
cultivation variables. Talanta. 111, 28–38 (2013).
Bienert R and Grimm C, Zellfabriken unter ständiger Beobachtung – Ein NIR-Spektroskopischer Einblick in
industrielle Bioprozesse, Nachrichten aus der Chemie 61, 1046-1050 (2013).
Shaobin Lu et. al., Modern IR-Spectroscopy for Bioprocess Monitoring, Genetic Engineering & Biotechnology
News, under revision
Alves-Rausch J, Bienert R, Grimm C, Bergmaier D, Real time in-line monitoring of large scale Bacillus
fermentations with near-infrared spectroscopy, Journal of Biotechnology, in press (DOI:
10.1016/j.jbiotec.2014.09.004)
Hoehse M, Alves-Rausch J, Prediger A, Roch P, Grimm C, Review: Near-Infrared Spectroscopy in Upstream
Bioprocesses, Pharmaceutical Bioprocessing, submitted
50