4/15/2014 Instructor Dr. Raymond Rumpf (915) 747‐6958 [email protected] EE 4395/5390 – Special Topics Computational Electromagnetics Lecture #8 Perfectly Matched Layer These notes may contain copyrighted material obtained under fair use rules. Distribution of these materials is strictly prohibited Lecture 8 Slide 1 Outline • • • • • • Background Information The Uniaxial Perfectly Matched Layer (UPML) Stretched Coordinate PML (SC‐PML) Calculating the PML Parameters Incorporating a UPML into Maxwell’s Equations Incorporating a SC‐PML into Maxwell’s Equations Lecture 8 Slide 2 1 4/15/2014 Background Information Lecture 8 Slide 3 Tensors Tensors are a generalization of a scaling factor where the direction of a vector can be altered in addition to its magnitude. Scalar Relation V V aV a V Tensor Relation a xx a V a yx azx Lecture 8 axy a yy azy axz Vx a yz Vy azz Vz Slide 4 2 4/15/2014 Reflectance from a Surface with Loss Complex Refractive Index N n j n ordinary refractive index extinction coefficient Reflectance from a Lossy Surface 1 n 2 R 2 1 n 2 2 air ** Loss contributes to reflections N n j Lecture 8 Slide 5 Reflection, Transmission and Refraction at an Interface Angles inc ref 1 n1 sin 1 n2 sin 2 Snell’s Law TE Polarization 2 cos 1 1 cos 2 2 cos 1 1 cos 2 2 2 cos 1 2 cos 1 1 cos 2 rTE tTE TM Polarization 2 cos 2 1 cos 1 1 cos 1 2 cos 2 2 2 cos 1 1 cos 1 2 cos 2 rTM tTM Lecture 8 Slide 6 3 4/15/2014 Maxwell’s Equations in Anisotropic Media Maxwell’s curl equations in anisotropic media are: H j 0 r E E j0 r H These can also be written in a matrix form that makes the tensor aspect of and more obvious. 0 z y H x xx xy xz Ex 0 x H y j 0 yx yy yz E y z zx zy zz Ez 0 H z y x 0 z y Ex xx xy xz H x 0 x E y j0 yx yy yz H y z zx zy zz H z 0 Ez y x Lecture 8 Slide 7 Types of Anisotropic Media There are three basic types of anisotropic media iso 0 0 o 0 0 a 0 0 Lecture 8 0 iso 0 0 o 0 0 b 0 0 0 iso 0 0 e 0 0 c isotropic uniaxial Note: terms only arise in the off‐ diagonal positions when the tensor is rotated relative to the coordinate system. biaxial Slide 8 4 4/15/2014 Maxwell’s Equations in Doubly‐Diagonally Anisotropic Media Maxwell’s equations for diagonally anisotropic media can be written as z 0 z y 0 x Hx xx H y j 0 0 0 H z 0 y x 0 yy 0 0 Ex 0 E y zz Ez 0 z y z 0 x Ex xx x E y j0 0 0 Ez 0 y 0 yy 0 0 Hx 0 H y zz H z We can generalize further by incorporating loss. 0 z y H x x xE j Ex 0 0 E y y j 0 x H y j 0 0 0 z Ey E z z j Ez 0 H z 0 0 y x 0 z y Ex Hx x xH j 0 0 H 0 x E y j0 0 0 y y j z H y H 0 Ez 0 0 z z j H z y x Lecture 8 Slide 9 Scattering at a Doubly‐Anisotropic Interface Refraction into a diagonally anisotropic materials is described by sin 1 bc sin 2 a 0 0 r r 0 b 0 0 0 c Reflection from a diagonally anisotropic material is rTE a cos 1 b cos 2 a cos 1 b cos 2 rTM a cos 1 b cos 2 a cos 1 b cos 2 Lecture 8 Slide 10 5 4/15/2014 Notes on a Single Interface • It is a change in impedance that causes reflections • Snell’s Law quantifies the angle of transmission • Angle of transmission and reflection does not depend on polarization. • The Fresnel equations quantify the amount of reflection and transmission • Amount of reflection and transmission depends on the polarization Lecture 8 Slide 11 Uniaxial Perfectly Matched Layer (UPML) S. Zachary, D. Kingsland, R. Lee, J. Lee, “A Perfectly Matched Anisotropic Absorber for Use as an Absorbing Boundary Condition,” IEEE Trans. on Ant. and Prop., Vol. 43, No. 12, pp 1460–1463, 1995. Lecture 8 Slide 12 6 4/15/2014 Boundary Condition Problem If we model a wave hitting some device or object, it will scatter the applied wave into potentially many directions. We do NOT want these scattered waves to reflect from the boundaries of the grid. We also don’t want them to reenter from the other side of the grid (periodic boundaries). ? ? How do we prevent this? x y Lecture 8 Slide 13 How We Prevent Reflections in Lab In the lab, we use anechoic foam to absorb outgoing waves. Lecture 8 Slide 14 7 4/15/2014 Absorbing Boundary Conditions We can introduce loss at the boundaries of the grid! 0 Absorbing Boundary x y 0 Lecture 8 Slide 15 Oops!! But if we introduce loss, we also introduce reflections from the lossy regions!! 1 n 2 R 2 1 n 2 2 0 x y 0 Lecture 8 Slide 16 8 4/15/2014 Match the Impedance We need to introduce loss to absorb outgoing waves, but we also need to match the impedance to the problem space to prevent reflections. introduce loss here r r j r adjust this to control impedance Lecture 8 Slide 17 More Trouble? By examining the Fresnel equations, we see that we can only prevent reflections from the interface at one frequency, one angle of incident, and polarization. rTE 2 cos 1 1 cos 2 cos 2 0 2 1 cos 1 2 cos 1 1 cos 2 rTM 2 cos 2 1 cos 1 cos 1 0 2 1 1 cos 1 2 cos 2 cos 2 Lecture 8 Slide 18 9 4/15/2014 Anisotropy to the Rescue!! It turns out we can prevent reflections at all angles and for all polarizations if we allow our absorbing material to be doubly‐ diagonally anisotropic. and x y and Lecture 8 Slide 19 Problem Statement for the PML , 0% Free Space 0 , 0 Lecture 8 100% 1 1 2 z Slide 20 10 4/15/2014 Designing Anisotropy for Zero Reflection (1 of 3) We need to perfectly match the impedance of the grid to the impedance of the absorbing region. everywhere One easy way to ensure impedance is perfectly matched is: a 0 0 s r r 0 b 0 0 0 c Lecture 8 Slide 21 Designing Anisotropy for Zero Reflection (2 of 3) If we choose , then the refraction equation reduces to bc 1 sin 1 bc sin 2 sin 2 1 2 No refraction! The reflection coefficients now reduce to rTE a cos 1 b cos 2 a b a cos 1 b cos 2 a b rTM a cos 1 b cos 2 a b a cos 1 b cos 2 a b These are no longer a function of angle!! Lecture 8 Slide 22 11 4/15/2014 Designing Anisotropy for Zero Reflection (3 of 3) ab If we further choose , the reflection equations reduce to rTE a b 0 a b rTM a b 0 a b Reflection is always zero regardless of frequency, angle of incidence, or polarization!! Recall the necessary conditions: bc 1 and a b Lecture 8 Slide 23 The PML Parameters (1 of 3) So far, we have a 0 0 s r r 0 b 0 0 0 c ab 1 c Thus, we can write our PML in terms of just one parameter sz. sz sz 0 0 0 sz 0 0 0 sz1 sz j This form of tensor is why we call this a uniaxial PML. This is for a wave travelling in the +z direction incident on a z‐axis boundary. Lecture 8 Slide 24 12 4/15/2014 The PML Parameters (2 of 3) We potentially want a PML along all the borders. sx1 sx 0 0 0 sx 0 0 0 sx sy s y 0 0 0 s y1 0 0 0 s y sz sz 0 0 0 0 sz1 0 sz 0 These can be combined into a single tensor quantity. s y sz sx s s s s x y z 0 0 0 sx sz sy 0 0 0 sx s y sz Lecture 8 Slide 25 The PML Parameters (3 of 3) z The 3D PML can be visualized this way… x sz 1 s y sz sx s 0 0 Lecture 8 0 sx sz sy 0 0 0 sx s y sz sy 1 y sx 1 sx 1 sy 1 sz 1 Slide 26 13 4/15/2014 Stretched Coordinate Perfectly Matched Layer (SC‐PML) Lecture 8 Slide 27 The Uniaxial PML Maxwell’s equations with uniaxial PML are: H k0 r s E E k0 r s H s y sz sx s 0 0 Lecture 8 0 sx sz sy 0 0 0 sx s y sz Slide 28 14 4/15/2014 Rearrange the Terms We can bring the PML tensor to the left side of the equations and associate it with the curl operator. 1 1 s E k0 r H s H k0 r E The curl operator is now s 1 sz1s y1sx 0 0 0 1 1 z y x s s s 0 0 s sxy s1z z sz 1 sx s y y ssxy sx sz 1 s z z s 0 y x 0 x szy 0 sz sy z 0 0 z 1 1 sz s y s x y 0 1 s y y 1 s x x 1 s x x 0 Lecture 8 Slide 29 “Stretched” Coordinates Our new curl operator is 0 1 s ssxy s1z z sz 1 sx s y y s s xy 1 s z z 0 sz sy 1 sx x sx sz s szy 1 s y y 1 s x x 0 The factors sx, sy, and sz are effectively “stretching” the coordinates, but they are “stretching” into a complex space. Lecture 8 Slide 30 15 4/15/2014 Drop the Other Terms We drop the non‐stretching terms. 0 s s sxy s1z z ssz s1 y x y sx sy 0 sz sy sx sz 1 s z z sy sz 1 s x x 1 s y y 1 s x x 0 0 1 sz z 1 s y y s1z z 0 1 s x x s1x x 0 1 s y y Justification sy sx 1 s z z 1 s z z Inside the z‐PML, sx = sy = 1. This is valid everywhere except at the extreme corners of the grid where the PMLs overlap. This also implies that the UPML and SC‐PML have nearly identical performance in terms of reflections, sensitivity to angle of incidence, polarization, etc. Lecture 8 Slide 31 Theoretical Performance Given the following choice of PML parameters s 1 1 1 aˆ x aˆ y aˆ z sx x s y y sz z sx x 1 j x x 0 x x x ,max sy y 1 j y y 0 y y y ,max sz z 1 j z z 0 z z z ,max x Lx m y Ly z Lz m m We choose i,max to achieve a target maximum reflectance R at normal incidence according to i ,max m 1 ln R We typically choose 20 Li 3 m 4 i ,max Lecture 8 4 0 i Slide 32 16 4/15/2014 Calculating the PML Parameters Lecture 8 Slide 33 The Perfectly Matched Layer (PML) The perfectly matched layer (PML) is an absorbing boundary condition (ABC) where the impedance is perfectly matched to the problem space. Reflections entering the lossy regions are prevented because impedance is matched. Reflections from the grid boundary are prevented because the outgoing waves are absorbed. y 0 PML x y z 0 Problem Space PML PML x 0 x 0 PML Lecture 8 y 0 Slide 34 17 4/15/2014 How to Calculate the PML Parameters Computing PML Parameters Maxwell’s Eqs. with PML E k0 r s H H k0 r s E s y sz sx s 0 0 0 sx sz sy 0 sx x ax x 1 j0 x x s y y a y y 1 j0 y y sz z az z 1 j0 z z 0 0 sx s y sz ax x 1 amax x Lx p a y y 1 amax y Ly az z 1 amax z Lz x 2 Lx y sin 2 y y max 2 Ly 2 z sin z z max 2 Lz sin 2 x x max p p 0 amax 5 3 p 5 1 max NGRID = [Nx Ny]; NPML = [0 0 20 20]; [sx,sy] = calcpml2d(NGRID,NPML); Writing this function will be in homework Lecture 8 Slide 35 Visualizing the PML Loss Terms – 2D For best performance, the loss terms should increase gradually into the PMLs. x x x y y y Lecture 8 Slide 36 18 4/15/2014 Note About x/Lx, y/Ly, and z/Lz The following ratios provide a single quantity that goes from 0 to 1 as you move through a PML region. x Lx and y Ly and x, y, z position within PML z Lz Lx , Ly , Lz size of PML We can calculate the same ratio using integer indices from our grid. nx = 1, 2, ... , NXLO nx nx x or NXHI Lx NXLO nx = 1, 2, ... , NXHI 0 ny = 1, 2, ... , NYLO ny ny y or NYHI Ly NYLO x 1 Lx ny = 1, 2, ... , NYHI 0 nz = 1, 2, ... , NZLO nz nz z or NZHI Lz NZLO x 1 Lx nz = 1, 2, ... , NZHI Lecture 8 Slide 37 Nx Nx-NXHI+1 Lecture 8 NXLO 1 sx(x) = 1 % ADD XHI PML for nx = 1 : NXHI … sx(Nx-NXHI+nx,:) = ... end sx(x) = ax(x)[1+j0x(x)] % ADD XLO PML for nx = 1 : NXLO … sx(NXLO-nx+1,:) = ... end sx(x) = ax(x)[1+j0x(x)] Visualizing sx in 2D Slide 38 19 4/15/2014 Visualizing sy in 2D 1 sy(y) = ay(y)[1+j0y(y)] % ADD YLO PML for ny = 1 : NYLO … sy(:,NYLO-ny+1) = ... end NYLO sy(y) = 1 Ny – NYHI + 1 Ny sy(y) = ay(y)[1+j0y(y)] % ADD YHI PML for ny = 1 : NYHI … sy(:,Ny-NYHI+ny) = … end Lecture 8 Slide 39 Procedure for Calculating sx and sy on a 2D Grid 1. Initialize sx and sy to all ones. s x x, y s y x, y 1 2. Fill in x‐axis PML regions using two for loops. NXLO NXHI 3. Fill in y‐axis PML regions using two for loops. NYLO NYHI Lecture 8 Slide 40 20 4/15/2014 Example Data for 2D NGRID = [7 4]; NPML = [2 3 1 2]; [sx,sy] = calcpml2d(NGRID,NPML); sx = p3 1 max 1.0e+03 * 0.0040 0.0014 0.0010 0.0010 0.0011 0.0019 0.0040 sy = amax 3 + 1.5069i + 0.2590i + 0.1046i + 0.5337i + 1.5069i 0.0040 0.0014 0.0010 0.0010 0.0011 0.0019 0.0040 + 1.5069i + 0.2590i + 0.1046i + 0.5337i + 1.5069i 0.0040 0.0014 0.0010 0.0010 0.0011 0.0019 0.0040 + 1.5069i + 0.2590i + 1.5069i + 0.2590i + 0.1046i + 0.5337i + 1.5069i 0.0040 0.0014 0.0010 0.0010 0.0011 0.0019 0.0040 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 + + + + + + + 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 + + + + + + + + 0.1046i + 0.5337i + 1.5069i 1.0e+03 * 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 0.0040 + + + + + + + 1.5069i 1.5069i 1.5069i 1.5069i 1.5069i 1.5069i 1.5069i 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.2590i 0.2590i 0.2590i 0.2590i 0.2590i 0.2590i 0.2590i 1.5069i 1.5069i 1.5069i 1.5069i 1.5069i 1.5069i 1.5069i Lecture 8 Slide 41 PML is Not a Boundary Condition A numerical boundary condition is the rule you follow when an equation references a field from outside the grid. The PML does not address this issue. It is simply a way of incorporating loss while preventing reflections so as to absorb outgoing waves. Sometimes it is called an absorbing boundary condition, but this is still misleading as the PML is not a true boundary condition. Lecture 8 Slide 42 21 4/15/2014 Incorporating a UPML into Maxwell’s Equations Lecture 8 Slide 43 Maxwell’s Equations with a UPML Maxwell’s equations before the PML is added are E k0 r H H k0 r E xx r yx zx xy xz yy yz zy zz xx r yx zx xy yy zy xz yz zz The UPML is incorporated as follows. E k0 r s H H k0 r s E Lecture 8 s y sz sx s 0 0 0 sx sz sy 0 0 0 sx s y sz Slide 44 22 4/15/2014 Vector Expansion Assuming only diagonal tensors xx r 0 0 0 yy 0 0 0 zz xx r 0 0 0 yy 0 0 0 zz Maxwell’s equations expand to Ex Ez ss k0 yy x z H y z x sy ss H z H y k0 xx y z Ex y z sx H x H z ss k0 yy x z E y z x sy E y H y ss Ez E y k0 xx y z H x y z sx x ss Ex k0 zz x y H z y sz x ss H x k0 zz x y Ez y sz Lecture 8 Slide 45 Absorb UPML into and (3D Grid) We can absorb the UPML parameters into the material functions. xx xx s y sz sx ss yy yy x z sy zz zz sx s y sz xx xx s y sz sx ss yy yy x z sy zz zz sx s y sz We can now write Maxwell’s equations as Ez E y H x k0 xx y z Ex Ez k0 yy H y z x E y Ex k0 zz H z x y Lecture 8 H z H y k0 xx Ex y z H x H z k0 yy E y z x H y H x k0 zz Ez x y This means we can formulate a code as if there was no PML. All we have to do is modify the materials being modeled near the boundaries. Slide 46 23 4/15/2014 Absorb UPML into and (2D Grid) Let z be the uniform direction, then d/dz = 0 and sz = 1. We can still absorb the UPML parameters into the material functions. xx xx sy xx xx sx sy sx sx sy s yy yy x sy yy yy zz zz sx s y zz zz sx s y We can now write Maxwell’s equations as H Mode E Mode H y x Lecture 8 H x k0 zz Ez y Ez H x k0 xx y E z k0 yy H y x E y x E x k0 zz H z y H z Ex k0 xx y H z k0 yy E y x Slide 47 Incorporating a SC‐PML into Maxwell’s Equations Lecture 8 Slide 48 24 4/15/2014 Maxwell’s Equations with a SC‐PML Maxwell’s equations before the PML is added are E k0 r H H k0 r E xx r yx zx xy xz yy yz zy zz xx r yx zx xy yy zy xz yz zz The SC‐PML is incorporated as follows. s E j H s H j E 0 s s1z z 1 s y y Lecture 8 s1z z 0 1 s x x 1 sx x 0 1 s y y Slide 49 Vector Expansion Maxwell’s equations with a SC‐PML expand to Fully Anisotropic 1 H z 1 H y k0 xx Ex xy E y xz Ez s y y sz z Diagonally Anisotropic 1 H z 1 H y k0 xx Ex s y y sz z 1 H x 1 H z k0 yx Ex yy E y yz Ez sz z sx x 1 H y 1 H x k0 zx Ex zy E y zz Ez sx x s y y 1 H x 1 H z k0 yy E y sz z sx x 1 H y 1 H x k0 zz Ez sx x s y y 1 Ez 1 E y k0 xx H x xy H y xz H z s y y sz z 1 Ez 1 E y k0 xx H x s y y sz z 1 Ex 1 Ez k0 yx H x yy H y yz H z sz z sx x 1 Ex 1 Ez k0 yy H y sz z sx x 1 E y 1 Ex k0 zx H x zy H y zz H z sx x s y y 1 E y 1 Ex k0 zz H z sx x s y y Lecture 8 Slide 50 25 4/15/2014 UPML Vs. SC‐PML Lecture 8 Slide 51 UPML Vs. SC‐PML Uniaxial PML Stretched‐Coordinate PML Benefits Benefits • Has a physical interpretation • Models can be formulated and implemented without considering the PML • Less computationally intensive • More efficient implementation in the time‐domain • Matrices are better conditioned. Drawbacks Drawbacks • Can be more computational intensive to implement • Resulting matrices are less well conditioned • Must be accounted for in the formulation and implementation of the numerical method. • Not intuitive to understand Lecture 8 Slide 52 26
© Copyright 2025 ExpyDoc