08 skrecanie przekroje kolowe ang

Sheet 08: Twist of circle cross-sections. Arkusz przeznaczony do ćwiczeń z przedmiotu „Strength of Materials” na II roku dziennych studiów
Wydziału Inżynierii Mechanicznej i Robotyki AGH na kierunku „Mechatronics in English” w roku akademickim 2014/2015.
Notes for exercise classes of: „Strength of Materials”
Sheet 08: Twist of circle cross-sections
1. Twist of circle cross-sections – definitions, concepts, formulas
Theory on twisting - from lectures and books: [1], [2].
The drawings below illustrate concepts and formulas associated with torsion of circular cross-sections.
Rysunek 2: The stress
distribution in the
cross section
Rysunek 1: simple twist
Rysunek 3: Stress
vectors
Rysunek 4: Deformation and
strain
1.a) STRESSES
The stress tensor in twist has the form set out below; in this state, according to Hooke's equations there is generated a
spatial strain state:
[
0 τ xy
T σ = τ yx 0
τ zx 0
τ xz
0
0
]
[
constitutive relations
⇔
T ε=
0
1
γ
2 yx
1
γ
2 zx
1
γ
2 xy
1
γ
2 xz
0
0
0
0
]
The relationship of the stress function with the cross-sectional force function has the following form:
 xy ( x , z) =
 xz ( x , y) =
[
M x ( x)
⋅z
I x ( x)
M x ( x)
⋅y
I x( x)
[
Nm
4 ⋅m = Pa
m
Nm
⋅m = Pa
4
m
]
]
where Mx(x) is the twist moment in the cross-section with the abscissa x
and Ix(x) is the polar moment of inertia in this cross-section.
© Copyright: Anna Stręk. Autorem arkusza jest Anna Stręk. Arkusz stanowi przedmiot prawa autorskiego określonego w Ustawie o prawie
autorskim i prawach pokrewnych (Dz. U. 1994 r. Nr 24 poz.83 z późn. zmianami). Autor nie wyraża zgody na inne wykorzystywanie arkusza niż
podane w jego przeznaczeniu.
1
Sheet 08: Twist of circle cross-sections. Arkusz przeznaczony do ćwiczeń z przedmiotu „Strength of Materials” na II roku dziennych studiów
Wydziału Inżynierii Mechanicznej i Robotyki AGH na kierunku „Mechatronics in English” w roku akademickim 2014/2015.
If we use the polar coordinate system instead of the Cartesian, the formula for stress is:
( x , ρ) =
M x ( x)
⋅ρ .
I x ( x)
4
4
πR
πD
=
The formula for the polar moment of a circular cross-section: I x = I 0 = I p = I y + I z =
.
2
32
1.b) STRAIN AND DEFORMATION
The relationship between the twist moment and the function of the strain has the form:
M x ( x)
⋅z
G( x)⋅I x ( x)
M x ( x)
⋅y
γ xz ( x , y) =
G ( x)⋅I x ( x)
γ xy ( x , z) =
where Mx(x) is the twist moment in the cross-section with the abscissa x and Ix(x) is
the polar moment of inertia in this cross-section. G(x) is the modulus of rigidity
(Kirchhoff's modulus; depends on the material and therefore may vary over the
element).
The following concepts are related to the deformation and strain for a simple twisting:
θ( x) =
•
unit angle of twist:
•
current angle of twist:
[ ]
M x ( x) rad
G⋅I x ( x) m
α ( x) = ∫ θ( x) dx = ∫
M x ( x) dx
[ rad ]
G ( x)⋅I x ( x)
l
M x ( x) dx
[ rad ]
G
( x)⋅I x ( x)
0
i
i
M ⋅l
α ( x) = ∑ i x i [ rad ]
i G ⋅I x
α ( x) = ∫
•
total angle of twist (for an element of continuous characteristics):
•
total angle of twist (for an element of step-changing characteristics):
2. Circular cross-sections – statically determinate structures
Just to remind: reactions can be determined from the equilibrium equations when the number of these equations
corresponds to the number of unknown reactions. In such a case we are talking about the statically determinate
systems.
For statically determinate systems that operate under simple twisting the following aspects are usually considered:
finding the cross-sectional forces, stresses, findinfg unit, current and total angle of twist.
According to the strength condition τmax ⩽ k s (ks - allowable shear stress) and the utility condition θmax ⩽ θ allow or
max
total
α ⩽ α allow or α ⩽ α allow one can also design the parameters of a structure: material, dimensions, load.
You should solve examples no.: 15.5.1, 15.5.2 from book [2] and tasks no.: 5.1 / p. 63 i 5.3 / p. 65 from book
[3].
Caution! It may happen (as in task 5.1) that there will be a need to convert rotation and power of an engine to a torque
that they cause. Please find the appropriate formula in the literature – it will be required.
3. Circular cross-sections – statically indeterminate structures
In the cases when we do not have a sufficient number of equations to calculate the reactions, one needs to find
conditions that will provide additional equations for the extra unknowns. For a simple twist state this is often the case of
a bar fixed at both ends. Therefore, the additional condition is the geometric condition: total angle of twist is 0.
You should solve the example no.: 15.5.3 from book [2] and tasks no.: 5.10 / p. 69 , 5.12 / p. 70 from book
[3].
© Copyright: Anna Stręk. Autorem arkusza jest Anna Stręk. Arkusz stanowi przedmiot prawa autorskiego określonego w Ustawie o prawie
autorskim i prawach pokrewnych (Dz. U. 1994 r. Nr 24 poz.83 z późn. zmianami). Autor nie wyraża zgody na inne wykorzystywanie arkusza niż
podane w jego przeznaczeniu.
2
Sheet 08: Twist of circle cross-sections. Arkusz przeznaczony do ćwiczeń z przedmiotu „Strength of Materials” na II roku dziennych studiów
Wydziału Inżynierii Mechanicznej i Robotyki AGH na kierunku „Mechatronics in English” w roku akademickim 2014/2015.
• Ability to solve problems for statically determinate and indeterminate systems in twist (graph of the
angle of twist, unit angle of twist, twist moments; graphs of stress in the element and on the face of the
cross-section; design conditions, determination of diameters and allowable loads).
• Knowledge of formulas and the ability to use them (stress, strain, deformation, the torque of the engine
running).
• The form of stress and strain matrices in the twist state. Definition of the simple twist.
4. Literatura
[1] Piechnik S. "Mechanika techniczna ciała stałego", Wydawnictwo PK, Kraków 2007
[2] Bodnar A. „Wytrzymałość materiałów. Podręcznik dla studentów wyższych szkół technicznych”, wydanie drugie
poszerzone i poprawione, Kraków 2004, rozdział 15
[3] Niezgodziński M., Niezgodziński T. "Zadania z wytrzymałości materiałów", Wydawnictwo WNT, Warszawa 2012
© Copyright: Anna Stręk. Autorem arkusza jest Anna Stręk. Arkusz stanowi przedmiot prawa autorskiego określonego w Ustawie o prawie
autorskim i prawach pokrewnych (Dz. U. 1994 r. Nr 24 poz.83 z późn. zmianami). Autor nie wyraża zgody na inne wykorzystywanie arkusza niż
podane w jego przeznaczeniu.
3