SHIP: un esperimento di beam dump al CERN-SPS per la ricerca di HIdden Particles Walter M. Bonivento CERN/INFN Cagliari ! a rappresentare la Collaborazione SHIP (il sottoscritto e Giovanni De Lellis tra i proponenti) SPC EOI-2013-010 CNS2 INFN 18/02/2014 Motivazione scientifica LHC: scoperta Higgs e niente altro finora in ricerche dirette. Idem nella Fisica del (charged) Flavor. ! Massa del Higgs misurata a ≈125 GeV —> SM teoria di campo effettiva, auto-consistente, debolmente accoppiata fino a grandi scale (almeno fino a 1010GeV, vedi Strumia, Giudice, Isidori ecc.)! Tuttavia rimangono sul tavolo almeno 3 “problemi” sperimentali dello SM (+altri teorici):! • massa dei neutrini! • asimmetria barioni-antibarioni universo (BAU)! • materia oscura Walter M. Bonivento - CERN/INFN Cagliari !2 CNS2 18/02/2014 Su una simile linea di pensiero… Michelangelo Mangano, Aspen 2014 Walter M. Bonivento - CERN/INFN Cagliari !3 CNS2 18/02/2014 2 Theoretical motivation In type-I seesaw models (for a review see Ref. [17]) the extension of the SM fermion sector by three right-handed (Majorana) leptons, NI , where I = (1, 2, 3), makes the leptonic sector similar to the quark sector (see Fig. 1). Irrespective of their masses, these neutral leptons can explain the flavour oscillations of the active neutrinos. Four di↵erent domains of HNL mass, MN , are usually considered: Possibile soluzione: νMSM T.Asaka e M.Shaposhnikov, PLB620 (2005) 17 Three Generations of Matter (Fermions) spin ½ 105.7 MeV 0.511 MeV 80.4 GeV 0 Higgs boson Right 0 Right Left b bottom νe N1 νμ N2 ντ N3 ~GeV 0 ~GeV 0 tau neutrino muon neutrino electron neutrino spin 0 Left Left strange Left 0 -⅓ 105.7 MeV 0.511 MeV γ 0 4.2 GeV s ~10 keV 0 weak force down gluon 1.777 GeV photon 91.2 GeV 0 0 Z 0 0 weak force 80.4 GeV 126 GeV H Higgs boson spin 0 = + , , ; , , ( , , ) 2 mixing con neutriniisattivi where are the lepton doublets, the Higgs doublet, and couplings Walter M. Bonivento - CERN/INFN Cagliari !4 Discovery of Higgs vital for the see-saw model! tau Right muon Left -1 Right electron Left weak force -1 -1 Right ± Left tau ±1 Leptons τ Right Left muon -1 Right electron Left e -1 Right Left Leptons μ τ e W W N2 e N3 quasi degeneri massa circa GeV ->oggetto diFigure questa proposta; spiegano la 1: Particle content of the SM and its minimal extension in the neutrino sector. In the (left) SM the partners of neutrinos (attraverso are absent. In the (right) ⌫MSM all fermions have both left- and right-handed asimmetria right-handed materia-antimateria Introduce three neutraland fermion singlets – right-handed Majorana leptons with Majorana components masses below the Fermi scale. la leptogenesi con sphalerons) e danno mass ”Heavy Neutral Leptons (HNL)” Minkowski 1977 massa ai neutrini tramite il meccanismo Yanagida 1979 • Make the leptonic sector similar to the quark sector Gell-Mann, Ramond, Slansky 1979 see-saw (type 1)! Glashow 1979 -1 μ 1.777 GeV 0 126 GeV -⅓ Left Left Left tau neutrino muon neutrino electron neutrino • 0 Left 0 0 0 d top Bosons (Forces) spin 1 mixing con gli altri νμ ντ νe due—>candidato ZDarkH Matter (ne parlo dopo…piatto caldo!)! 91.2 GeV charm 0 Left photon Bosons (Forces) spin 1 bottom -⅓ t g 0 173.2 GeV ⅔ 104 MeV 4.8 MeV Left Quarks 0 Right strange Left -⅓ Right Left down 0 4.2 GeV -⅓ -⅓ Right Quarks γ s b d N1 di massa circa keV con un piccolo 104 MeV up Right name→ c ⅔ Right gluon Left top u III 1.27 GeV 2.4 MeV charge→ ⅔ 0 Right charm Right Right up 4.8 MeV Left • Left name→ ⅔ Left ⅔ charge→ ⅔ II I mass→ 0 173.2 GeV Left 1.27 GeV 2.4 MeV Left mass→ Right soluzione elegante dei tre IIproblemi suddetti III I con estensione dello SM: 3 partner di Majorana g c t u (HNL) destrorsi e sterili dei neutrini ordinari! Right Three Generations of Matter (Fermions) spin ½ ±1 ± weak force + . are the corresponding new Yukawa CNS2 18/02/2014 Responsible for the Yukawa couplings! 1. See-saw: Lower limit on mixing angle with active neutrinos to produce os 2. BAU: Upper limit on mixing angle to guarantee out-of-equilibrium oscillati 3. BBN: Decays of Produzione di N2,3 and Limit on lifetime • • , < 0. must respect current abundances of light nuc ( >3 ) 4. Experimental: No observation so far nel2 νMSM forti limitazioni nello spazio dei parametri Constraints 1-3 now indicate that previous searches were largely outside interesting (U ,m)! molte ricerche di HNL in passato ma, per m>mK, con sensibilità’ non di interesse cosmologico (es LHCb in 2 -4 decadimenti del B raggiunge U ≈10 , arXiv:1401.5361) oduction in mixing with active neutrino from leptonic/semi-leptonic weak decays of arm mesons • production questadepend proposta: Total on = ricerca in decadimenti dei mesoni D , , , (prodotti ad alta statistica nella collisione di p di 400 GeV su bersaglio fisso)! Relation between , and depends on exact flavour mixing • il con i neutrini attiviassume e’ dato da UlI=YlI For themixing sake of determining a search strategy, scenario with a predominant coupling to the muon flavour (arXiv:0705.1729) Production in mixing with active neutrino from leptonic/semi-leptonic weak de charm mesons ! ! ! v/√2 m! • Total production depend on , , , , , Future Hadron Collider meeting, CERN, February 6, 2014 • • la relazione tra Ue, Uμ ecc oduction mechanism “probes” = mescolamento tra sapori Relation between , and depends on exact flavour mixing dipende dal For the sake of determining a search strategy, assume scenario ) ~ 10 10 (arXiv:0705.1729) withCagliari a predominant coupling to the muon flavour CNS2 Walter M. Bonivento - CERN/INFN 18/02/2014 , Br( = !5 Decadimenti del N2,3 • Accoppiamento HNL-ν attivo molto debole —>N2,3 hanno vita media molto lunga • distanze di decadimento O(km)! • Vari modi di decadimento : i BR’s dipendono dal mescolamento tra sapori • Probabilita’ che N2,3 decada nel volume fiduciale dell’esperimento —> numero di eventi ∝U 2 μ ∝ 4 Uμ Walter M. Bonivento - CERN/INFN Cagliari !6 CNS2 18/02/2014 Vincoli di progetto massimizzare l’intensita’ di protoni su bersaglio —>produzione di charm! • massimizzare l’accettanza longitudinale! • GLi HNL prodotti nel decadimento del charm possono avere un pT significativo e pure i prodotti di decadimento! fraction of HNLs/(4 mrad) ! ! ! ! 0.06 angolo polare del 0.05 0.04 0.03 0.02 0.01 0 0 ! • 0.07 fraction of muons/(8 mrad) • 0.08 0.07 angolo polare del μ 0.06 0.05 0.04 0.03 0.02 0.01 0.05 0.1 0.15 0 0 0.2 0.1 0.2 0.3 0.4 ! (rad) ! (rad) • il rivelatore deve essere posto il piu’ vicino possibile al bersaglio per massimizzare l’accettanza • la distanza deve essere bilanciata dalla necessita’ di ridurre il flusso di muoni Sopprimere il fondo di νe e νμ —>bersaglio denso (W vs Cu fa un fattore 2!) Walter M. Bonivento - CERN/INFN Cagliari !7 CNS2 18/02/2014 Struttura esperimento: dump ! wall / earth ! ! target hadron absorber beam Experiment (detector, fiducial volume) mop−up shielding muon shield (U / W) ! ! • ~ 0.5m • ~ 1m ~ 52m ~ 1m 19 Figure 7: Schematic view of the target, hadron absorber and muon shield in front of the experiment. The total Fascio SPS estratto 400GeV; intensità’ come CNGS 4.5x10 pot/anno. Se upgrade PS si length from the target to the entrance of the fiducial volume is ⇠ 60 m. 19 puo’ arrivare a 7x10 : caratteristiche dei fasci discusse in grande dettaglio con esperti del 20 CERN —>design realistico —>5 anni di run SENZA UPGRADE: 2x10 pot! 4.2 • ~ 3m Detector detector consists di of a muoni: long decay volume a spectrometer. For a given length, Bersaglio di W eTheassorbitore 40m followed di W, bycomplementato da detector Fe o Pb fino a 60m, o the detector diameter should be maximised. In the discussion below the 5 m aperture of the LHCb magneti di sweeping seguiti da assorbitore in Fe! spectrometer [59] is taken as a realistic scale. Figure 8 shows a scan of the length of the detector for both a single detector element and for 9 13 • problema non twobanale longitudinally arrangedil detector For ae’ given HNL lifetime and detector aperture, the perche’ flussoelements. di muoni enorme: 5×10 /SPS-spill(5×10 pot); 3 5 of HNLs decaying in the apparatus with the decay products going through the spectrometer possibilita’ dinumber estrazione considerate: 1sec, 1msec (riduzione >10 ), 10μs saturates as a function of the length of the detector. The use of two magnetic spectrometers increases the geometric acceptance by 70% compared to a single element. Therefore, the proposed detector sicuramente il problema tecnico piu’ difficile will have two almost identical detector elementsdell’esperimento as depicted in Fig. 9. A diagram of a single detector element is also shown in Fig. 10. To reduce to a negligible level the background caused by interactions of neutrinos with the remaining air inside the decay volume, a pressure of less than ⇠ 10 2 mbar will be required (see Section 5). Each Walter M. Bonivento - CERN/INFN Cagliari CNS2 18/02/2014 detector element therefore consists of a ⇠50 m long!8cylindrical vacuum vessel of 5 m diameter. The first ⇠ 40 m constitute the decay volume and the subsequent 10 m are used for the magnetic spectrometer. Tunnel di decadimento e spettrometro Vuoto 10-5atm (NB: NA62 10-8atm!) ! ! L’uso del secondo tunnel aumenta l’accettanza del 70% Walter M. Bonivento - CERN/INFN Cagliari !9 CNS2 18/02/2014 Possibile zona sperimentale Rivelatore posto IN SUPERFICIE Estrazione in SPS-LSS2, beam splitting/switch all’inizio della SPS-NA transfer line (TT20): gli studi effettuati per il proposal della facility del neutrino molto utili per noi Walter M. Bonivento - CERN/INFN Cagliari !10 CNS2 18/02/2014 Rivelatori proposti • Quasi nessun R&D da fare: ce la possiamo fare con rivelatori di tipo tradizionale, ottimizzando i parametri! • —>questo significa che dall’approvazione si puo’ iniziare subito a costruire il rivelatore! • Calorimetri EM (x2) : Shashlik tipo LHCb • Camere a mu e filtri (x3)—> da progettare. Si potrebbe recuperare da OPERA, almeno parzialmente.! • Camere di tracciamento e di veto (x2): straw tubes come per NA62, bassa X0 , 0.5% per 4 stazioni! • Rivelatore per ντ (vedi dopo) • trigger e acquisizione dati: pensiamo di utilizzare il modello HLT dell’upgrade di LHCb (i.e. no L0) Walter M. Bonivento - CERN/INFN Cagliari !11 CNS2 18/02/2014 Il magnete (x2) • L’esperimento richiede un magnete dipolare simile a quello di LHCb, ma con 40% meno ferro e tre volte meno potenza dissipata. ! • 2 LHCb: 4Tm e Apertura di ~ 16 m ! • Questo design: ! 2 - Apertura 20 m - Due bobine di Al-99.7 - Campo di picco ~ 0.2 T - Integrale di campo ~ 0.5 Tm su 5 m ! • risoluzione in massa 40MeV per p<20GeV (75% dei decadimenti hanno entrambe le tracce che soddisfano a questo criterio) ! ! ! + magnete per rivelatore di ντ (possibilmente ricuperato da qualche magnete al CERN o altrove) Walter M. Bonivento - CERN/INFN Cagliari !12 CNS2 18/02/2014 Soppressione fondi • Interazioni di neutrini attivi fondo • nel tunnel di decadimento: a pressione -5 4 atmosferica 2x10 interazioni —>vuoto 10 bar -8 (molto meno di NA62 che usa 10 bar!) • nell’ultima lunghezza di interazione del dump —0 >produzione di K L—>μπν 20 • in 2x10 pot 600k CC interazioni di νμ • 150 eventi con entrambe le particelle cariche che escono dallo spettrometro —>rigettate da tagli cinematica sul parametro di impatto • inoltre un altro fattore 10 si puo’ ottenere istrumentando l’ultima parte del dump per “taggare” le interazioni di neutrino Walter M. Bonivento - CERN/INFN Cagliari !13 segnale CNS2 18/02/2014 Sensibilita’ • Assumendo 0 fondo (che pare ben giustificato dai nostri studi)! • finestra di opportunità’ per questo esperimento di sondare la zona di interesse cosmologico! BBN • se si rinuncia a spiegare la Dark Matter —>modello molto meno vincolato, spazio dei parametri di interesse cosmologico più esteso, HNL non degeneri Walter M. Bonivento - CERN/INFN Cagliari !14 solo con N—>μπ (in uno scenario in cui l’accoppiamento ! al sapore muonico e’ dominante) CNS2 18/02/2014 Altre misure possibili • • • Studio delle interazioni del neutrino τ con statistica 150x attuale! • L’esperimento DONUT ha osservato 9 eventi (da charm) con 1.5 stimato di fondo! • L’esperimento OPERA ha osservato 3 eventi (da oscillazione)! Rivelatore a emulsioni con la tecnologia di OPERA (De Lellis) ma con massa molto minore (375 mattoni) molto compatto (2m) posto davanti al tunnel di decadimento per il HNL —>immerso in campo B (consentirebbe l’dentificazione di anti-ντ, mai osservati) e seguito da un rivelatore di muoni (per sopprimere il fondo di charm)! Si stima di dovere cambiare il rivelatore circa 10 volte 2 nel corso del run —>totale di 2700 m di piates di emulsioni —> 2.5% di OPERA Walter M. Bonivento - CERN/INFN Cagliari !15 Sensibilità’ da valutare per particelle esotiche a vita media lunga e interagenti molto debolmente con massa leggera (portali per l’Hidden sector) CNS2 18/02/2014 Collaborazione internazionale Gruppo iniziale di poche persone: CERN, I(Cagliari,Napoli), CH(Zurigo), UK (ICL): 4 spoke-persons nella collaborazione! + vari teorici(EPFL,INR Moscow, ILTP Leiden) ! ! Contatti avviati con molti altri gruppi in varie nazioni Walter M. Bonivento - CERN/INFN Cagliari !16 CNS2 18/02/2014 Opportunità per INFN • Siamo tra i proponenti e progettisti iniziali quindi partiamo con il piede giusto! • • In questa fase tutte le idee innovative e buone sono benaccette. Al momento abbiamo la responsabilità’ di coordinare il sistema PID (mu,CALO e veto calo) e co-coordinare il rivelatore di ντ (Giovanni de Lellis, NA) ma altri si inseriranno rapidamente —>fare in fretta a decidere cosa ci interessa costruire! • Rivelatori, meccanica, elettronica —>progettazione da fare • trigger, DAQ,computing: esperti del CERN coinvolti nel design; valutando le soluzioni più innovative per il computing model: stiamo pensando a FairRoot • idee di fisica aggiuntive, simulazioni Walter M. Bonivento - CERN/INFN Cagliari !17 CNS2 18/02/2014 Stato della proposta (i) • SPC EOI-2013-010 + addendum sottomessa Ottobre 2013 e discussa alla riunione. EOI trasmessa e discussa al Research Board ma non ancora valutata da quest’ultimo.! • interazione con referee di SPSc e discussione alla riunione di Gennaio 2014. ! • Raccomandazione SPSc: The Committee received with interest the response of the proponents to the questions raised in its review of EOI010. The SPSC recognises the interesting physics potential of searching for heavy neutral leptons and investigating the properties of neutrinos. Considering the large cost and complexity of the required beam infrastructure as well as the significant associated beam intensity, such a project should be designed as a general purpose beam dump facility with the broadest possible physics programme, including maximum reach in the investigation of the hidden sector. To further review the project the Committee would need an extended proposal with further developed physics goals, a more detailed technical design and a stronger collaboration. Walter M. Bonivento - CERN/INFN Cagliari !18 CNS2 18/02/2014 Stato della proposta (2) • L’Extended Directorat del CERN ha istituito (la settimana scorsa) una task force composta da fisici degli acceleratori del CERN (e.g. Arduini) per dare un “first assessment” per la fattibilita’ del nostro esperimento in termini di beam line e dump! 1. dare un input alla discussione allo Scientific Policy Committee a Maggio ! 2. la cui raccomandazione sara’ (probabilmente) trasferita al Council di Giugno! • Primo meeting open di Collaborazione il 10-12 Giugno (stiamo fissando il luogo, vicino al CERN, Francia o Svizzera): sara’ un workshop a cui sono invitati molti teorici e si discutera’ un progetto tecnico preliminare dell’esperimento! • Pagina web http://ship.web.cern.ch/ship/ ! • Tempo stimato per il proposal: 1 anno.! • Costo stimato: 100M per il fascio 30M per il rivelatore (inclusi i contributi in-kind) Walter M. Bonivento - CERN/INFN Cagliari !19 CNS2 18/02/2014 Visti da fuori(1) Final remarks • New physics can show up at low energy, in the form of low-mass BSM particles (vMSM neutral leptons, sterile ν’s, axions, low-mass WIMPS) or high-scale phenomena revealed by low-scale processes (B, D decays/mixings, μ→eγ, g–2, EDM, etc) • None of these observations would reduce the interest in expanding the energy reach of direct exploration Ancora First expressions of interest for physics with the injectors Mangano ! a Workshop del FCC ! • The direct understanding of the true nature of EWSBalremains critical component of the programme (among many reasons, cfr e.g. settimana scorsa a! remarks on EW phase transition and baryogenesis, by Nima and la Christophe) an • Naturalness remains an ever-growing concern, which cries forGinevra!!!!! FHC.1.3 Continued exploration of SM particles FHC.1.3.1 Physics of the top quark (rare decays, FCNC, anomalous couplings, ...) FHC.1.3.2 Physics of the bottom quark (rare decays, CPV, ...) FHC.1.3.2 Physics of the tau lepton (e.g. tau -> 3 mu, tau -> mu gamma and other LFV decays) FHC.1.3.2 W/Z physics FHC.1.3.3 QCD dynamics extension of the energy reach of our facilities FHC.1.4 Opportunities other than pp physics: FHC.1.4.1 Heavy Ion Collisions FHC.1.4.2 Fixed target experiments: FHC.1.4.2.1 "Intensity frontier": kaon physics, mu2e conversions, beam dump experiments and searches for heavy photons, heavy neutrals, and other exotica... FHC.1.4.2.2 Heavy Ion beams for fixed-target experiments FHC.1.5 Theoretical tools for the study of 100 TeV collisions Walter M. Bonivento - CERN/INFN Cagliari FHC.1.5.1 PDFs!20 FHC.1.5.2 MC generators CNS2 18/02/2014 Visti da fuori(2) Is it the end? Certainly not! -- Dark matter -- Baryon Asymmetry in Universe -- Neutrino masses are experimental proofs that there is more to understand. We must continue our quest Alain Blondel FCC-ee experiments summary at least 3 pieces are still missing Blondel, plenary summary ! FCC-ee al Workshop ! della settimana scorsa a! Ginevra!!!!! Since 1998 it is established that neutrinos have mass and this very probably implies new degrees of freedom «sterile», very small coupling to known particles completely unknown masses (eV to ZeV), nearly impossile to find. .... but could explain all:summary DM, BAU, -masses Alainperhaps Blondel FCC-ee experiments Walter M. Bonivento - CERN/INFN Cagliari !21 CNS2 18/02/2014 Conclusioni • Test di una spiegazione alternativa rispetto ai soliti modelli (SUSY, ED) di importanti fenomeni osservati non compatibili con il Modello Standard ! • Tecniche complementari rispetto a esperimenti esistenti —>lunghe vite medie! • Anche fisica dei neutrini attivi, per gli appassionati • Il fascio c’e’ e il rivelatore si puo’ costruire in breve tempo appena data l’approvazione. Tutte le tecnologie proposte esistono e funzionano! Non ci sono R&D cruciali per l’esperimento che necessitano anni di studi preliminari.! • Una proposta che il CERN sta valutando molto seriamente. Nessuna altra facility al mondo ha (e aggiungerei avra’, viste le proposte in circolazione) le potenzialita’ per effettuare questa misura con sensibilita’ competitive o comunque in grado di sondare la regione di interesse cosmologico, per m>mK! • Una grande opportunita’ per l’Ente di imbarcarsi su questa nave e decidere la rotta! Chi e’ interessato si faccia avanti!! Walter M. Bonivento - CERN/INFN Cagliari !22 CNS2 18/02/2014 Dovevamo parlare di N1 • Stabilita’ —> τ>τ(universo)! • Produzione —>creato nell’Universo nella fase iniziale nelle reazioni ll—>νN1 , qq—>νN1 deve fornire la corretta abbondanza di DM! • Decadimento —> il decadimento radiativo N1—>γν fornisce una linea nello spettro X a E(γ)=m1/2! • Allargamento linea da Doppler e da effetti strumentali vari! ! Walter M. Bonivento - CERN/INFN Cagliari zona di esclusione! (OTTENUTA CON MISURE! SU SINGOLE GALASSIE) !23 CNS2 18/02/2014 ! ! ! Submitted to ApJ, 2014 February 10 Preprint typeset using LATEX style emulateapj v. 04/17/13 DETECTION OF AN UNIDENTIFIED EMISSION LINE IN THE STACKED X-RA CLUSTERS with heavy elements (Mitchell et al. (1976); Serlemitsos now we do know for sure it exists — from X-ray and et al. (1977) and later works) that escape from galaxies Walter M. Bonivento - CERN/INFN Cagliari medium CNS2 gravitational-lensing observations of the18/02/2014 Bullet Cluster, and accumulate in the intracluster/intergalactic !24 Clowe et al. (2006), and we know accurately its cosmo(ICM) over billions of years of galactic and stellar evo1 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridg NASA Goddard Space Flight Center, Greenbelt, MD, USA. Submitted to ApJ, 2014 February 10 Esra Bulbul1,2 , Maxim Markevitch2 , Adam Foster1 , Randall K. Smith1 Mich Scott W. Randall1 1. INTRODUCTION states and nonthermal emission processesdi such as charge la significanza dichiarata e’ 3σ —>pertanto e’ il caso exchange (Paerels & Kahn 2003). Galaxy clusters are the largest aggregations of hot inAs for dark matter, 80 years from its discovery by tergalactic gas and dark The cauti. gas is enriched aspettare ed matter. essere (Zwicky 1933, 1937), its nature is still unknown (though ABSTRACT We detect a weak unidentified emission line at E = (3.55 3.57) ± 0.03 ke spectrum of 73 galaxy clusters spanning a redshift range 0.01 0.35. MOS independently show the presence of the line at consistent energies. When the into three subsamples (Perseus, Centaurus+Ophiuchus+Coma, and all other > 3 statistical significance in all three independent MOS spectra and the PN The line is also detected at the same energy in the Chandra ACIS-S and ACIS-I cluster, with a flux consistent with XMM-Newton (however, it is not seen in t Virgo). The line is present even if we allow maximum freedom for all the kn lines. However, it is very weak (with an equivalent width in the full sample of on within 50–110 eV of several known faint lines; the detection is at the limit of capabilities and subject to significant modeling uncertainties. On the origin of there should be no atomic transitions in thermal plasma at this energy. An i the decay of sterile neutrino, a long-sought dark matter particle candidate. A matter is in sterile neutrinos with ms = 2E = 7.1 keV, our detection in the full a neutrino decay mixing angle sin2 (2✓) ⇡ 7 ⇥ 10 11 , below the previous upper on the cluster masses and distances, the line in Perseus is much brighter than e significantly deviating from other subsamples. This appears to be because of line at E = 3.62 keV in Perseus, which could be an Arxvii dielectronic recom its emissivity would have to be 30 times the expected value and physically diffi principle, such an anomaly might explain our line detection in other subsam would stretch the line energy uncertainties. Another alternative is the above combined with the nearby 3.51 keV K line also exceeding expectation by facto with Chandra and Suzaku, and eventually Astro-H, are required to determine line. 1. INTRODUCTION states and nonthermal em exchange (Paerels & Kah As for dark matter, 8 (Zwicky 1933, 1937), its n now we do know for sur gravitational-lensing obse Clowe et al. (2006), and logical abundance, e.g., H the various plausible dar has motivated our presen ile neutrino that is inclu standard model of particl (1994) and later works; Abazajian et al. (2007); ile neutrinos should decay (ms , ✓) = 1.38 ⇥ 10 where the particle mass are unknown but tied to neutrino production mod The decay of sterile neutr E = ms /2 and an active ile neutrino may lie in the • Galaxy clusters are the largest aggregations of hot intergalactic gas and dark matter. The gas is enriched with heavy elements (Mitchell et al. (1976); Serlemitsos et al. (1977) and later works) that escape from galaxies and accumulate in the intracluster/intergalactic medium (ICM) over billions of years of galactic and stellar evolution. The presence of various heavy ions is seen from their emission lines in the cluster X-ray spectra. Data from large e↵ective area telescopes with spectroscopic capabilities, such as ASCA, Chandra, XMM-Newton and Suzaku, uncovered the presence of many elements in the ICM, including O, Ne, Mg, Si, S, Ar, Ca, Fe, and Ni (for a review see, e.g., B¨ohringer & Werner 2010). Recently, weak emission lines of low-abundance Cr and Mn were discovered (Werner et al. 2006; Tamura et al. 2009). Relative abundances of various elements contain valuable information on the rate of supernovae of di↵erent types in galaxies (e.g., Loewenstein 2013) and illuminate the enrichment history of the ICM (e.g., Bulbul et al. 2012b). Line ratios of various ions can also provide diagnostics of the physical properties of the ICM, uncover the presence of multi-temperature gas, nonequilibrium ionization • [email protected] ! Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138. 2 NASA Goddard Space Flight Center, Greenbelt, MD, USA. Submitted to ApJ, 2014 February 10 CNN breaking news 1 2 idea: mettere insieme 73 osservazioni di galassie per aumentare la statistica: analizzate le osservazioni di XMMNewton e Chandra. Correzioni per il red-shift etc. ABSTRACT We detect a weak unidentified emission line at E = (3.55 3.57) ± 0.03 keV in a stacked XMM spectrum of 73 galaxy clusters spanning a redshift range 0.01 0.35. MOS and PN observations independently show the presence of the line at consistent energies. When the full sample is divided into three subsamples (Perseus, Centaurus+Ophiuchus+Coma, and all others), the line is seen at > 3 statistical significance in all three independent MOS spectra and the PN “all others” spectrum. The line is also detected at the same energy in the Chandra ACIS-S and ACIS-I spectra of the Perseus cluster, with a flux consistent with XMM-Newton (however, it is not seen in the ACIS-I spectrum of Virgo). The line is present even if we allow maximum freedom for all the known thermal emission lines. However, it is very weak (with an equivalent width in the full sample of only ⇠ 1 eV) and located within 50–110 eV of several known faint lines; the detection is at the limit of the current instrument arXiv:1402.2301v1 [astro-ph.CO] 10 Feb 2014 capabilities and subject to significant modeling uncertainties. On the origin of this line, we argue that there should be no atomic transitions in thermal plasma at this energy. An intriguing possibility is the decay of sterile neutrino, a long-sought dark matter particle candidate. Assuming that all dark matter is in sterile neutrinos with ms = 2E = 7.1 keV, our detection in the full sample corresponds to a neutrino decay mixing angle sin2 (2✓) ⇡ 7 ⇥ 10 11 , below the previous upper limits. However, based on the cluster masses and distances, the line in Perseus is much brighter than expected in this model, significantly deviating from other subsamples. This appears to be because of an anomalously bright line at E = 3.62 keV in Perseus, which could be an Arxvii dielectronic recombination line, although its emissivity would have to be 30 times the expected value and physically difficult to understand. In principle, such an anomaly might explain our line detection in other subsamples as well, though it would stretch the line energy uncertainties. Another alternative is the above anomaly in the Ar line combined with the nearby 3.51 keV K line also exceeding expectation by factor 10–20. Confirmation with Chandra and Suzaku, and eventually Astro-H, are required to determine the nature of this new line. :1402.2301v1 [astro-ph.CO] 10 Feb 2014 DETECTION OF AN UNIDENTIFIED EMISSION LINE IN THE STACKED X-RAY SPECTRUM OF GALAXY CLUSTERS Esra Bulbul1,2 , Maxim Markevitch2 , Adam Foster1 , Randall K. Smith1 Michael Loewenstein2 , and Scott W. Randall1 Un altra breaking news! An unidentified line in X-ray spectra of the Andromeda galaxy and Perseus galaxy cluster A. Boyarsky1 , O. Ruchayskiy2, D. Iakubovskyi3,4 and J. Franse1,5 Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, Leiden, The Netherlands 2 Ecole Polytechnique F´ed´erale de Lausanne, FSB/ITP/LPPC, BSP, CH-1015, Lausanne, Switzerland 3 Bogolyubov Institute of Theoretical Physics, Metrologichna Str. 14-b, 03680, Kyiv, Ukraine 4 National University “Kyiv-Mohyla Academy”, Skovorody Str. 2, 04070, Kyiv, Ukraine 5 Leiden Observatory, Leiden University, Niels Bohrweg 2, Leiden, The Netherlands We identify a weak line at E ∼ 3.5 keV in X-ray spectra of the Andromeda galaxy and the Perseus galaxy cluster – two dark matter-dominated objects, for which there exist deep exposures with the XMM-Newton X-ray observatory. Such a line was not previously known to be present in the spectra of galaxies or galaxy clusters. Although the line is weak, it has a clear tendency to become stronger towards the centers of the objects; it is stronger for the Perseus cluster than for the Andromeda galaxy and is absent in the spectrum of a very deep “blank sky” dataset. Although for individual objects it is hard to exclude the possibility that the feature is due to an instrumental effect or an atomic line of anomalous brightness, it is consistent with the behavior of a line originating from the decay of dark matter particles. Future detections or non-detections of this line in multiple astrophysical targets may help to reveal its nature. arXiv:1402.4119v1 [astro-ph.CO] 17 Feb 2014 2 Ecole Polytechnique F´ed´erale de Lausanne, FS 3 Bogolyubov Institute of Theoretical Physics 4 National University “Kyiv-Mohyla Acade Leiden Observatory, Leiden University, We identify a weak line at E ∼ 3.5 keV in X-ray cluster – two dark matter-dominated objects, for which observatory. Such a line was not previously known t Although the line is weak, it has a clear tendency to stronger for the Perseus cluster than for the Androm “blank sky” dataset. Although for individual objects to an instrumental effect or an atomic line of anomal originating from the decay of dark matter particles. F astrophysical targets may help to reveal its nature. The nature of dark matter (DM) is a question of crucial importance for both cosmology and for fundamental physics. As neutrinos – the only known particles that could be dark matter candidates – are known to be too light to be consistent with various observations (see e.g. [1] for a review), it is widely anticipated that a new particle should exist to extend the hot Big Bang cosmology paradigm to dark matter. Although many candidates have been put forward by particle physicists (see e.g. [2]), little is known experimentally about the properties of DM particles: their masses, lifetimes, and interaction types remain largely unconstrained. A priori, a given DM candidate can possess a decay channel if its lifetime exceeds the age of the Universe. Therefore, the search for a DM decay signal provides an important test to constrain the properties of DM in a model-independent way. For fermionic particles, one should search above the Tremaine-Gunn limit [3] (! 300 eV). If the mass is below 2me c2 , such a fermion can decay to neutrinos and photons, and we can expect two-body radiative decay with photon energy Eγ = 21 mDM . Such particles can be searched for in X-rays (see [4] for review of previous searches). For each particular DM model, the particle’s mass, lifetime and other parameters are related by the requirement to provide the correct DM abundance. For example, for one very interesting DM candidate – the right-handed neutrino – this requirement restricts the mass range to 0.5 − 100 keV [4, 5]. A large part of the available parameter space for sterile neutrinos is fully consistent with all astrophysical and cosmological bounds [6], and it is important to probe it still further. The DM decay line is much narrower than the spectral resolution of the present day X-ray telescopes and, as previous searches have shown, should be rather weak. The X-ray spectra of astrophysical objects are crowded with weak atomic and instrumental lines, not all of which may be known. Therefore, even if the exposure of available observations continues to increase, it is hard to exclude an astrophysical or instrumental origin of any weak line found in the spectrum of individual The nature of darkconsistente matter (DM) is a question of crucial object. However, the same feature is present in the spectra • Osservazione di una lineaimat 3.5KeV with if3-4 σ significance portance for both cosmology and for fundamental physics. As of a number of different objects, and its surface brightness and neutrinos – the only known particles that could be dark matrelative normalization between objects is consistent with the ter candidates – are known too light to be consistent expected behavior the DM signal, this cansulle provideshape much • Analisi diversa dallato be precedente e suwith dati diversi, con ofcontrolli anche ecc. various observations (see e.g. [1] for a review), it is widely anmore convincing evidence about its nature. ticipated that a new particle should exist to extend the hot Big The present paper takes a step in this direction. We present Bang analisi cosmology paradigm to dark matter. Although many • Molte in corso che potranno chiarire la situazione! the results of the combined analysis of many XMM-Newton candidates have been put forward by particle physicists (see observations of two objects at different redshifts – the Perseus e.g. [2]), little is known experimentally about the properties and the Andromeda galaxy (M31) – together with a of DM particles: their masses, lifetimes, and interaction • Missione Astro-H sara’ lanciata neltypes 2015cluster e aiutera’ a chiarire la situazione long exposure “blank sky” dataset. We study the 2.8–8 keV remain largely unconstrained. A priori, a given DM candidate energy band and show that the only significant un-modeled can possess a decay channel if its lifetime exceeds the age excess that is present in the spectra of both M31 and Perseus of the Universe. Therefore, the search for a DM decay signal is located at ∼ 3.5 keV energy and the lineCNS2 in Perseus is corWalter M. Cagliari 18/02/2014 provides anBonivento important test-toCERN/INFN constrain the properties of DM in 2 ! 5 rectly redshifted as compared to Andromeda (at 95% CL). The a model-independent way. For fermionic particles, one should 5 .4119v1 [astro-ph.CO] 17 Feb 2014 1 Nel grafico bi-dimensionale cases, such as the core of the Perseus cluster where many neutral filaments are known, it is possible that CX could -7 10be large enough to create a small fraction of the total DM overproduction X-ray emission, although Excluded it would notbycreate or enhance X-ray observations -8 10a line at 3.57 keV or the DR line at 3.62 keV. CX could not dominate the overall emission, however, as it would -9 create Fe XVII and other lines that are not detected. 10also 10-10 Tremaine-Gunn / Lyman-α 2 Interaction strength Sin (2θ) 22 5.2. Sterile neutrino decay line? An interesting interpretation of the line is the decay signature of the sterile neutrino, a long-sought dark mat10-11 ter particle candidate (Boyarsky et al. (e.g., 2009), see our §1). The mass of the sterile neutrino would be douNot enough DM m =7.1 keV. The line flux 10-12 ble the decay photon energy, s detected in our full sample corresponds to a mixing angle -13 10 for the decay sin2 (2✓) ⇠ 7 ⇥ 10 11 . This value is below 1 2 5 10 50 the upper limits placed by the previous searches, shown Dark matter MDMXMM-Newton [keV] in Fig. 12. Our detection from themass stacked MOS observations galaxy clusters are shown with a star in red in that figure. Figure 13 shows the detections and upper limits we obtained from our various subsamples we FIG. 4: Constraints on(based sterileonneutrino DM cluster withinmasses νMSM [4]. The used in this work the included blue point would corresponds to the best-fit from and distances), as well as a comparison with value previous up- M31 if the per limit placed the Thick Bullet errorbars cluster by are Boyarsky line comes from DMusing decay. ±1σ et limits on the al. (2008) at 3.57 keV, which is the most relevant earlier flux. Thin errorbars to the uncertainty in the DM distri Figure 12. Recent constraints on sterile neutrino production constraint for us.correspond Since the mixing angle is a universal models, assuming sterile neutrinos constitute dark matter (Abazabutionquantity, in the center M31. measurements must agree. all theofsubsample jian et al. 2007). Straight lines in black show theoretical predictions The line in the subsample of fainter 69 clusters (full assuming sterile neutrinos constitute the dark matter with lepton number L = 0, L = 0.003, L = 0.01, L = 0.1. Constraints from the sample sans Perseus, Coma, Ophiuchus and Centaurus) cosmic X-rayM. background are -shown in the solidCagliari (blue and hatched Walter Bonivento CERN/INFN corresponds to a mixing angleCNS2 that is18/02/2014 consistent with regions). The region is solid green is excluded based upon obser- !26 the full sample; the same is seen (though with a mild vations of the di↵use X-ray background (Abazajian et al. 2007). Boyarski et al. Harvard, NASA ecc. e’ un campo vivo, vedremo… Fine Le camere diChambers tracciamento Tracking NA62 (K + → π + ν ν¯): • 2 m ! vessel @0.01 µbar. • 10 mm ! straws made of PET. • Demonstrated to work in vacuum. • X/X0=0.5 % for 4 view station! • 120 µm resolution/straw. H.Dijkstra Nikhef 24/1/14 Walter M. Bonivento - CERN/INFN Cagliari - 25 - !29 CNS2 18/02/2014 Il calorimetro e il rivelatore di muoni Electromagnetic Calo LHCb Shashlik ECAL: • 6.3×7.8 m2 √ σ(E) • E < 10%/ E ⊕ 1.5% LHCb ECAL Larger/better than required. But for N → µρ(ππ 0 (γγ)) need small (10 × 10 cm2 ) cells everywhere. H.Dijkstra Nikhef 24/1/14 Walter M. Bonivento - CERN/INFN Cagliari - 28 - !30 CNS2 18/02/2014
© Copyright 2024 ExpyDoc