www.sakshieducation.com QUADRATIC EQUATIONS OBJECTIVE PROBLEMS 1. (a) 2, –1 (c) 2. 3. 4. 5. 6. 7. x+ The solution of the equation − 1,− (b) 0, –1, 1 5 − 1 =2 x will be 1 5 (d) None of these The roots of the given equation ( p − q ) x 2 + (q − r ) x + (r − p) = 0 are (a) p−q ,1 r−p (c) r−p ,1 p−q If (b) q −r ,1 p−q (d) x 2 + y 2 = 25 , xy = 12 , then q −r p −q 1, x= (a) {3, 4} (b) {3, –3} (c) {3, 4, –3, –4} (d) {–3, –3} a(x 2 + 1) − (a 2 + 1)x = 0 The roots of the equation (a) a, 1 a (b) a, 2a (c) a, 1 2a (d) None of these The value of 2 + 1 1 2+ 2 + ...........∞ are is (a) 1− 2 (b) 1 + (c) 1± 2 (d) None of these 2 The number of real solutions of the equation | (a) 1 (b) 2 (c) 3 (d) 4 The roots of the equation x4 − 8x 2 − 9 = 0 (a) ±3, ± 1 (b) (c) ±2, ± i (d) None of these x | 2 – 3 | x | +2 = 0 are ±3, ± i www.sakshieducation.com are www.sakshieducation.com 8. Let one root of 3− 5 (a) (c) 9. where ax 2 + bx + c = 0 a, b , c are integers be 3+ 5 , then the other root is (b) 3 (d) None of these 5 3x +1 +1 = x The roots of the equation (a) 0 (b) 1 (c) 0, 1 (d) None are 10. The value of x = 2 + 2 + 2 + ..... is (a) –1 (b) 1 (c) 2 (d) 3 11. If P(x ) = ax 2 + bx + c and Q(x ) = −ax 2 + dx + c ac ≠ 0 , where (a) Four real roots (b) Two real roots (c) Four imaginary roots (d)None of these 12. The real roots of the equation (b) 1, 4 (c) – 4, 4 (d) None of these 13. If the roots of the equation P ( x ).Q ( x ) = 0 has at least are x 2 + 5| x| + 4 = 0 (a) – 1, 4 then ( p 2 + q 2 )x 2 − 2 q ( p + r ) x + (q 2 + r 2 ) = 0 be real and equal, then p, q, r will be in (a) A.P. (b) G.P. (c) H.P. (d) None of these α 14. Let and β be the roots of the equation (a) x2 − x −1 = 0 (b) (c) x2 + x −1 = 0 (d) x 2 + x + 1 = 0 x2 + x +1 = 0 The equation whose roots are 2x 2 + 6 x + α2 + 1 = 0 be (a) –1 (b) 1 (c) 2 (d) –2 16. If x 2/3 − 7 x1/3 + 10 = 0, then (c) φ is x2 − x +1 = 0 15. If the product of the roots of the equation (a) {125} α 19 , β 7 x= (b) {8} (d) {125, 8} www.sakshieducation.com is −α , then the value of α will www.sakshieducation.com 17. The number of roots of the equation | x |2 −7 | x | +12 = 0 is (a) 1 (b) 2 (c) 3 (d) 4 18. The equation (x + 1) − (x − 1) = (4 x − 1) (a) No solution has (b) One solution (c)Two solutions (d) More than two solutions 19. The number of solutions of log 4 ( x − 1) = log 2 ( x − 3) (a) 3 (b) 1 (c) 2 (d) 0 20. If the roots of the given equation 2 x 2 + 3(λ − 2) x + λ + 4 = 0 be equal in magnitude but opposite in sign, then λ = (a) 1 (b) 2 (c) 3 (d) 2/3 21. If a root of the equation x 2 + px + 12 = 0 is 4, while the roots of the equation x 2 + px + q = 0 same, then the value of q will be (a) 4 (b) 4/49 (c) 49/4 (d) None of these 22. The equation e x − x − 1 = 0 has (a) Only one real root x =0 (b) At least two real roots (c) Exactly two real roots (d) Infinitely many real roots 23. The number of solutions for the equation x 2 − 5 | x | + 6 = 0 is (a) 4 (b) 3 (c) 2 (d) 1 24. The values of 'a' and 'b' for which equation x 4 − 4 x3 + ax 2 + bx + 1 = 0 have four real roots (a) – 6, – 4 (b) – 6, 5 (c) – 6, 4 (d) 6, – 4 25. If a + b + c = 0, a ≠ 0, a, b, c ∈ Q , then both the roots of the equation ax 2 + bx + c = 0 are (a) Rational (b) Non-real (c) Irrational (d) Zero www.sakshieducation.com are www.sakshieducation.com 26. If a+b +c = 0 , then the roots of the equation (a) Equal (b) Imaginary (c) Real (d) None of these 27. If the roots of the given equation (a) p ∈ (−π ,0 ) (b) 4 ax 2 + 3 bx + 2 c = 0 (cos p − 1)x 2 + (cos p )x + sin p = 0 π π p ∈ − , 2 2 (c) p ∈ (0, π ) (d) are are real, then p ∈ (0 , 2π ) 28. The roots of the equation (a 2 + b 2 )t 2 − 2(ac + bd )t + (c 2 + d 2 ) = 0 are equal, then (a) ab = dc (b) ac = bd (c) ad + bc = 0 (d) 29. The expression a c = b d x 2 + 2 bx + c has the positive value if (a) b 2 − 4c > 0 (b) b 2 − 4 c < 0 (c) c2 < b (d) b 2 < c 30. If the roots of the equations px 2 + 2 qx + r = 0 and qx 2 − 2 pr x + q = 0 be real, then (a) p =q (b) q 2 = pr (c) p 2 = qr (d) r 2 = pq 31. If l, m , n are real and l≠m, then the roots of the equation (a) Complex (b) Real and distinct (c) Real and equal (d) None of these (l − m )x 2 − 5(l + m )x − 2(l − m ) = 0 32. The least integer k which makes the roots of the equation (a) 4 (b) 5 (c) 6 (d) 7 33. The condition for the roots of the equation, (c 2 − ab)x 2 − 2(a 2 − bc )x + (b 2 − ac) = 0 to be equal is (a) a=0 (b) b = 0 (c) c=0 (d) None of these 34. Roots of ax 2 + b = 0 are real and distinct if (a) ab > 0 (b) ab < 0 (c) a, b > 0 (d) a, b < 0 www.sakshieducation.com x 2 + 5x + k = 0 are imaginary is www.sakshieducation.com 35. The expression 36. y = ax 2 + bx + c has always the same sign as c if (a) 4 ac < b 2 (b) (c) ac < b 2 (d) ac > b 2 x 2 + x + 1 + 2 k ( x 2 − x − 1) = 0 is 4 ac > b 2 a perfect square for how many values of k (a) 2 (b) 0 (c) 1 (d) 3 p, q ∈ {1, 2, 3, 4 } . 37. Let The number of equations of the form (a) 15 (b) 9 (c) 7 (d) 8 38. If the roots of equation x 2 + a 2 = 8 x + 6a a ∈ [2, 8 ] (b) a ∈ [−2, 8] (c) a ∈ (2, 8 ) (d) a ∈ (−2, 8) (a) 39. If a root of the equation px 2 + qx + 1 = 0 having real roots is are real, then ax 2 + bx + c = 0 be reciprocal of a root of the equation then a ′x 2 + b ′x + c ′ = 0 , then (a) (cc ′ − aa ′) 2 = (b a ′ − cb ′)(ab ′ − b c ′) (b) (b b ′ − aa′)2 = (ca′ − b c ′)(ab ′ − b c ′) (c) (cc ′ − aa′)2 = (b a ′ + cb ′)(ab ′ + b c ′) (d) None of these 40. If α and β are the roots of the equation (a) − 3 7 (b) 3 7 (c) − 3 5 (d) 3 5 41. If the roots of the equation Ax 2 + Bx + C = 0 are α 2, β 2 , (a) B 2 − 2 AC A2 (b) (c) B 2 − 4 AC A2 (d) None of these 42. If α and (a) b (c) 1−b β 4 x 2 + 3x + 7 = 0 are α, β , then 1 α + 1 β = and the roots of the equation then value of p will be 2 AC − B 2 A2 are the roots of the equation x 2 − a( x + 1) − b = 0 then (b) – b (d) b − 1 www.sakshieducation.com (α + 1)(β + 1) = x 2 + px + q = 0 www.sakshieducation.com 43. If the sum of the roots of the quadratic equation ax 2 + bx + c = 0 is equal to the sum of the squares of their reciprocals, then a / c, b / a, c / b are in (a) A.P. (b) G.P. 44. If the roots of the equation (a) 3 (c) H.P. (d) None of these are same, then the value of m will be x 2 + 2 mx + m 2 − 2 m + 6 = 0 (b) 0 (c) 2 45. If the sum of the roots of the equation (d)–1 be equal to the sum of their squares, ax 2 + bx + c = 0 then (a) a(a + b ) = 2 bc (b) c(a + c) = 2 ab (c) b (a + b ) = 2 ac (d) b(a + b ) = ac 46. If α, β (a) are the roots of x 2 + px + 1 = 0 and γ ,δ are the roots of x 2 + qx + 1 = 0 ,then q 2 − p 2 = (α − γ )( β − γ )(α + δ )( β + δ ) (b) (α + γ )(β + γ )(α − δ )(β + δ ) (c) (α + γ )( β + γ )(α + δ )( β + δ ) (d) None of these 47. If (a) 2+i 3 is a root of the equation 48. If the roots of the equation (c) ( p, q) = (d) (−4, − 7) (c) (4, 7) (a) where p and q are real, then (b) (4, − 7) (−4 , 7 ) cx 2 + bx + a = 0 x 2 + px + q = 0 , ax 2 + bx + c = 0 be α and β , then the roots of the equation are −α , − β (b) α, 1 1 1 , (d) None of these α β β 49. The quadratic in b, such that A.M. of its roots is (a) t 2 − 2 At + G 2 = 0 (b) t 2 − 2 At − G 2 = 0 (c) t 2 + 2 At + G 2 = 0 (d) None of these 50. If the sum of the roots of the equation A and G.M. is G, is x 2 + px + q = 0 is three times their difference, then which one of the following is true (a) 9 p 2 = 2q (b) 2q 2 = 9 p (c) 2 p 2 = 9q (d) 9 q 2 = 2p www.sakshieducation.com www.sakshieducation.com 51. A two digit number is four times the sum and three times the product of its digits. The number is (a) 42 (b) 24 (c) 12 (d) 21 52. If the product of roots of the equation, mx 2 + 6 x + (2m − 1) = 0 is –1, then the value of m will be (a) 1 (b) – 1 (c) 1 1 1 + = x + p x +q r 53. If the roots of the equation 1 3 (d) − 1 3 are equal in magnitude but opposite in sign, then the product of the roots will be (a) p2 + q2 2 (c) p2 − q2 2 54. If α, β (b) – (p 2 (d) – (p + q2) 2 2 − q2) 2 are the roots of the equation (a) 2 a (b) 2 b (c) 2 c (d) − ax 2 + bx + c = 0 , then α aβ + b + β aα + b = 2 a 55. The equation formed by decreasing each root of (a) a = – b (b) b = – c (c) c = – a (d) b = a + c 56. If the ratio of the roots of x 2 + bx + c = 0 (a) r 2c = b 2q (b) r 2 b = c 2 q (c) rb 2 = cq 2 (d) rc 2 = bq 2 57. If the ratio of the roots of and ax 2 + 2 bx + c = 0 ax 2 + bx + c = 0 x 2 + qx + r = 0 is same as the ratio of the roots of b2 q2 = ac pr b q = ac pr (b) (c) 2b q 2 = ac pr (d) None of these 2 x 2 + 8 x + 2 = 0, then be the same, then then (a) by 1 is www.sakshieducation.com px 2 + 2 qx + r = 0 , www.sakshieducation.com 58. If the sum of the roots of the equation x 2 + px + q = 0 is equal to the sum of their squares, then (a) p2 − q2 = 0 (b) (c) p 2 + p = 2q (d) None of these 59. Let α, β p 2 + q 2 = 2q G.P., then integral values of (a) – 2, – 32 60. If the roots of and γ ,δ be the roots of x2 − x + p = 0 be the roots of p, q are . If α, β ,γ ,δ are in are respectively (b) – 2, 3 ax 2 + bx + c = 0 x2 −4x +q = 0 (c)– 6, 3 α, β (d)– 6, – 32 and the roots of Ax 2 + Bx + C = 0 are α − k , β − k , then B 2 − 4 AC b 2 − 4 ac is equal to (a) 0 (c) (b) 1 A a 2 (d) 61. If α, β are the roots of a A 2 9 x 2 + 6 x + 1 = 0, (a) 2 x 2 + 3 x + 18 = 0 (b) x 2 + 6x − 9 = 0 (c) x 2 + 6x + 9 = 0 (d) x 2 − 6x + 9 = 0 62. If p and q are the roots of (a) p = 1, q = −2 (c) p = 1, q = 0 63. If α, β (b) x 2 + px + q = 0, 1 1 , α β then p = −2, q = 0 ax 2 + bx + c = 0 and α + β, α 2 + β 2, α 3 + β 3 are in G.P., where then (a) ∆≠0 (b) b∆ = 0 (c) cb ≠ 0 (d) c∆ = 0 64. If 1−i is a root of the equation (a) – 2 (b) – 1 (c) 1 (d) 2 x 2 − ax + b = 0 65. If α, β are the roots of the equation 1 2 (b) 1 2 (c) 32 (d) 1 4 (a) − is p = − 2, q = 1 (d) are the roots of then the equation with the roots , then x 2 + 2 x + 4 = 0, b= then 1 α3 + www.sakshieducation.com 1 β3 is equal to ∆ = b 2 − 4 ac , www.sakshieducation.com 66. If a and b are roots of x 2 − px + q = 0 , (a) 1 p (b) 1 q (c) 1 2p (d) p q then 67. Product of real roots of the equation (a) Is always positive α, β (a) t 2 x 2 +| x | + 9 = 0 (b)Is always negative (c) Does not exist 68. If 1 1 + = a b (d) None of these are the roots of ax 2 + bx + c = 0 , then the equation whose roots are 2 + α, 2 + β is ax 2 + x (4 a − b ) + 4 a − 2b + c = 0 (b) ax 2 + x (4 a − b) + 4 a + 2b + c = 0 (c) ax 2 + x (b − 4 a) + 4 a + 2b + c = 0 (d) ax 2 + x (b − 4 a) + 4 a − 2b + c = 0 69. If one root of the equation x 2 + px + q = 0 is the square of the other, then (a) p 3 + q 2 − q(3 p + 1) = 0 (b) p 3 + q 2 + q(1 + 3 p) = 0 (c) p 3 + q 2 + q(3 p − 1) = 0 (d) p 3 + q 2 + q(1 − 3 p) = 0 70. Let two numbers have arithmetic mean 9 and geometric mean 4. Then these numbers are the roots of the quadratic equation (a) x 2 − 18 x − 16 = 0 (b) (c) x 2 + 18 x − 16 = 0 (d) x 2 + 18 x + 16 = 0 71. If α≠β but α 2 = 5α − 3 x 2 − 18 x + 16 = 0 and β 2 = 5β − 3 , then the equation whose roots are (a) 3 x 2 − 25 x + 3 = 0 (b) x 2 + 5x − 3 = 0 (c) x 2 − 5x + 3 = 0 (d) 3 x 2 − 19 x + 3 = 0 72. Difference between the corresponding roots of a≠b, x 2 + ax + b = 0 then (a) a+b +4 = 0 (b) a + b − 4 = 0 (c) a −b −4 = 0 (d) a − b + 4 = 0 73. If 3 is a root of x 2 + kx − 24 = 0, it is also a root of (a) x 2 + 5x + k = 0 (b) x 2 − 5x + k = 0 (c) x 2 − kx + 6 = 0 (d) x 2 + kx + 24 = 0 www.sakshieducation.com and α/β and x 2 + bx + a = 0 β /α is is same and www.sakshieducation.com 74. If x , y, z are real and distinct, then u = x 2 + 4 y 2 + 9 z 2 − 6 yz − 3 zx − zxy is always (a) Non-negative (b) Non-positive (c) Zero (d) None of these 75. If a root of the equations x 2 + px + q = 0 and (where and q≠β q−β α−p (a) 76. If p ≠α p β − αq q−β (a) (3, 4) (b) (4, 5) (c) (4, 3) (d) (5, 4) 77. If the two equations x 2 − cx + d = 0 (b) a + c (c) (d) and x +2 2x 2 + 3x + 6 1 1 , 13 3 (b) (c) 1 1 − , 3 13 (d) None of these is real, the function (x − a)(x − b) (x − c) a>b >c (b) a<b <c (c) a>c<b (d) a<c<b equation x 2 − ax + b = 0 have one common root and the second will assume all real values, provided a n x n + a n −1 x n −1 + .... + a1 x = 0 , a1 ≠ 0 , na n x n −1 + (n − 1)a n −1 x n − 2 + .... + a1 = 0 n ≥ 2, has a positive root (b)Equal to α α (d) Smaller than 81. If α and β (α < β) are the roots of the equation (a) 0 <α < β (b) α < 0 < β <| α | (c) α <β <0 (d) α < 0 <| α | < β x =α, has a positive root, which is (a) Greater than or equal to α (c) Greater than (d) None of these 1 1 − 13 , 3 (a) 80. If the equation p β − αq q−β takes all value in the interval (a) x or −ac 78. If x is real, the expression 79. If q−β α−p 2(b + d ) = (a) 0 ac (c) x 4 − px 2 + q, then ( p , q ) = be a factor of has equal roots, then is common, then its value will be ) (b) x 2 − 3x + 2 x 2 + αx + β = 0 x 2 + bx + c = 0, www.sakshieducation.com α where c < 0 < b, then then the www.sakshieducation.com 82. If x is real, then the maximum and minimum values of expression (a) 4, – 5 (b) 5, – 4 (c) – 4, 5 (d) – 4, – 5 83. If x 2 − hx − 21 = 0, x 2 − 3 hx + 35 = 0 (h > 0 ) (a) 1 (b) 2 (c) 3 (d) 4 84. If the roots of the equation (a) 85. If a<2 b >a, (b) then the equation (a) Both roots in [a, b] (b) Both roots in (−∞, a) (c) Both roots in (b, + ∞) (d) One root in 86. If S is a set of (−∞, a) P (x ) has a common root, then the value of x 2 − 2 ax + a 2 + a − 3 = 0 2≤a≤3 (c) (x − a)(x − b) = 1 and the other in 3<a≤4 S =0 (b) S = ax + (1 − a)x 2 ∀a ∈ (0, ∞) (c) S = ax + (1 − a)x 2 ∀a ∈ R h is equal to are real and less than 3, then (d) a>4 (b, + ∞) ≤2 such that P (0 ) = 0 , P (1) = 1 , P' (x ) > 0 ∀x ∈ (0, 1) , (d) S = ax + (1 − a)x 2 ∀a ∈ (0, 2) 87. The smallest value of x 2 − 3x + 3 (a) 3/4 (b) 5 (c) –15 (d) –20 in the interval (−3, 3 / 2) is 88. The maximum possible number of real roots of equation (a) 0 (b) 3 (c) 4 (d) 5 89. The solution set of the equation pqx 2 − ( p + q )2 x + ( p + q )2 = 0 (a) p q , q p (b) p pq, q (c) q , pq p (d) p + q p + q , q p will be has is polynomial of degree (a) x 2 + 14 x + 9 x 2 + 2x + 3 (e) x5 − 6x 2 − 4x + 5 = 0 is p − q p − q , q p www.sakshieducation.com is then www.sakshieducation.com 90. If x is real and satisfies x+2> x + 4, (a) x < −2 (b) x >0 (c) −3 < x < 0 (d) −3 < x < 4 then 91. If α, β and γ are the roots of equation x 3 − 3x 2 + x + 5 = 0 then y = ∑ α 2 + αβγ satisfies the equation (a) y3 + y + 2 = 0 (b) y3 − y2 − y − 2 = 0 (c) y 3 + 3y 2 − y − 3 = 0 (d) y 3 + 4 y 2 + 5 y + 20 = 0 92. If α, β and γ are the roots of x3 +8 = 0 , (a) x3 −8 = 0 (b) x 3 − 16 = 0 (c) x 3 + 64 = 0 (d) x 3 − 64 = 0 . 93. If x 2 + 2 ax + 10 − 3 a > 0 for all x ∈R , (a) −5 < a < 2 (b) a < −5 (c) a>5 (d) 94. If α, β , γ then the equation whose roots are then 2<a<5 are the roots of the equation (a) 2 (b) 3 (c) 4 (d) 5 x 3 + 4 x + 1 = 0, then (α + β )−1 + (β + γ )−1 + (γ + α )−1 = QUADRATIC EQUATIONS HINTS AND SOLUTIONS 1. 2. (d) x+ 1 1 = 2 ⇒ x + − 2 = 0 (∵ x ≠ 0 ) x x ⇒ x 2 − 2x + 1 = 0 ⇒ (x − 1) 2 (c) Given equation is x = ⇒ x = α 2,β 2 =0 ⇒ x = 1,1 . ( p − q )x 2 + (q − r)x + (r − p ) = 0 (r − q ) ± (q − r) 2 − 4 (r − p )(p − q) 2( p − q ) (r − q) ± (q + r − 2 p) r−p ⇒x = ,1 2( p − q) p−q www.sakshieducation.com and γ 2 is www.sakshieducation.com 3. 4. (c) x 2 + y 2 = 25 xy = 12 and 2 ⇒ 12 x 2 + = 25 ⇒ x 4 + 144 − 25 x 2 = 0 x ⇒ (x 2 − 16 )(x 2 − 9) = 0 ⇒ x = ±4 ⇒ x 2 = 16 and x2 = 9 x = ±3 . and a(x 2 + 1) − (a 2 + 1)x = 0 (a) Equation ⇒ ax 2 − (a 2 + 1)x + a = 0 ⇒ 5. (ax − 1)( x − a) = 0 x = a, 1 a . 1 x =2+ (b) Let ⇒ 2+ ⇒ x = 2+ ⇒ x =1± 2 1 2 + ..... ∞ 1 x But the value of the given expression cannot be negative or less than 2, therefore 1+ 2 is required answer. 6. (d) Given | ⇒ ⇒ 7. x | 2 −3 | x | +2 = 0 (| x | −1)(| x | −2) = 0 | x | = 1 and | x | = 2 ⇒ x = ±1, x = ±2 . (b) Equation ⇒ x4 − 8x 2 − 9 = 0 x4 − 9x2 + x2 − 9 = 0 ⇒ 8. x 2 (x 2 − 9 ) + 1(x 2 − 9 ) = 0 ( x 2 + 1)( x 2 − 9 ) = 0 ⇒ x = ± i, ± 3 . (a) If one root of a quadratic equation with rational coefficients is irrational and of the form α+ β 9. ⇒ , then the other root must also be irrational and of the form (d) Given equation is ⇒ 3x + 1 = 3x + 1 + 1 = x x −1 Squaring on both sides, we get ⇒ 2 x + 2x = 0 Thus 10. (c) x = ⇒ x ≠0 2+x (Irrational function) and ⇒ 3x + 1 = x + 1 − 2 x x ≠1, since equation is non-quadratic equation. x2 − x −2 = 0 ( x − 2)( x + 1) = 0 ⇒ x = 2,−1 www.sakshieducation.com α− β . www.sakshieducation.com 2 + 2 + ..... ≠ −1 , But so it is equal to 2. 11. (b) Let all four roots are imaginary. Then roots of both equations P( x ) = 0 and imaginary. Thus b 2 − 4 ac < 0 ; d 2 + 4 ac < 0 , So, if b≠0 d≠0 or b = 0, d = 0 , If P(x ) = ax 2 + c = 0 x2 = − Or 12. (d) So b2 + d2 < 0 , which is impossible unless b = 0, d = 0 . at least two roots must be real. we have the equations. and c 2 c ;x = a a Q(x ) = −ax 2 + c = 0 c a as one of and − c a must be positive, so two roots must be real. x 2 + 5 | x | + 4 = 0 ⇒ | x | 2 +5 | x | + 4 = 0 ⇒| x | = −1,−4 , which is not possible. Hence, the given equation has no real root. 13. (b) Given equation is ( p 2 + q 2 )x 2 − 2 q( p + r)x + (q 2 + r 2 ) = 0 Roots are real and equal, then 4 q 2 ( p + r) 2 − 4 ( p 2 + q 2 )(q 2 + r 2 ) = 0 ⇒ q 2 ( p 2 + r 2 + 2 pr ) − ( p 2 q 2 + p 2 r 2 + q 4 ⇒ + q 2r 2 ) = 0 q 2 p 2 + q 2 r 2 + 2 pq 2 r − p 2 q 2 − p 2 r 2 − q 4 − q 2 r 2 = 0 ⇒ 2 pq 2 r − p 2 r 2 − q 4 = 0 ⇒ (q 2 − pr ) 2 = 0 Hence 14. (d) Given ∴ x = But q 2 = pr . Thus p, q, r in G.P. x2 + x +1 = 0 1 1 1 [−1 ± i 3 ] = (−1 + i 3 ), (−1 − i 3 ) = ω , ω 2 2 2 2 α 19 = ω 19 = ω and β 7 = ω 14 = ω 2 . Hence the equation will be same. 15. (a) According to condition ⇒ α2 +1 2 = −α α 2 + 2α + 1 = 0 ⇒ α = −1,−1 . 16. (d) Given that Let x 2 / 3 − 7 x 1 / 3 + 10 = 0 a = x1/3 , . Given equation can be written as then it reduces to the equation a 2 − 7 a + 10 = 0 ⇒ (a − 5 )(a − 2) = 0 ⇒ a = 5, 2 Putting these values, we have a 3 = x ⇒ x = 125 and 8. www.sakshieducation.com ( x 1 / 3 ) 2 − 7( x 1 / 3 ) + 10 = 0 Q(x ) = 0 are www.sakshieducation.com (| x | −4 )(| x | −3) = 0 17. (d) The equation ⇒ ⇒| | x | = 4 ⇒ x = ±4 18. (a) Given x | = 3 ⇒ x = ±3 . (x + 1) − (x − 1) = (4 x − 1) Squaring both sides, we get Squaring again, we get − 2 ( x 2 − 1) = 2 x − 1 x = 5/4 which does not satisfy the given equation. Hence equation has no solution. 19. (b) log 4 (x − 1) = log 2 (x − 3) ⇒ x 2 − 7 x + 10 = 0 ∴ x = 5, 2 but ⇒ x − 1 = ( x − 3) 2 ⇒ ( x − 5 )( x − 2) = 0 x −3<0 when x =5 ∴ Only solution is ∴ Hence number of solution is one. α 20. (b) Let roots are α + (−α ) = 21. (c) Put and −α x = 4 in x 2 + px + 12 = 0 , ex = x +1 ⇒ 1+ ⇒ , then sum of the roots 3(λ − 2) 3 ⇒ 0 = (λ − 2) ⇒ λ = 2 2 2 Now second equation 22. (a) x=2 we get p = −7 x 2 + px + q = 0 have equal roots. Therefore x x2 + + ...... = x + 1 1! 2! x2 x3 + + ...... = 0 2! 3! x 2 = 0, x 3 = 0, ...... x n = 0 Hence, x = 0 only 23. (a) Given equation i.e., x 2 − 5 | x | +6 = 0 x2 − 5x + 6 = 0 x 2 − 3x − 2x + 6 = 0 (x − 3) (x − 2) = 0 x = 3, x = 2 and one real roots. and and and x2 + 5x + 6 = 0 x 2 + 3x + 2x + 6 = 0 (x + 3) . (x + 2) = 0 x = −3, x = −2 . i.e., Four solutions of this equation. 24. (d) Let for real roots are α, β , γ , δ then equation is (x − α ) (x − β )(x − γ ) (x − δ ) = 0 www.sakshieducation.com p 2 = 4q ⇒ q = 49 4 www.sakshieducation.com x 4 − (α + β + γ + δ )x 3 + (αβ + βγ + γδ + αδ + βδ + αγ )x 2 − (αβγ + βγδ +αβδ + αγδ )x + αβγδ = 0 x 4 − ∑ α . x 3 + ∑ αβ . x 2 − ∑ αβγ . x + αβγδ = 0 On comparing with x 4 − 4 x 3 + ax 2 + bx + 1 = 0 ∑ α = 4 , ∑ αβ = a ∑ αβγ = −b, αβγδ = 1 Solving ∴b = −4 ; ∴ a = 6 25. (a) and b = −4 . D ≡ b 2 − 4 ac = (−a − c) 2 − 4 ac (∵ a + b + c = 0 ) = (a + c) 2 − 4 ac = (a − c) 2 ≥ 0 Hence roots are rational. 26. (c) We have Let 4 ax 2 + 3 bx + 2 c = 0 Let roots are α and β D = B 2 − 4 AC = 9 b 2 − 4 (4 a)(2 c) = 9 b 2 − 32 ac (a + b + c) = 0 ⇒ b = −(a + c) Given that, Putting this value, we get = 9(a + c) 2 − 32 ac = 9(a − c) 2 + 4 ac . Hence roots are real. 27. (c) Given equation Its discriminant D≥0 since roots are real ⇒ cos 2 p − 4 (cos p − 1) sin p ≥ 0 ⇒ cos 2 p − 4 cos p sin p + 4 sin p ≥ 0 ⇒ (cos p − 2 sin p ) 2 − 4 sin 2 p + 4 sin p ≥ 0 ⇒ (cos p − 2 sin p ) 2 + 4 sin p(1 − sin p ) ≥ 0 Now (1 − sin p ) ≥ 0 0 < p <π or for all real p, …..(i) sin p > 0 for 0 < p < π . Therefore 4 sin p(1 − sin p) ≥ 0 when p ∈ (0, π ) 28. (d) Accordingly, 29. (d) (cos p − 1)x 2 + (cos p )x + sin p = 0 {2(ac + bd )} 2 = 4 (a 2 + b 2 )(c 2 + d 2 ) ⇒ 4a 2 c 2 + 4b 2 d 2 + 8abcd = 4a 2 c 2 + 4a 2 d 2 + 4b 2 c 2 + 4b 2 d 2 ⇒ 4a 2 d 2 + 4b 2 c 2 − 8abcd = 0 ⇒ 4(ad − bc)2 = 0 ⇒ ad = bc ⇒ a c = b d . x 2 + 2bx + c = (x + b ) 2 + c − b 2 ∵ (x + b ) 2 is a perfect square, therefore the given expression is positive if www.sakshieducation.com c − b 2 > 0 or b 2 < c . www.sakshieducation.com 30. (b) Equations px 2 + 2 qx + r = 0 qx 2 − 2( pr )x + q = 0 4 q 2 − 4 pr ≥ 0 ⇒ q 2 − pr ≥ 0 ⇒ q 2 ≥ pr have real roots, then from first 4 ( pr ) − 4 q 2 ≥ 0 And from second ⇒ and .....(i) (for real root) pr ≥ q 2 .....(ii) From (i) and (ii), we get result q 2 = pr . (l − m )x 2 − 5(l + m )x − 2(l − m ) = 0 31. (b) Given equation is D = 25 (l + m ) 2 + 8 (l − m ) 2 Its discriminant Which is positive, since are real and l, m , n l≠m. Hence roots are real and distinct. 32. (d) Roots are non real if discriminant < 0 i.e. if 5 2 − 4 .1 k < 0 i.e. if 4 k > 25 i.e. if k> 25 4 Hence, the required least integer k is 7. 33. (a) According to question, 4 (a 2 − bc ) 2 − 4 (c 2 − ab )(b 2 − ac) = 0 34. (b) ⇒ a(a 3 + b 3 + c 3 − 3 abc ) = 0 ⇒ a = 0 or a 3 + b 3 + c 3 = 3 abc B 2 − 4 AC > 0 35. (b) Let ⇒ 0 − 4 ab > 0 ⇒ ab < 0 . f ( x ) = ax 2 + bx + c . If c>0 If c<0, Then f (0 ) = c . Thus the graph of f (x ) > 0 , then by hypothesis y = f (x ) meets This means that the curve y = f (x ) then by hypothesis f (x ) < 0 , which means that the curve and so it does not intersect with x-axis. Thus in both cases x-axis i.e. f (x ) ≠ 0 for any real x. Hence f (x ) = 0 i.e. (1 + 2k )x 2 + (1 − 2k )x + (1 − 2k ) = 0 If equation is a perfect square then roots are equal i.e., (1 − 2 k )2 − 4 (1 + 2 k ) (1 − 2 k ) = 0 i.e., k= 1 −3 , 2 10 . Hence total number of values = 2. 37. (c) For real roots, discriminant ≥0 ⇒ q2 − 4 p ≥ 0 ⇒ q2 ≥ 4 p www.sakshieducation.com does not meet x-axis. y = f (x ) y = f (x ) ax 2 + bx + c = 0 so b 2 < 4 ac . 36. (a) Given equation y-axis at (0, c). is always below x-axis does not intersect with has imaginary roots and www.sakshieducation.com For p = 1, q 2 ≥ 4 ⇒ q = 2,3,4 p = 2, q 2 ≥ 8 ⇒ q = 3, 4 p = 3, q 2 ≥ 12 ⇒ q = 4 p = 4 , q 2 ≥ 16 ⇒ q = 4 Total seven solutions are possible. 38. (b) Since the roots ∴ x 2 − 8 x + a 2 − 6a = 0 are real. 64 − 4 (a 2 − 6 a) ≥ 0 Or a 2 − 6 a − 16 ≤ 0 ⇒ a ∈ [−2,8 ] 39. (a) Let α be a root of first equation, and then α2 Hence 1 aα 2 + b α + c = 0 and a' Therefore = b a ′ − b ′c α cc ′ − aa ′ = α 2 + b′ 1 α 1 α + c′ = 0 be a root of second equation. or c′α 2 + b′α + a′ = 0 1 ′ ab − b c ′ (cc '−aa' ) 2 = (ba '−cb ' )(ab '−bc ' ) . 40. (a) Given equation α+β =− 3 4 1 Now α and + 1 β 4 x2 + 3x + 7 = 0 , 7 4 αβ = α + β −3 / 4 −3 4 3 = = × =− αβ 7/4 4 7 7 = 41. (b) α , β are the roots of So, B A α+β =− Again α 2,β 2 α 2 + β 2 = −p Now Ax 2 + Bx + C = 0 αβ = and and . . C A are the roots of x 2 + px + q = 0 then (αβ )2 = q α 2 + β 2 = (α + β ) 2 − 2αβ ⇒ α 2 + β 2 = − ⇒ −p= 2 B C −2 A A B 2 − 2 AC A2 42. (c) Given equation ⇒ therefore ⇒p= 2 AC − B 2 A2 x 2 − a( x + 1) − b = 0 x 2 − ax − a − b = 0 ⇒ α + β = a, αβ = −(a + b ) Now (α + 1)(β + 1) = αβ + α + β + 1 = −(a + b ) + a + 1 = 1 − b www.sakshieducation.com www.sakshieducation.com 43. (c) As given, if ⇒ − α, β be the roots of the quadratic equation, then 2 a b 2 b (ab 2 + bc 2 ) = 2 + = c a c ac 2 ⇒ 2 a 2 c = ab 2 + bc 2 ⇒ ⇒ c a b , , a b c α α and β b a αβ = and α 2β 2 − b b 2 − 2 ac = a a2 ⇒ ax 2 + bx + c = 0 b2 a 2 −2 c a α + β = a2 + β 2 b (a + b ) = 2 ac . α + β = − p, αβ = 1, γ + δ = −q and γδ = 1 (α − γ )(β − γ )(α + δ )(β + δ ) {αβ − γ (α + β ) + γ 2 }{αβ + δ (α + β ) + δ 2 } = (1 + p γ + γ 2 )(1 − p δ + δ 2 ) = ( p γ − q γ )(− p δ − q δ ) γ 2 + q γ + 1 = 0 ⇒ γ 2 + 1 = −q γ 47. (a) Since 2+i 3 are roots of α+β =− b a and Let the roots of α′ + β ′ = − b c and =7 =q (Since and similarly is a root, therefore product of roots but (α + β ) 2 − 2αβ are in H.P. = ⇒ = c a α 2 + β 2 = (α + β ) 2 − 2αβ = Now, α, β β 2 α + α = −2m ⇒ α = −m be two roots of α+β =− 46. (a) As given, 48. (c) a b c , , c a b and α , then So under condition ⇒ 1 α .α = m 2 − 2m + 6 ⇒ m 2 = m 2 − 2m + 6 Then ⇒ + m =3. 45. (c) Let ⇒ α 2 2a b c = + b c a are in A.P. ⇒ 44. (a) Let roots are ⇒ 1 b (b 2 / a 2 ) − (2c / a) b 2 − 2ac = = a (c 2 / a 2 ) c2 ⇒ and α+β = . Hence 2−i 3 γ is a root of x 2 + qx + 1 = 0 ) δ 2 + 1 = −q δ = −γδ ( p − q )( p + q ) = q 2 − p 2 . will be other root. Now sum of the roots ( p, q ) = (−4 ,7) . ax 2 + bx + c = 0 αβ = c a cx 2 + bx + a = 0 be α ′, β ′ , α ′β ′ = α + β −b / a −b = = αβ c/a c then a c ⇒1+1 α β = α′ + β ′ www.sakshieducation.com = 4 = −p and www.sakshieducation.com α′ = Hence 49. (a) If α, β α and β′ = 1 β . are the roots, then α+β A= 1 2 ⇒α + β = 2A and G = αβ ⇒ αβ = G 2 t 2 − 2 At + G 2 = 0 . The required equation is α, β 50. (c) Let So are roots of α + β = −p Given that Now ⇒ and x 2 + px + q = 0 αβ = q (α + β ) = 3(α − β ) = − p ⇒ α − β = −p 3 (α − β ) 2 = (α + β ) 2 − 4αβ p2 = p 2 − 4 q or 2 p 2 = 9 q 9 . 51. (b) It is obviously 24. 52. (c) According to condition 2m − 1 1 = −1 ⇒ 3 m = 1 ⇒ m = m 3 53. (b) Given equation can be written as x 2 + x ( p + q − 2r) + pq − pr − qr = 0 Whose roots are α and −α , then the product of roots − α 2 = pq − pr − qr = pq − r( p + q ) 0 = p + q − 2r ⇒ r = And sum .....(i) .....(ii) p+q 2 .....(iii) From (ii) and (iii), we get − α 2 = pq − =− 54. (d) α + β =− { p+q 1 ( p + q ) = − ( p + q ) 2 − 2 pq 2 2 } (P 2 + q 2 ) . 2 b c , αβ = a a (b 2 − 2 ac) and α2 + β2 = Now α (aα + b ) + β (aβ + b ) β α = + (aβ + b )(aα + b ) aβ + b aα + b a2 www.sakshieducation.com www.sakshieducation.com = = a(α + β ) + b(α + β ) 2 2 αβa 2 + ab(α + β ) + b 2 b 2 − ac − b 2 a c − ab 2 + ab 2 2 − 2 ac = a2c 55. (b) α , β be the roots of (b 2 − 2ac) b + b − a = c b 2 a + ab − + b 2 a a a a2 =− 2 a . ax 2 + bx + c = 0 ∴α + β = −b / a , αβ = c / a α − 1, β − 1 Roots are Sum, α + β − 2 = (−b / a) − 2 = −8 / 2 = −4 (α − 1)(β − 1) = αβ − (α + β ) + 1 Product, ∵ New equation is ∴b /a = 2 56. (c) Let α, β Then i.e. b = 2a , = c /a + b /a +1 = 1 2x 2 + 8 x + 2 = 0 c + b = 0 ⇒ b = −c also be the roots of x 2 + bx + c = 0 . and α', β ' x 2 + qx + r = 0 . α + β = −b , αβ = c, α '+ β ' = −q , α ' β ' = r It is given that ⇒ (α + β ) 2 ⇒ b 2r = q 2c (α − β ) 2 = α + β α '+ β ' α α' = ⇒ = β β' α − β α '− β ' (α '+ β ' ) 2 (α '− β ' ) 2 ⇒ b2 b − 4c 57. (b) If the roots of equation 2 = q2 q − 4r 2 ax 2 + 2 bx + c = 0 are in the ratio m : n, Then we have mn (2b ) 2 = (m + n) 2 ac .....(i) Also if the roots of the equation px 2 + 2 qx + r = 0 mn (2 q ) 2 = (m + n) 2 pr .....(ii) Dividing (i) and (ii), we get 58. (c) Let the roots be α and β ⇒ Given, But be the roots of b2 q2 = (ac) ( pr ) or α + β = −p , are also in the same ratio b2 q2 = ac pr . αβ = q α + β =α2 + β2 α + β = (α + β ) 2 − 2αβ ⇒ − p = (− p )2 − 2 q ⇒ p 2 − 2q = − p ⇒ p 2 + p = 2q . www.sakshieducation.com m :n, then www.sakshieducation.com 59. (a) Let r be the common ratio of the G.P. α, β, γ, δ then ⇒ α + α r = 1 ⇒ α (1 + r) = 1 ∴α + β = 1 …..(i) αβ = p ⇒ α (αr) = p ⇒ α 2 r = p …..(ii) γ + δ = 4 ⇒ αr 2 + αr 3 = 4 ⇒ α r 2 (1 + r) = 4 …..(iii) and γδ = q ⇒ αr 2 .αr 3 = q β = α r, γ = α r 2 ⇒ α 2r5 = q …..(iv) ⇒ (p, q) = (– 2, – 32). 60. (c) (α − β ) 2 = (α + β ) 2 − 4αβ = (b 2 − 4 ac) / a 2 ......(i) Also {(α − k ) − (β − k )}2 = {(α − k ) + (β − k )}2 − 4 (α − k )(β − k ) = (− B / A) 2 − 4 (C / A) = (B 2 − 4 AC ) / A 2 From (i) and (ii), b 2 − 4 AC (b 2 − 4 ac) / a 2 = (B 2 − 4 AC ) / A 2 A = b 2 − 4 ac a ∴ 61. (c) Given equation is ⇒α + β = −6 −2 = 9 3 2 9x 2 + 6x + 1 = 0 and ∴ α − β = (α + β ) 2 − 4αβ ⇒α = = 4 1 − 4. = 0 9 9 x 2 − (α + β )x + αβ = 0 ⇒ x 2 + 6x + 9 = 0 p + q = −p and αβ = 1 / 9 −1 −1 ,β = 3 3 ∴ Equation 62. (a) .....(ii) and . pq = q ⇒ p = 1 q = −2 . 63. (d) (α 2 + β 2 ) 2 = (α + β ) (α 3 + β 3 ) 2 2 b 2 − 2 ac = − b − b + 3 abc 2 3 a a a ⇒ 4 a 2 c 2 = acb 2 ⇒ As a ≠ 0 ⇒ c∆ = 0 ac (b 2 − 4 ac ) = 0 64. (d) 1 − i is a root of the equation so x =1−i ⇒ ( x − 1) = −i ⇒ ( x − 1)2 = (−i)2 ⇒ x 2 − 2 x + 2 = 0 www.sakshieducation.com and δ = α r 3 www.sakshieducation.com By comparison, a = 2, b = 2. 65. (d) Here, ∴ 1 α3 + α + β = −2 1 β3 = αβ = 4 and (α + β ) 3 − 3αβ (α + β ) α3 + β3 = (αβ ) 3 (αβ ) 3 = (−2)3 − 3(−2)(4 ) 66. (d) Roots of given equation i.e., a+b = p Then 1 1 a+b p + = = a b ab q 67. (c) Note that for 68. (d) We have 64 −b a . is a ab = q and b ……(ii) . and hence the given equation cannot have real roots. t ∈ R, t 2 x 2 + | x | + 9 ≥ 9 α+β = 1 4 = x 2 − px + q = 0 ……(i) and and Now sum of the roots c a αβ = = 2 +α + 2 + β = 4 − And product of the roots =4+ = 16 (4 )3 b a = (2 + α )(2 + β ) c 2b 4 a + c − 2b − = a a a Hence the required equation is b 4a + c - 2b x2 - x 4 - + =0 a a ⇒ ax 2 − x (4 a − b ) + 4 a + c − 2b = 0 ⇒ ax 2 + x (b − 4 a) + 4 a − 2b + c = 0 . 69. (d) Let root of the given equation Now, x 2 + px + q = 0 are α and α2 . α .α 2 = α 3 = q, α + α 2 = − p Cubing both sides, α 3 + (α 2 )3 + 3α .α 2 (α + α 2 ) = − p 3 q + q 2 + 3 q(− p) = − p 3 p 3 + q 2 + q(1 − 3 p ) = 0 . 70. (b) Let the two number is x1 + x 2 =9 2 and x1 and x2 x 1 x 2 = 16 x 1 + x 2 = 18 and x 1 x 2 = 16 Equation x 2 − (Sum of roots) x + Product of roots = 0 Required equation x 2 − 18 x + 16 = 0 . www.sakshieducation.com www.sakshieducation.com 71. (d) α 2 − 5α + 3 = 0 …..(i) β 2 − 5β + 3 = 0 …..(ii) From (i) – (ii), ⇒ ⇒ (α 2 − β 2 ) − 5α + 5 β = 0 α 2 − β 2 = 5(α − β ) ⇒ α + β = 5 From (i) + (ii), ⇒ (α 2 + β 2 ) − 5(α + β ) + 6 = 0 ⇒ (α 2 + β 2 ) − 5 . 5 + 6 = 0 Then ⇒ α 2 + β 2 = 19 (α + β ) 2 = α 2 + β 2 + 2αβ ⇒ 25 = 19 + 2αβ ⇒ αβ = 3 Then the equation, whose roots are α β x 2 − x + β α ⇒ 72. (a) Let ⇒ α2 = ⇒ 3 x 2 − 19 x + 3 = 0 . x 2 + ax + b = 0 ⇒ x = are the roots of the equation − a ± a2 − 4b 2 x 2 + bx + a = 0 − b + b 2 − 4a − b − b2 − 4a , β2 = 2 2 α 1 − β1 = a 2 − 4 b Given, , is +1 = 0 are the roots of the eqn α2, β2 Now β α − a + a 2 − 4b − a − a 2 − 4b , β1 = 2 2 α1 = And So, 19 +1 = 0 3 α1 , β1 and α β + . = 0 β α α 2 + β 2 x 2 − x αβ ⇒ x 2 − x. α β ; α2 − β2 = b 2 − 4 a α1 − β1 = α 2 − β 2 ⇒ a 2 − 4b = b 2 − 4 a ⇒ a 2 − b 2 = − 4 (a − b) ⇒ a + b + 4 = 0 . 73. (c) Equation x 2 + kx − 24 = 0 has one root is 3. ⇒ 3 2 − 3 k − 24 = 0 ⇒ k = 5 Put x =3 and k =5 in options, only (c) gives the correct answer. www.sakshieducation.com www.sakshieducation.com 74. (a) x , y, z ∈ R and distinct. u = x 2 + 4 y 2 + 9 z 2 − 6 yz − 3 zx − 2 xy Now, = 1 (2 x 2 + 8 y 2 + 18 z 2 − 12 yz − 6 zx − 4 xy ) 2 = 1 2 x − 4 xy + 4 y 2 ) + (x 2 − 6 zx + 9 z 2 ) + (4 y 2 − 12 yz + 9 z 2 ) 2 = 1 ( x − 2 y ) 2 + ( x − 3 z ) 2 + (2 y − 3 z ) 2 2 { } { } Since it is sum of squares. So 75. (c) Let the common root be y. Then u is always non- negative y 2 + py + q = 0 and y2 +α y + β = 0 On solving by cross multiplication, we have y2 y 1 = = pβ − qα q − β α − p ∴ 76. (d) y= q−β α−p x 2 − 3x + 2 Hence and pβ − qα y2 =y= y q−β be factor of x 4 − px 2 + q = 0 ( x 2 − 3 x + 2) = 0 ⇒ ( x − 2)(x − 1) = 0 ⇒ x = 2, 1, Putting So 4 p − q − 16 = 0 .....(i) p − q −1 = 0 .....(ii) And these values in given equation Solving (i) and (ii), we get (p, q)=(5, 4) 77. (c) Let roots of ∴ x 2 − cx + d = 0 be α, β then roots of be α,α α + β = c, αβ = d , α + α = a, α 2 = b Hence 2(b + d ) = 2(α 2 + αβ ) = 2α (α + β ) = ac 78. (b) If the given expression be y, then If x 2 − ax + b = 0 y ≠ 0 then ∆ ≥ 0 for Or – ⇒ 39 y 2 + 10 y + 1 ≥ 0 or B 2 − 4 AC ≥ 0 (13 y + 1)(3 y − 1) ≤ 0 −1 / 13 ≤ y ≤ 1 / 3 If 79. (d) Let real x i.e. y = 2 x 2 y + (3 y − 1)x + (6 y − 2) = 0 y= y=0 then x = −2 which is real and this value of (x − a)(x − b) ( x − c) Or y( x − c) = x 2 − (a + b )x + ab Or x 2 − (a + b + y )x + ab + cy = 0 www.sakshieducation.com y is included in the above range www.sakshieducation.com ∆ = (a + b + y ) 2 − 4 (ab + cy ) = y 2 + 2 y (a + b − 2 c) + (a − b ) 2 Since x is real and y assumes all real values, we must have ∆ ≥ 0 for all real values of y. The sign of a quadratic in y is same as of first term provided its discriminant 4 (a + b − 2c) 2 − 4 (a − b ) 2 < 0 This will be so if Or 4 (a + b − 2 c + a − b )(a + b − 2 c − a + b ) < 0 Or 16 (a − c)(b − c) < 0 16 (c − a)(c − b ) = − ve or ∴ c lies between a and b i.e., a<b Where B 2 − 4 AC < 0 b < a then , but if a<c<b .....(i) the above condition will be b < c < a or a > c > b .....(ii) Hence from (i) and (ii) we observe that (d) is correct answer. 80. (d) Let f ( x ) = a n x n + a n −1 x n −1 + .... + a1 x ; f (0 ) = 0 ; f (α ) = 0 ⇒ f ′( x ) = 0 , has atleast one root between i.e., equation na n x n −1 + (n − 1)a n −1 x n − 2 + .... + a1 = 0 Has a positive root smaller than 81. (b) Here Now, (0, α ) D = b 2 − 4c > 0 α + β = −b < 0 α . because c < 0 < b. So roots are real and unequal. and αβ = c < 0 ∴ One root is positive and the other negative, the negative root being numerically bigger. As 82. (a) Let ⇒ α < β ,α y= is the negative root while β is the positive root. So, | α | > β and α < 0 < β . x 2 + 14 x + 9 x 2 + 2x + 3 y(x 2 + 2 x + 3) − x 2 − 14 x − 9 = 0 ⇒ (y − 1)x 2 + (2 y − 14 )x + 3 y − 9 = 0 ≥0 For real x, its discriminant i.e. ⇒ 4 (y − 7 ) 2 − 4 (y − 1)3(y − 3) ≥ 0 y 2 + y − 20 ≤ 0 or (y − 4 )(y + 5 ) ≤ 0 Now, the product of two factors is negative if these are of opposite signs. So following two cases arise: Case I: y − 4 ≥ 0 or y ≥ 4 and y+5 ≤0 or y ≤ −5 This is not possible. Case II: y−4 ≤0 or y≤4 and y+5 ≥0 or y ≥ −5 Both of these are satisfied if www.sakshieducation.com −5 ≤ y ≤ 4 www.sakshieducation.com 2hx = 56 or hx = 28 83. (d) Subtracting, we get Putting in any, ∴ 28 x 2 = 49 2 = 7 2 ⇒ h = 4 (h > 0 ) h 84. (a) Given equation is x 2 − 2 ax + a 2 + a − 3 = 0 D≥0 If roots are real, then ⇒ 4 a 2 − 4 (a 2 + a − 3) ≥ 0 ⇒ − a + 3 ≥ 0 ⇒ a−3 ≤0 ⇒ a≤ 3 As roots are less than 3, hence f (3) > 0 9 − 6a + a 2 + a − 3 > 0 ⇒ a 2 − 5a + 6 > 0 ⇒ (a − 2)(a − 3) > 0 ⇒ Hence a<2 either or a>3 satisfy all. 85. (d) The equation is x 2 − (a + b ) x + ab − 1 = 0 ∴ ∴ a<2 discriminant Both roots are real. Let them be α= (a + b ) − (b − a) 2 + 4 2 Clearly, α< , β= = (a + b)2 − 4(ab − 1) = (b − a)2 + 4 > 0 α, β where (a + b) + (b − a)2 + 4 2 (a + b ) − (b − a) 2 (a + b ) − (b − a) = =a 2 2 (∵ b > a) And β> (a + b) + (b − a)2 a+b +b −a = =b 2 2 Hence, one root α is less than a and the other root β is greater than b. P(x ) = bx 2 + ax + c 86. (d) Let As P(0 ) = 0 ⇒ c = 0 As P(1) = 1 ⇒ a + b = 1 P(x ) = ax + (1 − a)x 2 Now As P ′( x ) = a + 2(1 − a)x P ′( x ) > 0 for x ∈ (0, 1) www.sakshieducation.com www.sakshieducation.com Only option (d) satisfies above condition 2 87. (a) 3 3 x 2 − 3x + 3 = x − + 2 4 Therefore, smallest value is 88. (b) Let 3 4 3 − 3, 2 , which lie in f (x ) = x 5 − 6 x 2 − 4 x + 5 = 0 Then the number of change of sign in f (x ) is 2 therefore f (x ) can have at most two positive real roots. f (− x ) = − x 5 − 6 x 4 + 4 x + 5 = 0 Now, Then the number of change of sign is 1. Hence f (x ) can have at most one negative real root. So that total possible number of real roots is 3. 89. (d) Given equation ( pq ) x 2 − ( p + q )2 x + ( p + q)2 = 0 Let solution set is Sum of roots = p +q p +q , q p ( p + q)2 pq ⇒ p + q p + q ( p + q)2 + = p q pq Similarly, product of roots = p + q p + q ( p + q)2 × = p q pq ⇒ 90. (b) Given , ( p + q)2 pq . x + 2 > x + 4 ⇒ ( x + 2)2 > ( x + 4 ) ⇒ x 2 + 4 x + 4 > x + 4 ⇒ x 2 + 3x > 0 ⇒ x (x + 3) > 0 ⇒ x < – 3 or x > 0 91. (b) Given equation Then ⇒x >0 . x 3 − 3x 2 + x + 5 = 0 . α + β + γ = 3 , αβ + βγ + γα = 1 , αβγ = −5 y = Σα 2 + αβγ = (α + β + γ ) 2 − 2 (αβ + βγ + γα ) + αβγ = 9 −2−5 = 2 ∴ y=2 It satisfies the equation 92. (d) Let y = x2 . Then y3 − y2 − y − 2 = 0 . x = y ∴ x 3 + 8 = 0 ⇒ y3/2 + 8 = 0 ⇒ y 3 = 64 ⇒ y 3 − 64 = 0 www.sakshieducation.com www.sakshieducation.com Thus the equation having roots α 2,β 2 and γ 2 is x 3 − 64 = 0 . 93. (a) According to given condition, 4 a 2 − 4 (10 − 3 a) < 0 ⇒ a 2 + 3 a − 10 < 0 ⇒ (a + 5)(a − 2) < 0 ⇒ −5 < a < 2 . 94. (c) If α, β, γ are the roots of the equation. x 3 − px 2 + qx − r = 0 ∴ (α + β ) −1 + (β + γ ) −1 + (γ + α ) −1 = Given, ⇒ p2 + q pq − r p = 0, q = 4 , r = −1 p2 + q 0 + 4 = =4. pq − r 0 +1 www.sakshieducation.com
© Copyright 2025 ExpyDoc