Ferromagnetism in ruthenate perovskites Hung T. Dang1 , Jernej Mravlje2 , Andrew J. Millis3 and Antoine Georges4 1 Institute for Theoretical Solid State Physics, RWTH Aachen University, Germany 2 Department of Theoretical Physics, Jozef Stefan Institute, Ljubljana, Slovenia 3 Department 4 Centre of Physics, Columbia University, New York, USA ´ de Physique Th´ eorique, CNRS, Ecole Polytechnique, 91128 Palaiseau, France March 6, 2014 Supported by Grant No. DOE ER046169 and the Columbia-Ecole Polytechnique Alliance program. Hung T. Dang Ferromagnetism in ruthenate perovskites Motivations: from experiments Normally, strong correlation leads to magnetic order while weak correlation does not. Not true for ruthenates: CaRuO3 (more correlated) is paramagnetic while SrRuO3 (less correlated) is ferromagnetic at T < Tc = 160K . FM ordering temp. Curie-Weiss temp. Srx Ca1−x RuO3 (Cao 1997) Hung T. Dang Mass enhancement (Ahn 1999) Ferromagnetism in ruthenate perovskites Our previous work Vollhardt et. al, and then our previous study (PRB 87, 155127) shows the conditions for ferromagnetism (FM) for less-than-half-filling (1) (2) (3) Curie temperature Tc1 > Tc2 > Tc3 Hung T. Dang Ferromagnetism in ruthenate perovskites Our previous work Vollhardt et. al, and then our previous study (PRB 87, 155127) shows the conditions for ferromagnetism (FM) for less-than-half-filling (1) (2) (3) Curie temperature Tc1 > Tc2 > Tc3 d 4 systems (ruthenates) are related to d 2 by a particle-hole transformation. Hung T. Dang Ferromagnetism in ruthenate perovskites Our previous work Vollhardt et. al, and then our previous study (PRB 87, 155127) shows the conditions for ferromagnetism (FM) for less-than-half-filling (1) (2) (3) Curie temperature Tc1 > Tc2 > Tc3 d 4 systems (ruthenates) are related to d 2 by a particle-hole transformation. In d 2 systems, proximity to the Mott insulator also suppresses the ferromagnetism (PRB 87, 155127). Hung T. Dang Ferromagnetism in ruthenate perovskites Our previous work Vollhardt et. al, and then our previous study (PRB 87, 155127) shows the conditions for ferromagnetism (FM) for less-than-half-filling (1) (2) (3) Curie temperature Tc1 > Tc2 > Tc3 d 4 systems (ruthenates) are related to d 2 by a particle-hole transformation. In d 2 systems, proximity to the Mott insulator also suppresses the ferromagnetism (PRB 87, 155127). Which condition is more significant to the ruthenates? Hung T. Dang Ferromagnetism in ruthenate perovskites Model and methods Valence d shell M-O-M bond angle metal/insulator SrRuO3 (Pnma) Ru+4 : [Kr]4d 4 163◦ (Jones 1989) FM metal CaRuO3 (Pnma) Ru+4 : [Kr]4d 4 150◦ (Bensch 1990) PM metal The model considers 3 t2g orbitals as correlated bands: H = Hkin + Honsite . Hkin : kinetic energy (lattice structure embedded) Honsite : 3-orbital interaction Honsite = U X nα↑ nα↓ + (U − 2J) α + (U − 3J) X α>β,σ X nα↑ nβ↓ + α6=β nασ nβσ + J X † † † † (cα↑ cβ↑ cβ↓ cα↓ + cα↑ cβ↑ cα↓ cβ↓ ). α6=β Density Functional plus Dynamical Mean-Field method (DFT+DMFT) is used to solve the model. Hung T. Dang Ferromagnetism in ruthenate perovskites Density functional (DFT) calculations Hung T. Dang Ferromagnetism in ruthenate perovskites Density functional (DFT) calculations (a) SrRuO3 (b) CaRuO3 40 1 0 20 10 0 −10 1 −20 2 −30 3 4Γ CaRuO3 30 DFT bands 2 total density of states 3 T Y X Γ Hung T. Dang T Y X U DFT result SrRuO3 −40 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 energy (eV) Ferromagnetism in ruthenate perovskites 0.0 0.5 1.0 Density functional (DFT) calculations (a) SrRuO3 (b) CaRuO3 40 1 0 20 10 0 −10 1 −20 2 −30 3 4Γ CaRuO3 30 DFT bands MLWF bands 2 total density of states 3 T Y X Γ T Y X U DFT result MLWF fitting SrRuO3 −40 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 energy (eV) 0.0 0.5 1.0 Maximally-localized Wannier function (MLWF) is used to obtain the t2g subspace Hung T. Dang Ferromagnetism in ruthenate perovskites Density functional (DFT) calculations (a) SrRuO3 (b) CaRuO3 40 1 CaRuO3 30 DFT bands MLWF bands 2 total density of states 3 0 20 10 0 −10 1 −20 2 −30 3 4Γ T Y X Γ T Y X U DFT result MLWF fitting SrRuO3 −40 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 energy (eV) 0.0 0.5 1.0 Maximally-localized Wannier function (MLWF) is used to obtain the t2g subspace 1 Bandwidth of CaRuO3 is smaller than SrRuO3 . 2 DOS peak of SrRuO3 is more concentrated (near the Fermi level). Hung T. Dang Ferromagnetism in ruthenate perovskites Determine the Curie temperature Tc and the magnetic phase boundary 0.1 Small J: both are paramagnetic Intermediate J: SrRuO3 is ferromagnetic, CaRuO3 is paramagnetic Large J: both are ferromagnetic but TcSRO > TcCRO SrRuO3 is more ferromagnetic than CaRuO3 0.05 inverse susceptibility χ-1 (μ2B/eV) Tc is extrapolated from χ−1 (T ) curve. J=0.25eV zoom in 0 0.1 0.05 J=0.25eV J=0.33eV zoom in CaRuO3 SrRuO3 J=0.33eV 0 0.1 J=0.4eV zoom in 0.05 J=0.4eV 0 0.1 J=0.5eV zoom in 0.05 J=0.5eV 0 0 0.05 0.1 0.15 0.2 temperature (eV) 0 0.020.04 temperature (eV) The case U = 3eV Hung T. Dang Ferromagnetism in ruthenate perovskites Ferromagnetic/paramagnetic phase diagrams 5 U (eV) 4 (a) SrRuO3 3 PM 5 (b) CaRuO3 FM PM 4 FM 2 3 2 FM metal PM metal PM insulator 1 0 0.0 0.2 0.4 0.6 0.8 J (eV) U<3J region 1 MIT boundary 0.0 0.2 0.4 0.6 0.8 1.0 J (eV) Ferromagnetic/paramagnetic phase diagrams for (a) SrRuO3 and (b) CaRuO3 Hung T. Dang Ferromagnetism in ruthenate perovskites 0 Ferromagnetic/paramagnetic phase diagrams 5 U (eV) 4 PM insulator FM metal 3 2 1 PM metal U<3J 3region CaRuO SrRuO3 MIT boundary 0 0.0 0.2 0.4 0.6 0.8 1.0 J (eV) Two phase diagrams together. Hung T. Dang Ferromagnetism in ruthenate perovskites Ferromagnetic/paramagnetic phase diagrams 5 PM insulator FM metal 3 2 1 4 U (eV) U (eV) 4 5 PM metal U<3J 3region CaRuO SrRuO3 MIT boundary 0 0.0 0.2 0.4 0.6 0.8 1.0 J (eV) Two phase diagrams together. Hung T. Dang PM insulator FM metal 3 2 1 PM metal U<3J region MIT boundary 0 0.0 0.2 0.4 0.6 0.8 1.0 J (eV) Bandwidth of SrRuO3 is rescaled to be the same as CaRuO3 . Ferromagnetism in ruthenate perovskites Ferromagnetic/paramagnetic phase diagrams U (eV) 4 5 PM insulator FM metal 3 2 1 PM metal U<3J 3region CaRuO SrRuO3 MIT boundary 0 0.0 0.2 0.4 0.6 0.8 1.0 J (eV) Two phase diagrams together. Hung T. Dang 4 U (eV) 5 3 2 Mott insulating region Hund's coupling region 1 MIT boundary 00.0 0.2 0.4 0.6 0.8 1.0 J (eV) Classify into 2 regions of ferromagnetism Ferromagnetism in ruthenate perovskites Locate materials on the phase diagrams 5 PM insulator U (eV) 4 FM metal 3 2 1 PM metal 0 0.0 Hung T. Dang U<3J region 0.2 Ferromagnetism in ruthenate perovskites 0.4 0.6 J (eV) CaRuO3 SrRuO3 0.8 1.0 Locate materials on the phase diagrams J: should be the same. 0.3 < J < 0.5eV so as CaRuO3 is PM. Choose J = 0.4eV . 5 PM insulator U (eV) 4 FM metal 3 2 1 PM metal 0 0.0 Hung T. Dang U<3J region 0.2 Ferromagnetism in ruthenate perovskites 0.4 0.6 J (eV) CaRuO3 SrRuO3 0.8 1.0 Locate materials on the phase diagrams J: should be the same. 0.3 < J < 0.5eV so as CaRuO3 is PM. Choose J = 0.4eV . PM ins ula tor 4 U (e V) U: 1 < U < 3.5eV so as two materials are metallic. 5 FM m e ta l 3 2 1 PM m e ta l U<3J re g ion 0 0.0 Hung T. Dang 0.2 Ferromagnetism in ruthenate perovskites 0.4 0.6 J (e V) Ca RuO 3 SrRuO 3 0.8 1.0 Locate materials on the phase diagrams J: should be the same. 0.3 < J < 0.5eV so as CaRuO3 is PM. Choose J = 0.4eV . I I I Whether SrRuO3 and CaRuO3 share the same U or not If U ∼ 2eV : Hund’s coupling effect If U ∼ 3eV : effect from the proximity to Mott insulating phase Hung T. Dang PM ins ula tor 4 U (e V) U: 1 < U < 3.5eV so as two materials are metallic. Possibilities of U values: 5 FM m e ta l 3 2 1 PM m e ta l U<3J re g ion 0 0.0 0.2 Ferromagnetism in ruthenate perovskites 0.4 0.6 J (e V) Ca RuO 3 SrRuO 3 0.8 1.0 The U values (work in progress) Based on optical conductivity sum rule: R 1/π Reσ(ω)dω (unit Ω−1 cm−1 eV ) with 0 < ω < 0.12eV U(eV ) J(eV ) T (K ) Opt. sum rule CaRuO3 SrRuO3 2.3 0.4 116 463 444 3 0.4 290 349 375 experiment at T = 200K 325 390 Exp. data: Kostic et.al (PRL 81, 2498), Lee et.al (PRB 66, 041104). I I The sum rule suggests CaRuO3 and SrRuO3 have the same U. Sum rules at U = 3eV are closer to experimental data. Hung T. Dang Ferromagnetism in ruthenate perovskites The U values (work in progress) Based on optical conductivity sum rule: R 1/π Reσ(ω)dω (unit Ω−1 cm−1 eV ) with 0 < ω < 0.12eV U(eV ) J(eV ) T (K ) Opt. sum rule CaRuO3 SrRuO3 2.3 0.4 116 463 444 3 0.4 290 349 375 experiment at T = 200K 325 390 Exp. data: Kostic et.al (PRL 81, 2498), Lee et.al (PRB 66, 041104). I I The sum rule suggests CaRuO3 and SrRuO3 have the same U. Sum rules at U = 3eV are closer to experimental data. Based on the mass enhancement m∗ /m: (exp. SRO=3.5, CRO=8 - Ahn (1999)) I I At U = 3eV , m∗ /m of two materials are similar - not good Another possibility: CaRuO3 has U ∼ 3eV , SrRuO3 has smaller U (e.g. ∼ 2eV ) Hung T. Dang Ferromagnetism in ruthenate perovskites The U values (work in progress) Based on optical conductivity sum rule: R 1/π Reσ(ω)dω (unit Ω−1 cm−1 eV ) with 0 < ω < 0.12eV U(eV ) J(eV ) T (K ) Opt. sum rule CaRuO3 SrRuO3 2.3 0.4 116 463 444 3 0.4 290 349 375 experiment at T = 200K 325 390 Exp. data: Kostic et.al (PRL 81, 2498), Lee et.al (PRB 66, 041104). I I The sum rule suggests CaRuO3 and SrRuO3 have the same U. Sum rules at U = 3eV are closer to experimental data. Based on the mass enhancement m∗ /m: (exp. SRO=3.5, CRO=8 - Ahn (1999)) I I At U = 3eV , m∗ /m of two materials are similar - not good Another possibility: CaRuO3 has U ∼ 3eV , SrRuO3 has smaller U (e.g. ∼ 2eV ) Other conditions, such as low temperature resitivity or spectral functions, need to be considered. Hung T. Dang Ferromagnetism in ruthenate perovskites Conclusions 5 PM insulat or The ferromagnetism in SrRuO3 and paramagnetism in CaRuO3 comes from 2 DOS peak position (or lattice distortion) Proximity to the Mott insulating phase U ≈ 3eV divides two regions that controls the ferromagnetism Further study is in progress for determining the U values of the two materials Hung T. Dang U (eV) 1 4 FM m et al 3 2 1 PM m et al U< 3J3region CaRuO SrRuO3 MIT boundary 0 0.0 Ferromagnetism in ruthenate perovskites 0.2 0.4 0.6 J (eV) 0.8 1.0 Acknowledgements Center for Nanophase Materials Sciences, Oak Ridge National Laboratory Extreme Science and Engineering Discovery Environment (XSEDE) High Performance Computing, RWTH Aachen University TRIQS project (http://ipht.cea.fr/triqs) Quantum Espresso package (http://www.quantum-espresso.org) Supported by Grant No. DOE ER046169 and the Columbia-Ecole Polytechnique Alliance program. Thank you for your attention. Hung T. Dang Ferromagnetism in ruthenate perovskites
© Copyright 2024 ExpyDoc