Download PDF (1852KB)

Bibliography
[IJ R . Ag a rwa l, M. Bohner , a nd A . Pet erson. In equalities on t ime scales: A survey. Mat h.
In equal. A ppl., 4(4) :535- 557 , 2001.
[2J R. P. Agarwa l. Difference Equa tions an d In equalit i es. Marcel Dekker , In c. , New York , 1992.
[3J R. P. Agarwa l and M . Bohner . Q uadratic fun ction als for seco nd orde r m atrix equat ions on
time scales. N onlin ear A nal. , 33(7) :675- 692, 1998.
[4J R . P. Agarwal a nd M. Bohner. Basi c ca lc ulus on t ime scales a nd some of its application s.
Results Math., 35(1-2) :3- 22, 1999 .
[5] R . P. Agarwal , M . Bohner , a nd D. O 'Regan. Time scale sys tems on infinite intervals. N onlin ear Anal., 47 :837- 848, 2001.
[6J R . P. Agarwal , M. Bohner , a nd D . O 'Regan . Time scale boundary value problems on infinite intervals . J. Comput. A ppl. Math ., 141 (1-2 ) :27- 34 , 2002 . Special Issu e on "Dynam ic
Eq uations on Time Sc ales" , ed it ed by R . P. Agarwal , M . Bohner , a nd D. O'Regan .
[7J R. P. Aga rwal, M. Bohner , D. O 'Regan , a nd A . P et er son. Dynamic eq uat ions on t ime
scales : A sur vey. J . Com put. Appl. Math., 141 (1-2 ):1- 26 , 2002. Spe cial Issu e on "Dy nam ic
Eq uations on Time Scales" , edi t ed by R. P . Agar wal , M. Bo h ner , a nd D . O 'Regan. Preprint
in Ulme r Semin a re 5.
[8] R . P. Agar wal , M . Bohn er , a nd P. J . Y . Won g. E igenvalues a nd eigenfu nctions of discr et e
conj ugate b ou nd ary va lue problems. Comput. Math. Appl., 38 (3-4 ):159-183, 1999.
[9] R . P. Agarwal, M . Bo hn er , a nd P. J . Y . Won g. P ositi ve solutions a nd eigenva lues of conj ug ate
bou ndary va lue pro blem s. Proc. Edinburgh Math . Soc., 42 :349-374, 1999.
[10] R . P. Ag a rwal, M. Boh ner , a nd P. J . Y. Won g. Sturm- Liouv ille eigenva lue problems on t ime
sca les . Appl. Ma th . Comput., 99( 2-3) :153-166, 1999 .
[l1 J R. P. Agarwal , M. Meehan , a nd D. O 'Regan. Fix ed Poin t Th eory an d Applications. Ca mbrid ge Un ivers ity Press, Ca mb ridg e, 200 2.
[12J R . P. Agarw al and D . O 'Regan . Boundar y value problems for general discret e syst ems on
infinite intervals . Comput. Ma th . Appl., 33( 7):85-99, 1997 .
[13) R . P. Agarwal and D. O 'Regan . Discr et e sys tems on infinite inter vals. Com put. Ma th. A ppl.,
35( 9) :97- 105 , 1998.
[14] R . P. Ag arwal a nd D . O 'Regan . Fixed point t heory in F rechet spaces a nd variati on al ineq ualit ies. Non lin ear A n al., 42:1091-1099, 2000 .
[15J R . P. Agarwal a nd D . O 'Regan . Triple solutions to boundary value pr oblems on t im e scales.
Appl. Math . Lett., 13(4) :7-11 , 2000 .
[16J R . P . Agarwal and D. O'Reg an . Existence of positive solution s t o time scale equations using
time scale inequalities. J . Differ. Equ ations Appl., 7(6) :829 - 836 , 2001. On the occasi on of
t he 60t h birthday of Calvin Ahlbrandt.
[17] R. P. Agarwal a nd D . O 'Re ga n. Infin it e Int erval Problem s f or Differential, Differen ce and
Int egral Equations. Kluwer Acad emic Publish er s , Dordrecht , 2001.
[18] R . P. Agarwal and D. O 'Regan. Nonlinear b oundary value problems on t ime scales . No nlin ear
Anal., 44(4):527-535, 2001.
[19J R . P. Agarwal , D. O 'Regan , and P. J . Y . Wong. P ositive So lut ions of Different ial, Difference
and Int egral E quations. Kluwer Academic Publish ers, Dor d recht , 1999.
[20J C . D . Ahlbra nd t , M. Bohner , a nd J . R idenh ou r . Hamilt onian sys t ems on t ime scales . J.
Math . Anal. Appl. , 250(2):561- 578, 2000 .
[21J C . D. Ahlbrandt , M . Boh ner , and T. Voep el. Va riable change for Stur m- Liouv ille di ffer en ti al
exp res sions on ti me scales. J. Differ . Equations Appl., 200 1. To a p pear.
335
336
BIBLIOGRAPHY
[22] C. D . Ahlbrandt and C . Morian. Partial differential equations on time scales. J. Comput.
Appl. Math ., 141(1-2):35-55, 2002. Special Issue on "Dyn am ic Equations on Time Scales" ,
edited by R. P . Agarwal, M . Bohner, and D . O'Regan.
[23] E . Akin. Boundary value problems for a differential equation on a measure chain . Panamer.
Math . J., 10(3) :17-30,2000.
[24] E . Akin. Boundary value problems, oscillation theory, and the Cauchy functions for dynamic
equations on a measure chain. PhD thesis , University of Nebraska-Lincoln, 2000 .
[25] E . Akin, Cauchy functions for dynamic equations on a measure ch ain . J . Math. Anal. Appl.,
267(1) :97-115,2002.
[26] E. Akin, M. Bohner, L. Erbe, and A . Peterson. Existence of bounded solutions for second
order dynamic equations. J . Difference Equ , Appl., 8(4) :389 -401 , 2002. In honor of Professor
Lynn Erbe.
[27] E . Akin, L. Erbe, B. Kaymakc:;alan, and A . Peterson. Oscillation results for a dynamic
equation on a time scale. J. Differ. Equations Appl., 7(6) :793 -810, 2001. On the occasion
of the 60th birthday of Calvin Ahlbrandt.
[28] E . Akin-Bohner and F . M . Atici. A quasilinearization approach for two point nonlinear
boundary value problems on time scales. 2002. Submitted.
[29] E . Akm-Bohner and M . Bohner. Exponential functions and Laplace transforms for alpha
derivatives. In B. Aulbach , S. Elaydi, and G . Ladas, editors, Conference Proceedings of
the Sixth International Conference on Difference Equations, Augsburg, 2002 . Taylor and
Francis. To appear.
[30] E . Akin-Bohner and M . Bohner. Miscellaneous dynamic equations. 2002 . Submitted.
[31] E . Akm-Bohner and J . Hoffacker. Solution properties on discrete time scales. J. Differ.
Equations Appl. , 2001. To appear.
[32] D . Anderson . Discrete Hamiltonian systems. PhD thesis, University of Nebraska-Lincoln,
1997 .
[33] D . Anderson. Positivity of Green's function for an n-point right focal boundary value problem on measure chains. Math . Comput. Modelling, 31(6-7) :29-50, 2000.
[34J D . Anderson. Eigenvalue intervals for a two-point boundary value problem on a measure
chain. J. Comput. Appl. Math ., 141(1-2) :57-64,2002. Special Issue on "Dy na m ic Equations
on Time Scales" , edited by R. P . Agarwal, M. Bohner, and D . O 'Regan.
[35] D . Anderson. Taylor polynomials for nabla dynamic equations on time scales. Panamer.
Math. J., 2002. To appear.
[36] D. Anderson and R . Avery. Existence of three positive solutions to a second-order boundary
value problem on a measure chain. J. Comput. Appl. Math ., 141(1-2) :65-73, 2002 . Special
Issue on "Dy na m ic Equations on Time Scales " , edited by R. P. Agarwal, M . Bohner, and
D . O'Regan.
[37] D . Anderson, J. Bullock, L. Erbe, A. Peterson, and H . 'Ir a n. Nabla dynamic equations on
time scales. Panamer. Math . 1.,2002.
[38] D . Anderson and A . Peterson. Asymptotic properties of solutions of a 2nth-order differ ential
equation on a time scale. Math. Comput. Modell ing, 32(5-6) :653 -660, 2000. Boundary value
problems and related topics .
[39J G . Aslim and G. Sh. Guseinov. Weak semirings, w-semirings, and measures. Bull . Allahabad
Math . Soc ., 14:1-20, 1999 .
[40] F . M . Atrci and A . C abada. The method of upper and lower solutions for discrete second
order periodic boundary value problems. Comput. Math . Appl., 2002 . Advances in Difference
Equations IV. To appear.
[41] F . M. AtlCI, P . W . Eloe, a nd B . Kayrnakcalan. The quasilinearization m ethod for boundary
value problems on time scales. J. Math . Anal. Appl. , 2002. To appear.
[42] F . M. Atrci and G . Sh . Guseinov. On Green's functions and positive solutions for boundary value problems on time scales. J . Comput. Appl. Math ., 141(1-2) :75-99, 2002. Special
Issue on "Dy na m ic Equations on Time Scales" , edited by R. P . Agarwal , M . Bohner, and
D . O 'Regan.
[43] F . M . Atici, G . Sh. Guseinov, and B . K aymakc:;alan . On Lyapunov inequality in stability
theory for Hill 's equation on time scales. J. Inequal. Appl. , 5(6) :603 -620, 2000.
[44] F . M . Atici, G . Sh. Guseinov, and B . Kaymakcalan. Stability criteria for dynamic equations
on time scales with periodic coefficients. In Proceedings of Dynamic Systems and Applications (Atlanta, GA , 1 999) , volume 3, pages 43-48, Atlanta, GA , 2001. Dynamic publishers .
BIBLIOGRAPHY
33 7
[45] B . Aulbach and S. Hilger. Linear dynamic processes with inhomogeneous t im e scale. In
Nonlinear Dynamics and Quantum Dynamical Systems (Gaussig, 1990) , volume 59 of Math .
Res ., pages 9- 20. Akademie Verlag , Berlin, 1990.
[46] B. Aulbach a nd C . Potzsche. Reducibility of linear dynamic equations on measure chains .
J. Comput. Appl. Math ., 141(1-2) :101-115, 2002 . Special Issue on "Dy na m ic Equations on
Time Scales" , ed it ed by R . P. Agarwal, M . Bohner , and D. O 'Regan .
[47] R . Avery. A generalization of the Leggett-Williams fixed point theorem. Math . Sci. Res.
Hot-Lin e, 2:9-14, 1998.
[48] R . Avery a nd J . Henderson. Two positive fixed points of nonlinear operators on ordered
banach spaces. Comm. Appl. Nonlinear Anal., 8(1) :27-36, 2001.
[49] J . H. Barrett. A Priifer transformation for matrix differential eq uat ions . Proc . Amer. Math.
Soc ., 8:510- 518, 1957.
[50] A. Ben-Israel and T . N. E. Grevill e . Generalized Inverses: Theory and Applications. John
Wiley & Sons, Inc ., New York , 1974.
[51] T. G . Bhaskar. Comparison theorem for a nonlinear boundary value problem on time scales.
J. Comput. Appl. Math. , 141(1-2) :117-122 , 2002 . Sp ecial Issue on "Dynam ic Equations on
Time Scales" , ed ited by R . P . Agarwal, M. Bohner, and D . O 'Regan.
[52] S. Bodine and D. A. Lutz. Exponential functions on time scales: Their asymptotic beh avior
and calculation. Dynam. Systems Appl. , 2002 . To appear.
[53] M. Bohner . Controllability and dis conjugacy for linear Hamiltonian difference systems. In
S. Elaydi, J. Graef, G . Ladas, and A. Peterson, editors, Conferen ce Proceedings of th e First
International Conference on Differenc e Equations, pages 65-77, San Antonio, 1994. Gordon
and Br each.
[54] M. Bohner. Zur Posiiuniiii diskreter quadraiischer Funktionale. PhD thesis, Universitat
Ulm, 1995. English Edition : On positivity of discrete quadratic fun ctionals.
[55] M . Bohner . An oscillation theorem for a Sturm-Liouville eige nva lue problem . Math . Nachr.,
182:67-72, 1996.
[56] M . Bohner. Linear Hamiltonian differenc e systems: disconjugacy and Jacobi-type conditions.
J . Math . Anal. Appl., 199(3) :804-826, 1996 .
[57] M . Bohner. On disconjugacy for Sturm-Liouville differ ence equations. J . Differ. Equations
Appl., 2(2) :227-237, 1996.
[58] M. Bohner. Riccati matrix difference equat ions and line ar Hamiltonian difference systems.
Dynam. Contino Discrete Impuls. Systems, 2(2) :147-159, 1996.
[59] M . Bohner. Inhomogeneous discrete variational problems . In S. Elaydi, I. Gy6ri, and
G . Ladas, ed it ors, Conference Proceedings of the S econd Int ernational Conference on Differen ce Equations (Veszprem, 1995), pages 89 -97, Amsterdam, 1997. Gordon a nd Breach.
[60] M. Bohner. P ositive definiteness of discrete quadratic functionals . In C . Bandle, ed it or,
General Inequalities, 7 (Oberwolfach, 1995) , volume 123 of Internat. Ser. Numer. Math.,
pages 55- 60, Basel, 1997. Birkhauser.
[61] M . Bohner. Symplectic systems a nd related discrete quadratic fun ctionals . Facta Univ . Se r.
Math. Inform., 12:143-156, 1997.
[62] M . Bohner . Asymptotic behavior of discretized Sturm-Liouville eigenvalue problems. J .
Differ. Equations Appl., 3:289-295, 1998 .
[63] M . Bohner. Discrete line ar Hamiltonian eigenvalue problems. Comput. Math. Appl. , 36(1012) :179-192,1998.
[64] M . Bohner. Discrete Sturmian theory. Math . Inequal. Appl. , 1(3) :375-383, 1998 . Preprint in
Ulmer Seminare 1.
[65] M. Bohner and J. Castillo. Mimetic methods on measure chains. Comput. Math. Appl.,
42(3-5):705-710, 2001. Advances in Difference Equations, III.
[66] M . Bohner, S. Clark, and J . Ridenhour. Lyapunov inequalities on time scales. J . Inequal .
Appl., 7(1) :61-77, 2002.
[67] M . Bohner and O. Dosly. Disconjugacy and transformations for symplectic systems. Rocky
Mountain J. Math., 27(3) :707-743, 1997 .
[68] M . Bohner and O. Dosly , Positivity of block tridiagonal matrices. SIAM J . Matrix Anal.
Appl., 20(1) :182-195, 1998.
[69] M. Bohner and O . Dosly. Trigonometric transformations of symplectic difference systems.
J. Differential Equations, 163:113-129, 2000 .
338
BIBLIOGRAPHY
[70] M. Bohner and O . Dosly . The discrete Priifer transformation. Proc. Amer. Math . Soc.,
129(9) :2715-2726, 2001.
[71] M . Bohner a nd O . Do sly . T rigonome t ric sys t ems in oscillation theory of difference equat ions.
In G . S. Ladde, N . G. Medhin, and M. Sambandham , editors, Proceeding s of Dynamic
Systems and Applications (Atlanta, GA , 1999), volume 3, pages 99-104, Atlanta, 2001.
Dynamic publisher s.
[72] M . Bohner , O . Do sly , and R . Hilscher. Linear Hamiltonian dynamic systems on time sca les :
Sturmian property of the principal solution. Nonlinear Anal., 47 :849-860, 200l.
[73] M. Bohner , O . Dosly, a nd W. Kratz. Inequalities and asymptotics for Riccati matrix difference op erators. J. Math . Anal. Appl., 221(1) :262-286, 1998 .
[74] M . Bohner, O . Dosly, and W . Kratz. A Sturmian theor em for recessive so lu t ions of linear
Hamiltonian difference systems. Appl. Math . Lett., 12:101-106, 1999 .
[75] M . Bohner, O . Dosly, and W . Kratz . Discrete Reid roundabout theorems. Dynam. S ystems A ppl., 8(3-4) :345 - 352 , 1999 . Special Issue on "D iscret e a nd Continuous Hamiltonian
Systems" , ed ited by R. P. Agarwal a nd M. Bohner.
[76] M. Bohner , O . Do sly , and W . Kr atz . An oscillation theorem for discret e eigenva lue problems.
Rocky Mountain J . Math ., 2002 . To appear.
[77] M. Bohner a nd P. W. Elo e . Higher order dynamic eq uat ions on measure cha ins : Wronskians,
dis conjugacy, a nd interpolating families of functions. J. Math . Anal. Appl., 246(2):639 -656,
2000 .
[78] M. Bohner a nd G . Sh. Guseinov. Improper integrals on t ime scales. Dynam. Sy stems Appl.,
2002 . To ap pear.
[79] M . Bohner and R. Hering. P erturbations of dynamic equations. J. Differenc e Equ. Appl.,
8(4):295-305,2002. In honor of Professor Lynn Erbe.
[80] M . Bohner a nd R. Hilscher. An eigenvalue pr oblem for linear Hamiltonian systems on t ime
scales. 2002. Submitted.
[81] M . Bohner and S. Hui. Brain st ate in a convex body. IEEE Trans . N eural Networks,
6(5) :1053 -1060, 1995.
[82] M. Bohner a nd B. Kaymak calan , Opial inequalities on time scale s. Ann. Polon . Math .,
77( 1):11-20, 2001.
[83] M. Bohner a nd V . Lakshmikantham. Formulas of Bendixson a nd Alekseev for d iffer enc e
eq uat ions . 2002 . Submitted .
[84] M. Bohner a nd D . A . Lutz. Asymptotic behavior of d yn amic equ ations on time scales. J.
Differ. Equations Appl., 7(1) :21-50, 2001. Special issue in memory of W. A . Harris, Jr.
[85] M. Bohner a nd A . Pet erson. A survey of expone nt ial fun ctions on time scales. Rev. Cubo
Mat . Edu c., 3(2):285-301 , 2001.
[86] M . Bohner a nd A . Pet erson. Dynam ic Equa tions on Tim e Scales: An Introdu ction with
Applications. Birkhauser , Boston, 200l.
[87] M . Bohner a nd A . P eterson. First and second order linear dynamic eq uat ions on time scales .
J. Differ. Equations Appl., 7(6 ):767-792 , 2001. On t he occasi on of t he 60th bi rthday of
Calvin Ahl brandt.
[88] M . Bohner a nd A . P et erson . Laplace t rans for m a nd Z-transform: Unification a nd extension .
Methods Appl. Anal. , 9(1) :155-162 , 2002 . P re print in Ulmer Seminare 6.
[89J M . Bohner a nd S. H. Saker. Oscillation of second order nonlinear d yn amic equat ions on time
scales . Rocky Mou ntain J. Math. , 2002 . To ap pear.
[90] W . E . Boyce a nd R. DiPrima . Elem entary Differential Equations and Boundary Value
Problem s. John Wiley & Sons, Inc ., New York , sevent h ed it ion, 2001.
[91J C . Chyan a nd W . K.C . Yin. A convergence theorem on a measure ch ain. Ma th. Sci. R es.
Hot-Lin e, 5(2):15- 22, 2001.
[92] C . J . C hyan . Un iq ue ness implies ex istence on time scales. J. Math . Anal. Appl. , 258(1) :359365 , 2001.
[93] C . J . C hya n. Eigenv alue intervals for 2mth order sturm-liouville boundary value problems .
J. Differ. Equations Appl. , 8( 5):403-413, 2002 .
[94] C . J . C hya n . Positive solu tions of syst ems of second order differen tial equ ations on a measure
ch ain . 2002 . Preprint .
[95] C . J . C hyan, J . M. Davis, J . Henderson , a nd W . K. C. Yin . Eigenvalue com parisons for
differ en ti al equations on a measure ch ain. Electron . J. Different ial Equ ations, pages No . 35,
7 pp . (electronic) , 1998.
BIBLIOGRAPHY
339
[96] C . J. Chyan and J. Henderson. Eigenvalue problems for nonlinear differential equations on
a measure chain. J. Math. Anal. Appl., 245(2) :547-559, 2000 .
[97] C . J . Chyan and J . Henderson. Twin solutions of boundary value problems for differential
equations on measure chains. J. Comput. Appl. Math ., 141(1-2):123-131, 2002. Special Issue on "Dy nam ic Equations on Time Scales", edited by R. P . Agarwal, M. Bohner, and
D . O 'Regan .
[98] C . J. Chyan, J. Henderson, and H. C . Lo . Positive solutions in an annulus for nonlinear
differ ential equations on a measure chain . Tamkang J. Math ., 30(3):231-240, 1999 .
[99] D. L. Cohn. Measure Theory. Birkhiiuser, Boston, 1980 .
[100] W . A. Coppel. Disconjugacy, volume 220 of Lecture Notes in Mathematics. Springer-Verlag,
Berlin, 1971 .
[101] V. Cormani. Liouville's formula on time scales. Dynam. Systems Appl., 2002 . To appear.
[102] F . A. Davidson and B. P. Rynne. Global bifurcation on time scales. J. Math. Anal. Appl.,
267(1) :345-360, 2002 .
[103] J . M. Davis, J. Henderson, and K . R. Prasad. Upper and lower bounds for the solution of
the general matrix Riccati differential equation on a time scale . J. Comput. Appl. Math.,
141(1-2) :133-145, 2002 . Special Issue on "Dynamic Equations on Time Scales", edited by
R. P. Agarwal, M. Bohner, and D. O 'Regan.
[104] J . M. Davis, J . Henderson, K. R. Prasad, and W . Yin. Eigenvalue comparisons for differential
equations on a measure chain. Electron. J. Differential Equations, pages 1-7, 1998 .
[105] J . M. Davis, J . Henderson, K. R. Prasad, and W . Yin. Solvability of a nonlinear second
order conjugate eigenvalue problem on a time scale. Abstr. Appl. Anal. , 5(2):91-99, 2000.
(106] J . M. Davis, J. Henderson, K. R. Prasad, and W. Yin. Solvability of a nonlinear second
order conjugate eigenvalue problem on a time scale. Abstr. Appl. Anal., 2001. To appear.
[107] J . M. Davis, J . Henderson, and D. T . Reid. Right focal eigenvalue problems on a measure
chain. Math . Sci. Res . Hot-Line , 3(4) :23-32, 1999 .
[108] J . M. Davis and K. R. Prasad. Eventual disconjugacy on time scales. Appl. Math . Lett. ,
13(6) :77-82, 2000 .
[109] K. Deimling. Nonlinear Functional Analysis. Springer-Verlag, New York, 1985 .
[110] O . Dosly. Principal and non principal solutions of symplectic dynamic systems on time scales.
In Proceedings of the 6th Colloquium on the Qualitative Theory of Differential Equations
(Szeged, 1999), pages No .5, 14 pp. (electronic) . Electron. J . Qual. Theory Differ . Equ.,
Szeged, 2000.
[111] O. Dosly and S. Hilger. A necessary and sufficient condition for oscillation of the SturmLiouville dynamic equation on time scales. J. Comput. Appl. Math., 141(1-2) :147-158, 2002.
Special Issue on "Dynamic Equations on Time Scales" , edited by R. P . Agarwal, M. Bohner,
and D. O'Regan.
[112] O. Dosly and R. Hilscher. Disconjugacy, transformations and quadratic functionals for symplectic dynamic systems on time scales. J. Differ. Equations Appl., 7:265-295, 2001.
[113] Z. Drici. Practical stability of large-scale uncertain control systems on time scales. J. Differ.
Equations Appl. , 2(2) :139-159, 1996. Difference Equations: Theory and Applications (San
Francisco, CA , 1995) .
[114] J . Ehme and J . Henderson. Differentiation of solutions of boundary value problems with
respect to boundary conditions. Appl. Anal., 46:175-194, 1992 .
[115] U. Elias. Green's functions for a nondisconjugate differential operator. J. Differential Equations, 37:319-350, 1980.
[116] U. Elias. Generalizations of an inequality of Kiguradze. J. Math. Anal. Appl., pages 277-290,
1983.
[117] U. Elias. Oscillation Theory of Two- Term Differential Equations, volume 396 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht , 1997 .
[118] U. Elias. Bounds for solutions of a differential inequality. Proc . Amer. Math . Soc ., 128:475484 ,2000.
[119] P . Eloe. The method of quasilinearization and dynamic equations on compact measure
chains. J. Comput. Appl. Math. , 141(1-2):159-167, 2002 . Special Issue on "Dynamic Equations on Time Scales" , edited by R . P. Agarwal, M. Bohner, and D. O'Regan.
[120] P . W . Eloe. Criteria for right disfocality of linear difference equations. J . Math. Anal. Appl.,
120:610 -621, 1986.
340
BIBLIOG RAPHY
[121] P. W. Eloe. A generalizat ion of concavity for finit e differ enc es . Comput. Math. Appl., 36:109-113 ,1998.
[122] P . W . Eloe . Sign properties of Green 's functions for disconjugate dynamic equations on time
scales. 2002 . Preprint .
[123] P . W. Eloe, D. Hankerson, and J . Henderson. Positive solutions and conjugate points for
multipoint boundary valu e problems. J. Differential Equations, 95:20-32, 1992 .
[124] P. W . Eloe and J . Henderson. Analogues of Feket e and Decartes systems of solutions for
differen ce equations. J. Approx. Th eory , 59:38-52, 1989.
[125] P. W . Eloe and J . Henderson. Inequalities based on a generalization of concavity. Pro c,
Amer. Math. Soc., 125:2103-2108, 1997.
[126] P . W . Eloe , J. Henderson, and H. B. Thompson. Extremal points for impulsive lidstone
boundary value problems. Math. Comput. Modelling, 32:687-698, 2000 .
[127] P. W . Eloe and J . Ridenhour. Sign properties of Gr een's functions for a family or two-point
boundary value problems. Proc. Amer. Math. Soc., 120:443-452 , 1994.
[128] L. Erbe and S. Hilger . Sturmian theory on measure chains . Differential Equations Dynam .
Sy st ems, 1(3) :223-244, 1993.
[129J L. Erbe, R. Mathsen, and A. Peterson. Existence, multiplicity, and nonexistence of pos itive
solutions to a differential equ ation on a measure chain. J. Comput. Appl. Math ., 113(12) :365-380, 2000 .
[130] L. Erbe, R. Mathsen, and A. Peterson. Factoring line ar differential operators on measure
chains. J. Inequal . Appl., 6(3) :287-303, 2001.
[131] L. Erbe and A. Peterson. Green 's fun ctions and comparison theorems for differential equations on measure chains. Dynam. Contino Discrete Impuls. Sy stems, 6(1) :121-137, 1999.
[132] L. Erbe and A. Peterson. Positive solutions for a nonlinear differential equation on a measure chain. Math . Comput. Mod elling , 32(5-6) :571- 585, 2000 . Boundary value problems and
related topics.
[133J L. Erbe and A . Peterson . Ricc ati equations on a measure ch ain . In G. S. Ladde, N. G.
Medhin, and M . Sambandham, ed itors, Proceedings of Dynamic Systems and Applications
(Atlanta, GA, 1999), volume 3, pages 193-199, Atlanta, GA , 2001. Dynamic publishers.
[134J L. Erbe and A. Peterson. Averaging techniques for self-adjoint matrix equations on a measure
chain. J. Math . Anal. Appl., 271:31- 58, 2002 .
[135] L. Erbe and A. Peterson. Boundedness and oscillation for nonlinear dynamic equ ations on
a time scale. 2002 . Submitted.
[136] L. Erbe and A. Peterson . Oscillation criteria for second order matrix dynamic equ ations on
a time scale. J. Comput. Appl. Math ., 141(1-2) :169-185, 2002 . Sp ecial Issue on "Dyna mic
Equations on Time Scales" , edi ted by R . P . Agarwal, M. Bohner, and D. O'Regan .
[137] L. Erbe, A. Peterson, and S. H. Sak er . Oscillation criteria for second order nonlinear dyn amic
equations on time scales . J. London Math . S oc., 2002. To a ppe ar.
[138] L. Erbe, A. Peterson , and P. Reh ak . Comparison theor ems for linear dynamic equations on
time scal es . J. Math . Anal. Appl., 2002 . To ap pear.
[139] L. H. Erbe and H. Wang. On the existe nce of posi tive solut ions of ordinary differential
equations. Proc. Amer. Math . S oc., 120(3):743-748, 1994 .
[140] K. M. Fick , J . Henderson , and W . Yin . Eventual right d isfocality on t ime scales . J. Difference
Equ . Appl., 8(4) :371-387, 2002. In honor of Professor Lynn Erbe.
[141J E. Fis cher. Int ermediat e R eal Analysis. Springer-Verl ag, New York , 1983.
[142] J. A . G at ica and H. L. Smith. Fixed point te chniques in a cone with applica t ions. J. Math .
Anal. Appl. , 61(1):58- 71, 1977.
[143] S. Giilsan Topa!. Calculus and dyna m ic equations on time scales. PhD t hesis, Ege
Universitesi , 2001.
[144] S. Gulsan Topa!. Roll e's and generalized mean valu e theor ems on time scales . J. Difference
Equ, Appl. , 8(4):333- 343, 2002. In honor of Professor Lynn Erbe.
[145] S. Giilsan Topa!. Second order periodic boundary value problem s on t ime scales. Com put .
Math . Appl. , 2002 . To appear.
[146] D. Gu o and V. Lakshmikantham . Nonlin ear Problem s in Ab stra ct Con es. Academic Press ,
Boston, 1988.
BIBLIOGRAPHY
341
[147] G . Sh. Guseinov and B. Kaymakcalan , On the Riemann integration on time scales. In
B . Aulbach, S. Elaydi, and G . Ladas, editors, Conference Proceedings of th e Sixth International Conference on Differenc e Equations and Applications, Augsburg, 2001. Taylor and
Francis. To appear.
[148] G. Sh. Guseinov and B . Kayrnakcalan. Basics of Riemann delta and nabla integration on
time scales. J. Differ. Equations Appl. , 2002 . To appear.
[149] G . Sh . Guseinov and B. Kayrnakcalan. On a disconjugacy criterion for second order dynamic
equations on time scales. J. Comput. Appl. Math ., 141(1-2):187-196,2002. Special Issue on
"Dyna mic Equations on Time Scales" , edited by R. P. Agarwal, M. Bohner , and D. O'Regan.
[150] G. Sh . Guseinov and E. Ozyrlrnaz. Tangent lines of generalized regular curves parametrized
by time scales. Turkish J. Math., 25(4) :553-562, 2001.
[151] P. R. Halmos. Measure Theory. Van Nostrand, Princeton, 1950.
[152] P. Hartman. Ordinary Differential Equations. John Wiley & Sons, Inc ., New York, 1964 .
[153] P. Hartman. Principal solutions of disconjugate nth order linear differential equations. Amer.
J. Math. , 91:306-362, 1969 .
[154] P. Hartman. Difference equations: disconjugacy, principal solutions, Green 's functions, complete monotonicity. Trans. Amer. Math. Soc., 246 :1-30, 1978 .
[155] J . Henderson. k-point disconjugacy and disconjugacy for linear differential equations. J.
Differential Equations, 54:87-96, 1984.
[156] J . Henderson. Multiple solutions for 2mth order Sturm-Liouville boundary value problems
on a measure chain. J. Differ. Equations Appl., 6(4) :417-429, 2000 .
[157] J . Henderson. Double solutions of impulsive dynamic boundary value problems on a time
scale. J. Difference Equ . Appl., 8(4) :345-356, 2002 . In honor of Professor Lynn Erbe.
[158] J . Henderson and K. R. Prasad. Comparison of eigenvalues for Lidstone boundary value
problems on a measure chain. Comput. Math. Appl. , 38(11-12):55-62, 1999 .
[159] R. Higgins and P. Peterson. Cauchy functions and Taylor's formula for time scales. In
B . Aulbach, S. Elaydi, and G . Ladas, editors, Conference Proceedings of the Sixth International Conference on Difference Equations, Augsburg, 2002 . Taylor and Francis. To
appear.
[160] S. Hilger. Ein Maftkettenkalkul mit Anwendung auf Zentrumsmannigfaltigkeiten. PhD thesis, Universitat Wilrzburg, 1988.
[161] S. Hilger. Analysis on measure chains - a unified approach to continuous and discrete
calculus. Results Math. , 18:18-56, 1990 .
[162] S. Hilger. Generalized theorem of Hartman-Grobman on measure chains. J. Austml. Math .
Soc . Ser. A , 60(2):157-191 , 1996.
[163] S. Hilger. Special functions , Laplace and Fourier transform on measure chains. Dynam.
Systems Appl., 8(3-4) :471-488, 1999. Special Issue on "Discret e and Continuous Hamiltonian
Systems" , edited by R. P. Agarwal and M. Bohner.
[164] S. Hilger. Matrix Lie theory and measure chains. J. Comput. Appl. Math., 141(1-2):197217 , 2002 . Special Issue on "Dyna m ic Equations on Time Scales" , edited by R. P . Agarwal,
M. Bohner, and D . O 'Regan.
[165] R . Hilscher. Linear Hamiltonian systems on time scales: Transformations. Dynam. Systems Appl. , 8(3-4) :489-501 , 1999 . Special Issue on "Discrete and Continuous Hamiltonian
Systems", edited by R. P. Agarwal and M . Bohner.
[166] R. Hilscher. Linear Hamiltonian systems on . timescales:Positivity ofquadratic functionals.
Math. Comput. Modelling, 32(5-6) :507-527, 2000. Boundary value problems and related
topics.
[167] R. Hilscher. On disconjugacy for vector linear Hamiltonian systems on time scales. In Communications in Difference Equations (Poznan, 1998), pages 181-188. Gordon and Breach,
Amsterdam, 2000 .
[168] R . Hilscher. Inhomogeneous quadratic functionals on time scales. J. Math . Anal. Appl.,
253(2) :473-481 , 2001.
[169] R. Hilscher. Positivity of quadratic funct.ionals on time scales: Necessity. Math. Nachr.,
226 :85-98, 2001.
[170] R . Hilscher. Reid roundabout theorem for symplectic dynamic systems on time scales. Appl.
Math. Optim., 43(2):129-146, 2001.
342
BIBLIOGRAPHY
[171] R. Hilscher. A t ime sc ales ver sion of a Wirtinger t ype inequality and applications. J. Comput.
Appl. Math., 141(1 -2) :219-226,2002. Sp ecial Issue on "Dynamic Equations on T ime Scales",
edited by R . P. Agarwal, M . Bohner , and D . O 'Regan.
[172] J . Hoffacker. Green's functions for higher order equations on time scales . Panamer. Math .
J ., 11(4) :1-28, 2001.
[173] J . Hoffacker. Basic partial dynamic equations on time scales . J . Difference Equ. Appl.,
8(4):307-319,2002. In honor of Professor Ly n n Erbe.
[174] S. Huff, G. O lumolode, N. Pennington, a nd A. P eter son. Oscillation of an Euler-Cauchy
dynamic equation. In Proceedings of the Fourth Intern ation al Conference on Dynamical
Systems and Differential Equations, Wilmington, 2002 . To appear.
[175] D . Jiang and H . Liu . Existence of positive so lntions to (k, n - k) conjugate bonndary value
problems. Kyushu J. Math., 53:115-125, 1999.
[176] E. R. Kaufmann. Smoothness of solutions of conjugate boundary value problems on a measure chain. Electron. J. Differential Equations, p ages No . 54 , 10 pp. (electronic) , 2000.
[177] B. Kaymakcalan. A survey of dynamic systems on measure ch ains. Funct. Differ. Equ.,
6(1-2) :125-135, 1999 .
[178] B . K ayrnakcal an . Lyapunov stability theory for dynamic systems on time scales. J. App/.
Math . Stochastic Anal., 5(3) :275-281 , 1992 .
[179] B . Kayrnakcalan. Existence a nd com parison results for dynamic systems on time sca les . J.
Math. Anal. Appl., 172(1) :243-255, 1993.
[180] B. Kayma kca lan, Monotone iterative method for dynamic systems on time scales . Dynam.
Systems Appl., 2:213 -220, 1993.
[181] B . Kaymakcalan. Stability analysis in terms of two measures for dynamic systems on time
scales. J. Appl. Math . Sto chastic Anal., 6(5) :325- 344 , 1993 .
[182] B. K ayrnakcalan, V . Lakshmikantham, a nd S. Sivasundaram . Dynamic Systems on Measure Chains , volume 370 of Mathematics and it s Applicat ions. Kluwer Academic Publishers
Group , Dordrecht, 1996 .
[183] B . Kayrnakcalan and S. Leela . A survey of dynamic systems on t ime scales . Nonlin ear Times
Digest, 1:37-60, 1994.
[184] B . K aymakca lan , S. A. Oz giin , and A. Zafer. Gronwall a nd Bihari type inequalities on ti me
scales. In Conferen ce Proceedings of the Second Int ernational Conferen ce on Difference
Equations (Veszprem , 1995), pages 481 -490, Amsterdam, 1997. Gordon and Breach.
[185] B . Kaymakcalan , S. A. Ozgun, and A . Zafer. Asymptotic behavior of higher-order nonlinear equations on time sca les . Comput. Math . Appl., 36(10-12) :299-306, 1998 . Advan ces in
Difference Equations, II.
[186J B . K ayrnak calan and L. R angaraj an . Variation of Lyapunov's m ethod for dynamic systems
on t ime scales . J. Math. Anal. Appl., 185(2) :356 - 366, 1994 .
[187] M. S. Keen er a nd C. C. Tr avis. Positive cones and focal points for a class of nth order
differential equations. Trans . Amer . Math . Soc., 237:331-351 , 1978.
[188] S . Keller . A symptotisches Verhalt en invari an ter Faserbiindel bei Diskretisi eru ng und Mittelwertbildung im Rahmen der Analysis auf Z eitskolen . PhD thesis , Universitat Augsburg,
1999.
[189] W. G . Ke lley a nd A . C. Peterson . Differen ce Equa tions: An Introduction with Applications.
Academ ic Press, San Diego, second ed it ion , 2001.
[190] W . G . Kelley a nd A . C . Peterson. Th e Theory of Differential Equat ions: Classical and
Qualitative. Prentice Hall , New Jersey, 2002 . To ap pear.
[191] J . W . Kitchen . Calculus of on e Variabl e. Addison-Wes ley, California, 1968 .
[192] A . N. Kolmogorov a nd S. V. Fomin. Introdu ctory R eal Analysis. Dover, New York , 1975.
[193] M . Q. Krasnosel'skii. Pos itive S olutions of Operator Equation s. P . Noordhoff Ltd., G roningen , The Netherlands , 1964 .
[194] W . Kratz . Quadratic Functionals in Variational Analysis and Control Theory, volume 6 of
Math ematical Topi cs. Akademie Verlag, Berlin , 1995 .
[195] M . G. Krein and M. A. Rutman . Linear op erators leaving a cone invari an t in a banach sp ace .
Amer. Math . Soc. Transl. Se r. 1, 10:199-325 , 1962 .
[196] G . S. Ladde , V . Lakshmikantham , a nd A . S. Vatsala. Monotone It erative T echniques for
Nonlinear Different ial Equations. Pitman Publishing Inc., 1985.
[197] V . Lakshmikantham and B . Kayrnakcalan. Monotone flows a nd fixed points for dynamic
systems on time scal es . Comput. Math. Appl. , 28( 1-3):185-189, 1994 .
BIBLIOGRAPHY
343
[198J V . Lakshmikantham and S. Sivasundaram. Stability of moving invariant sets and uncertain
dynamic systems on time scales. Comput. Math . Appl. , 36(10-12):339-346, 1998 . Advances
in eifference Equations, II .
[199J V. Lakshmikantham and A. S. Vatsala, Generalized Quasilinearization for Nonlinear Problems . Kluwer Academic Publishers, Dordrecht, 1998.
[200] V . Lakshmikantham and A. S. Vatsala. Hybrid systems on time scales. J. Comput. Appl.
Math., 141(1-2):227-235,2002. Special Issu e on "Dyna mic Equations on Time Scales", edited
by R. P. Agarwal, M. Bohner, and D. O'Regan.
[201] V . Laksmikantham. Monotone flows and fixed points for dynamic systems on time scales in
a Banach space. Appl. Anal., 56(1-2) :175-184, 1995 .
[202] V. Laksmikantham, N. Shahzad, and S. Sivasundaram. Nonlinear variation of parameters
formula for dynamical systems on measure chains. Dynam. Contino Discrete Impuls. Systems, 1(2) :255-265, 1995.
[203] A. C . Lazer and P. J . McKenna . On a singular nonlinear elliptic boundary-value problem.
Proc. Amer . Math . Soc., 111(3):721-730, 1991.
[204] S. Leela. Uncertain dynamic systems on time scales. Mem . Differential Equations Math.
Phys., 12:142-148, 1997. International Symposium on Differential Equations and Mathematical Physics (Tbilisi, 1997) .
[205] S. Leela and S. Sivasundaram. Dynamic systems on time scales and superlinear convergence of iterative process. In Inequalities and Applications, pages 431-436. World Scientific
Publishing Co ., River Edge, NJ, 1994.
[206] S. Leela and A. S. Vatsala. Dynamic systems on time scales and generalized quasilinearization. Nonlinear Stud. , 3(2):179-186,1996.
[207] R. W . Leggett and L. R . Williams. Multiple positive fixed points of nonlinear operators on
ordered Banach spaces. Indiana Univ . Math. J., 28(4) :673-688, 1979.
[208] W . C . Lian, C. C . Chou, C . T . Liu , and F . H . Wong. Existence of solutions for nonlinear
BVPs of second-order differential equations on measure chains. Math. Comput. Modelling,
34(7-8) :821-837, 2001.
[209] K. Messer. A second-order self-adjoint dynamic equation on a time scale. Dynam. Systems
Appl., 2002 . To appear.
[210] K. Messer. Riccati techniques on a time scale. Panamer. Math . J., 2002 . To appear.
[211] R. N. Mohapatra, K. Vajravelu, and Y . Yin. Generalized quasilinearization method for
second order boundary value problems. Nonlinear Anal., 36:799-806, 1999 .
[212] M . Morelli and A. Peterson. A third-order differential equation on a time scale. Math.
Comput. Modelling, 32(5-6):565-570, 2000. Boundary value problems and rel ated topics.
[213] J . S. Muldowney. A necessary and sufficient condition for disfocality. Proc . Amer. Math .
Soc., 74:49-55, 1979.
[214] J. S. Muldowney. On invertibility of linear ordinary differential boundary value problems.
SIAM J. Math . Anal., 12:368-384, 1981.
[215] J . Munkres. Topology . Prentice Hall, Inc ., Englewood Cliffs , 1975.
[216J K. N. Murty and G . V. S. R. Deekshitulu. Nonlinear Lyapunov type matrix system on time
scales - existence uniqueness and sensitivity analysis. Dynam. Systems Appl., 7(4) :451-460,
1998.
[217] K. N. Murty and Y. S. Roo. Two-point boundary value problems in homogeneous time-scale
linear dynamic process. J. Math . Anal. Appl. , 184(1):22-34, 1994.
[218] Z. Nehari. Disconjugate linear differential operators. Trans . Amer. Math . Soc., 129:500 -516,
1967.
[219] L. Neidhart. Integration on measure chains. In B. Aulbach, S. Elaydi, and G . Ladas, editors, Conference Proceedings of the Sixth International Conference on Difference Equations,
Augsburg, 2001. Taylor and Francis. To appear.
[220] J. J . Nieto. Nonlinear second-order periodic boundary value problems. J. Math. Anal. Appl.,
130:22-29, 1988.
[221J D. O 'Regan. Fixed point theory for closed multifunctions. Arch. Math . (Brno), 34:191-197 ,
1998.
[222] A. Peterson and J . Ridenhour. Comparison theorems for Green's functions for focal boundary
value problems. In Recent Trends in Differential Equations, volume 1 of World Scientific
Series in Applicable Analysis, pages 493-501, River Edge, NJ , 1990. World Scientific.
344
BIBLIOGRAPHY
[223] C . Potzsche. C hain rule and invariance principle on measure chains. J . Comput. Appl. Math .,
141(1-2) :249-254, 2002. Special Issue on "Dynamic Equations on Time Scales" , edited by
R. P. Agarwa l, M . Bohner , and D. O'Regan.
[224] K. R. Prasad. Matrix Riccati differential equations on time scales. Comm. Appl. Nonlinear
Anal., 8(1) :37-49, 2001.
[225] H. Priifer. Neue Herleitung der Sturm-Liouvilleschen Reihenentwicklung stetiger Funktionen. Math. Ann., 95:499-518, 1926 .
[226] P. Rehak Half-linear discrete oscillation theory. PhD thesis, Masaryk University Brno, 2000 .
[227] W. T. Reid . A Priifer transformation for diffe rential systems. Pa cific J. Math ., 8:575-584 ,
1958 .
[228J W. T. Reid . Generalized polar coordinate transformations for diffe rential systems . Rocky
Mountain J. Math ., 1(2) :383 -406, 1971 .
[229] W . T . Reid. Ordinary Differential Equations. John Wiley & Sons, Inc ., New York , 1971.
[230] K. A. Ross . Elementary Analysis: The Theory of Cal culus. Springer-Verlag, New York ,
1990.
[231] S. Sail er . Riemann-Stieltjes Integrale auf Zeitmengen . Universitat Augsburg , 1992.
[232] K. Schmitt and H . L. Smith. Positive solutions and conjugate points for systems of differential equations. Nonlinear Anal., 2:93-105, 1978 .
[233] S. Siegmund. A spectral notion for dynamic equations on time scales. J. Comput. Appl.
Math., 141(1-2) :255-265, 2002. Special Issue on "Dynamic Equations on Time Scales" , edited
by R. P. Agarwal, M . Bohner, and D . O 'Regan.
[234] S . Sivasundaram. Convex d ependence of solutions of dynamic systems on time sca les relative
to initial data. In Advances in Nonlinear Dynamics, pages 329- 334 . Gordon and Breach,
Amsterdam, 1997 .
[235] S. Sivasundaram. The strict stability of dynamic systems on time scales. J. Appl. Math.
Stochastic Anal. , 14(2):195-204,2001.
[236] W. F. Tren ch . C anonical forms and principal systems for general disconjugate equations.
Trans. Amer. Math . So c., 189:319-327, 1974 .
[237] A . S. Vatsala. Strict stability crite ria for dynamic systems on t ime sca les . J . Differ . Equations
Appl. , 3(3-4) :267-276, 1998 .
[238] P. J . Y. Wong. Ab el-Gontscharoff boundary value problems on measure chains. J. Comput.
Appl. Math. , 142(2) :331-355,2002.
[239] P. J . Y. Wong. Optimal Abel-Gontscharoff interpolation error bounds on measure chains.
J . Comput. Appl. Math., 141(1-2) :267-282, 2002 . Special Issue on "Dy na mic Equations on
Time Scales" , ed ited by R . P. Agarwal , M . Bohner, a nd D . O 'Regan .
[240] E. Zeidler. Nonlinear Fun ctional Analysis and it s Applications. I. Fixed-Point Th eorems .
Springer- Verlag, New York, 1985.
[241] W . Zhang, R. P. Ag arwal , and E . Akm-Bohner. On well-posedncss of impulsive problems
for nonlinear parabolic equations. Nonlinear Stud. , 9(2) :145-153, 2002 .
Index
tl.-in t egr able , 135 , 141
tl.-meas urable , 158
tl.-pre- antiderivative, 14 1
'V-in t egr able , 125
8 , 34
8 , 10
$, 10
characte ristic p olynomial
E u ler eq uatio n , 24
lin ea r eq u at io n , 19 , 65 , 94
ci rcle d ot multiplication , 34
cir cle minus su btract ion, 10
a lph a case, 13
m a trix case, 75
n a bl a case, 48
scala r case, 10
circle p lus add it io n , 10
a lp ha case, 13
m a trix case, 75
n abla case , 48
scala r case, 10
ci rcle square
a lpha case, 14
delta case , 40
n abla case , 48
Clairaut eq uat io n, 43
Cld ,73
compar iso n test
im p ro p er int egral , 147, 155
co m parison t heorem, 177, 193
concave , 169
co ndit io n ally co nve rgent
im p ro p er in t egral , 146
co ne, 190
expans ion a nd compressio n, 225 , 236
reproducing , 190
solid, 190
co njoined
b ases , 295
solution, 295
s pecial normali zed b as es , 327
co nj ugate point , 297
co nj ugate problem, 210
co nj ug a te trans pose, 76
co nvex, 169
Cr d , 7
critical so lution , 32
Abel' s lemma, 143
Abel' s t heorem
converse, 97
h igh er o rder eq uatio n , 257
se co nd order eq uation , 63, 64
se lf-adjoint eq uat ion , 96
a bso lut ely co nvergent
im prop er in t egr a l, 146
adjoint eq uatio n , 19 , 58, 77
adjoint operator , 59
ad m issi b le, 300
a lmost eve ry whe re , 161 , 162
alpha d iffere ntiable, 12
antiderivative, 8 , 117
associated so lution , 295
Avery-Hender son fixed p oi nt theorem , 225 ,
229
b ackward gr aininess , 47
b ack ward j u m p o perator, 1
Banach s pace
p a rtiall y o rdered, 190
Bendixson's formula , 33
Bernoulli eq uat io n, 34, 38
bou ndary co nd it io ns
joint , 328
se parated , 321, 323
boundary value problem
co nj ugate, 210
im pulsive , 233
r igh t focal, 193, 210 , 230
Caratheodo ry extension, 157
Cauchy criter ion
improper int egr al , 146
Cauchy function , 195 , 197 , 267
hi gh er order equation, 81
Cauchy integral, 8 , 117
change of var iable , 141
D arb ou x
tl.- integr al , 118
'V-int egr a l, 125
int egr al , 117
d el t a
diffe rent iable , 2
345
346
integrable, 118
integral, 8
dense, 2
dense point , 296
derivative
d efinition, 2, 74
exchanging ~ and \7 , 88
polynomials , 3
properties, 2, 3, 74
Descartes system , 257, 258
Dirichlet-Abel test
improper integral , 148
disconjugate, 100 , 258
symplectic case, 296 , 298
dominant solution, 105
dynamic equation
Bernoulli, 38
Clairaut, 43
Euler, 24
first order linear, 19
higher order linear, 19
logistic, 30
Ricc ati,40
Verhulst, 30
environmental carrying capacity, 32
equilibrium solution, 32
Euler equat ion , 24
multiple root case , 26
Euler 's formula, 53
Euler -Lagrange equation, 300
existe nce theorem
antiderivatives, 8
pre-antiderivatives , 7
existence-un iq uenes s theorem
matrix cas e, 75
second order linear, 6 1
self- adjoint equation , 96
exp onent ial function , 10, 76
eq uiva lence of e a nd e, 90
harmonic numbers, 11, 55
properties , 10, 76
sign, 52
t able, 55, 56
extend ed Pi con e id entity, 307
Fekete syst em, 257, 258
first order lin ear eq ua t ion, 19
five fun ctionals fixed point theo rem, 241
fixed point theorem
Avery-Henderson, 225, 229
five fun ct ion als , 241
G atica-Smith, 218
Guo-Krasnosel'skii, 194
Leggett-Williams , 236 , 237
Sch auder , 176,220
t riple, 236
flow of sy mplect ic system s, 329
focal points, 296
INDEX
forward difference op er ator, 3
forw ard jump operator, 1
Frechet space, 275
Frobenius factorization, 258
fundamental system , 62
fundamental theorem of calculus, 137 , 138
Furi-Per a , 275
Furi-Pera theorem, 276
G atica-Smith fixed point theorem, 218
general solution, 62, 97
gener alized
exponential fun ction, 12
graininess, 12
polynomials, 79
quasilinearization, 165
square , 14, 40, 48
time scales, 12
zero, 100
higher order case, 254
sympletic case, 297
graininess, 2
Green 's formula, 97
Green 's function , 171 , 175, 184, 194, 198,
223, 225 , 237 , 241 , 267 , 268
symmetry condition, 198
Gronwall 's inequality, 290
Guo-Krasnosel'skii fixed point theorem, 194
GZ ,254
Hamiltonian sy stem, 294 , 332 , 334
harmonic numbers, 11, 55
Harnack ineq ua lit ies , 273
higher order Euler eq uat ion, 24
higher order linear equat ion, 19, 81
Hilger der ivative, 2
hyperbolic functions , 66 , 67
hyperbolic system , 330
hyperconcave, 166 , 169 , 174
hyperconvex , 166 , 169 , 174
improper integral
convergent, 146
diverg ent , 146
first kind , 145
second kind , 155
impulsive problem, 233
indefin ite integral, 8
infinit e intervals , 285
initial valu e problem
first order linear, 10, 19, 58- 60
matrix case, 77, 78
seco nd order linear, 61, 66
com plex roots, 70
distinct real roots, 68
double root, 71
inner product , 97
int egr abl e
Cauchy criteri on , 120
INDEX
d elt a , 118
Riem ann , 121 , 122
int egr al
Cauchy, 8, 117
co nsec utive point s, 89
Darbou x, 117
im prop er , 145 , 155
indefinit e, 8
Leb esgu e, 159
nabla, 124
Newt on, 117
pr op er ti es, 8, 9
Ri em ann , 121
int egr ation by p arts, 8, 137
integrati on by substitution , 141
interior, 12
int erpolating families, 257
intrinsic growt h fun ction, 32
isolated ,2
J acobi 's cond it ion, 114
streng t he ne d, 311
join t bou nd ary cond it ions, 328
jump ope rator
backward , 1
forward, 1
Kiguradze inequali ti es , 273
K rein-Rutman t heory, 272
kth qu as i-A d eri vative, 263
L'H6pit al 's rule
delt a de rivatives, 86
na bla derivat ives , 86
Lagr an ge br acket , 96
Lagr an ge ident ity, 58
self-adjoint equation, 96
ld- con tinuous, 47 , 73
Leb esgu e
A-int egral, 159
A-measure , 157 , 158
"V-integr al, 159
cr ite rion, 161
Leb esgu e dominated convergence theorem,
159, 161
left neighbo rho od , 85
left-dense, 2
left- scatter ed , 2
Legendre cond it ion , 297, 316
Legget t -Williams fixed point t heo re m, 236,
237
Ler ay- Sch auder nonlinear alternative , 207 ,
275
Lidst on e problem , 191, 194
linear eq uatio n
first or de r , 19
highe r or der, 19
Liou ville's formula , 78
Lip schi t z con d it ion, 130 , 179
347
Lip sch it z constant, 130
local right-maximum, 4
lo cal righ t-minimum, 4
logarithm, 35
logist ic equation , 30, 38, 42
lower
Darbou x A -int egr al , 118 , 125
Darboux A- sum, ll8
Darbou x "V-sum, 124
lower so lution , 167, 175, 271 , 283
PBVP, 177
Markov sys tem, 257, 258 , 262
matrix ex pone nt ia l, 76
mean value theor em , 5, 142 , 143 , 145
n abla
d erivative , 12
expone nt ia l fun ction, 49
matrix case, 76
sign , 53
hyperb olic fun ctions, 66
integr al , 124, 125, 162
Riccati eq uations , 73
t r igono me tric fun cti on s, 69 , 70
Wr onski an
scala r case, 62, 63
Newton int egr al , ll 7
nonoscillatory, 100
normali zed con joined bas es , 295
II-regr essive, 48 , 61
osc illatory, 100
par t ial der ivati ve, 33
par tition, 118
PBVP, 166
p eriodic boundary value problem , 166
P er ron theor em , 272
Picon e id entity, 112, 304, 305
extende d, 307
P 6lya factorization , 102
P6lya mean value t he ore m , 263
p opulation mod el , 11 ,32
positive d efinite, III
p ositively reg ress ive , 10, 18 , 53
Priifer transforma t ion , 331
pre-an t ider ivative, 8, 117
pre-differ en ti able, 6
prin cip al soluti o n, 295
principal sys tem of so lutions, 265
product rule, 3, 13 , 74
quadrat ic convergence, 172 , 176
quadra ti c fun cti on al , 300
nonhom ogen eous, 318
quasi -A d eriva ti ve, 263
quotien t rul e, 3, 13, 74
R , 10 , 75
348
INDEX
n+ ,18,53
rd-continuous, 7, 285
reachable boundary states, 318
recessive solution , 105
reduction of order, 70, 72
self-adjoint equation, 97
refinement, 118
regressive , 20 , 89 , 285
alpha case, 13
Euler equation, 24
first order equat ion, 59
group, 10, 75
matrix case, 75
matrix function , 252
scalar case, 10
second order eq uat ion , 63
symplectic cas e, 294
vector space, 18, 34
regulated, 7, 129
Reid roundabout theorem, 116, 328
Riccati equation, 40 , 42
symplectic case, 299
Riccati factoriz ation , 109
Riccati operator
mixed derivatives , 109
nabla, 73
symplectic case, 299
Riemann
~-integral, 118, 122
~-sum , 122
'V-integrable, 125
'V-sum , 125
integral , 121 , 127
right focal problem , 193, 210, 230
right neigborhood , 86
right-decr easing, 4
right-dense, 2
right-incr easing, 4
right-maximum
local, 4
right-minimum
local,4
right-scatter ed , 2
rising function , 55 , 80
Rolle's t heore m , 255 , 269
roundabout t heorem , 328
m atrix case, 76
sep arated boundary cond it ions, 321 , 323
se parated boundary value problem , 165
solution, 167
symplectic sys tem , 294
special normalized conjoine d bases , 296 , 327
Stirling's formula , 11
strengthened J acobi condition, 311
strongly (R~ : I)-normal, 322
strongly normal , 310
strongly oscillatory, 55
Sturm
comparison theorem , 115,316,317
sep aration theorem , 101, 316
Sturm-Liouville equation, 294 , 334
continuous cas e, 331
discrete cas e, 297
sublinear , 199, 201
sup erline ar, 199 , 200
superposition principle, 61
Sylvester 's id entity, 258
symplectic
matrix, 294
system, 293 , 294
saturation level , 32
SBVP, 165
Schauder fixed point theorem , 176 , 220
Schauder-Tychonoff theorem, 275
second order line ar eq ua t ions
const a nt coe fficie nts, 94
se lf-ad joint form , 92 , 93
sector, 167
self-ad joint equation
mix ed d erivatives, 92
self-r eciprocal , 329
semigroup property, 11, 49
Wallis product , 57
well-posed, 253
Wronskian, 96 , 97 , 256
identity, 295
time scal e, 1
topological transversality method, 194 , 207
trace, 75
Trench factorization , 103, 264
trigonometric
fun ctions , 69 , 70
sy st em , 329
triple fixed point t heore m , 236
upper
Darboux ~- integral, 118
Darboux ~-sum, 118
Darboux 'V-integral, 125
Darboux 'V-sum, 124
upper solution , 175, 271 , 283
PBVP,l77
variation of paramet er s
first order , 19, 59, 60
higher order , 81
m atrix cas e, 77, 78
Verhulst eq ua t ion, 30