Bibliography [IJ R . Ag a rwa l, M. Bohner , a nd A . Pet erson. In equalities on t ime scales: A survey. Mat h. In equal. A ppl., 4(4) :535- 557 , 2001. [2J R. P. Agarwa l. Difference Equa tions an d In equalit i es. Marcel Dekker , In c. , New York , 1992. [3J R. P. Agarwa l and M . Bohner . Q uadratic fun ction als for seco nd orde r m atrix equat ions on time scales. N onlin ear A nal. , 33(7) :675- 692, 1998. [4J R . P. Agarwal a nd M. Bohner. Basi c ca lc ulus on t ime scales a nd some of its application s. Results Math., 35(1-2) :3- 22, 1999 . [5] R . P. Agarwal , M . Bohner , a nd D. O 'Regan. Time scale sys tems on infinite intervals. N onlin ear Anal., 47 :837- 848, 2001. [6J R . P. Agarwal , M. Bohner , a nd D . O 'Regan . Time scale boundary value problems on infinite intervals . J. Comput. A ppl. Math ., 141 (1-2 ) :27- 34 , 2002 . Special Issu e on "Dynam ic Eq uations on Time Sc ales" , ed it ed by R . P. Agarwal , M . Bohner , a nd D. O'Regan . [7J R. P. Aga rwal, M. Bohner , D. O 'Regan , a nd A . P et er son. Dynamic eq uat ions on t ime scales : A sur vey. J . Com put. Appl. Math., 141 (1-2 ):1- 26 , 2002. Spe cial Issu e on "Dy nam ic Eq uations on Time Scales" , edi t ed by R. P . Agar wal , M. Bo h ner , a nd D . O 'Regan. Preprint in Ulme r Semin a re 5. [8] R . P. Agar wal , M . Bohn er , a nd P. J . Y . Won g. E igenvalues a nd eigenfu nctions of discr et e conj ugate b ou nd ary va lue problems. Comput. Math. Appl., 38 (3-4 ):159-183, 1999. [9] R . P. Agarwal, M . Bo hn er , a nd P. J . Y . Won g. P ositi ve solutions a nd eigenva lues of conj ug ate bou ndary va lue pro blem s. Proc. Edinburgh Math . Soc., 42 :349-374, 1999. [10] R . P. Ag a rwal, M. Boh ner , a nd P. J . Y. Won g. Sturm- Liouv ille eigenva lue problems on t ime sca les . Appl. Ma th . Comput., 99( 2-3) :153-166, 1999 . [l1 J R. P. Agarwal , M. Meehan , a nd D. O 'Regan. Fix ed Poin t Th eory an d Applications. Ca mbrid ge Un ivers ity Press, Ca mb ridg e, 200 2. [12J R . P. Agarw al and D . O 'Regan . Boundar y value problems for general discret e syst ems on infinite intervals . Comput. Ma th . Appl., 33( 7):85-99, 1997 . [13) R . P. Agarwal and D. O 'Regan . Discr et e sys tems on infinite inter vals. Com put. Ma th. A ppl., 35( 9) :97- 105 , 1998. [14] R . P. Ag arwal a nd D . O 'Regan . Fixed point t heory in F rechet spaces a nd variati on al ineq ualit ies. Non lin ear A n al., 42:1091-1099, 2000 . [15J R . P. Agarwal a nd D . O 'Regan . Triple solutions to boundary value pr oblems on t im e scales. Appl. Math . Lett., 13(4) :7-11 , 2000 . [16J R . P . Agarwal and D. O'Reg an . Existence of positive solution s t o time scale equations using time scale inequalities. J . Differ. Equ ations Appl., 7(6) :829 - 836 , 2001. On the occasi on of t he 60t h birthday of Calvin Ahlbrandt. [17] R. P. Agarwal a nd D . O 'Re ga n. Infin it e Int erval Problem s f or Differential, Differen ce and Int egral Equations. Kluwer Acad emic Publish er s , Dordrecht , 2001. [18] R . P. Agarwal and D. O 'Regan. Nonlinear b oundary value problems on t ime scales . No nlin ear Anal., 44(4):527-535, 2001. [19J R . P. Agarwal , D. O 'Regan , and P. J . Y . Wong. P ositive So lut ions of Different ial, Difference and Int egral E quations. Kluwer Academic Publish ers, Dor d recht , 1999. [20J C . D . Ahlbra nd t , M. Bohner , a nd J . R idenh ou r . Hamilt onian sys t ems on t ime scales . J. Math . Anal. Appl. , 250(2):561- 578, 2000 . [21J C . D. Ahlbrandt , M . Boh ner , and T. Voep el. Va riable change for Stur m- Liouv ille di ffer en ti al exp res sions on ti me scales. J. Differ . Equations Appl., 200 1. To a p pear. 335 336 BIBLIOGRAPHY [22] C. D . Ahlbrandt and C . Morian. Partial differential equations on time scales. J. Comput. Appl. Math ., 141(1-2):35-55, 2002. Special Issue on "Dyn am ic Equations on Time Scales" , edited by R. P . Agarwal, M . Bohner, and D . O'Regan. [23] E . Akin. Boundary value problems for a differential equation on a measure chain . Panamer. Math . J., 10(3) :17-30,2000. [24] E . Akin. Boundary value problems, oscillation theory, and the Cauchy functions for dynamic equations on a measure chain. PhD thesis , University of Nebraska-Lincoln, 2000 . [25] E . Akin, Cauchy functions for dynamic equations on a measure ch ain . J . Math. Anal. Appl., 267(1) :97-115,2002. [26] E. Akin, M. Bohner, L. Erbe, and A . Peterson. Existence of bounded solutions for second order dynamic equations. J . Difference Equ , Appl., 8(4) :389 -401 , 2002. In honor of Professor Lynn Erbe. [27] E . Akin, L. Erbe, B. Kaymakc:;alan, and A . Peterson. Oscillation results for a dynamic equation on a time scale. J. Differ. Equations Appl., 7(6) :793 -810, 2001. On the occasion of the 60th birthday of Calvin Ahlbrandt. [28] E . Akin-Bohner and F . M . Atici. A quasilinearization approach for two point nonlinear boundary value problems on time scales. 2002. Submitted. [29] E . Akm-Bohner and M . Bohner. Exponential functions and Laplace transforms for alpha derivatives. In B. Aulbach , S. Elaydi, and G . Ladas, editors, Conference Proceedings of the Sixth International Conference on Difference Equations, Augsburg, 2002 . Taylor and Francis. To appear. [30] E . Akin-Bohner and M . Bohner. Miscellaneous dynamic equations. 2002 . Submitted. [31] E . Akm-Bohner and J . Hoffacker. Solution properties on discrete time scales. J. Differ. Equations Appl. , 2001. To appear. [32] D . Anderson . Discrete Hamiltonian systems. PhD thesis, University of Nebraska-Lincoln, 1997 . [33] D . Anderson. Positivity of Green's function for an n-point right focal boundary value problem on measure chains. Math . Comput. Modelling, 31(6-7) :29-50, 2000. [34J D . Anderson. Eigenvalue intervals for a two-point boundary value problem on a measure chain. J. Comput. Appl. Math ., 141(1-2) :57-64,2002. Special Issue on "Dy na m ic Equations on Time Scales" , edited by R. P . Agarwal, M. Bohner, and D . O 'Regan. [35] D . Anderson. Taylor polynomials for nabla dynamic equations on time scales. Panamer. Math. J., 2002. To appear. [36] D. Anderson and R . Avery. Existence of three positive solutions to a second-order boundary value problem on a measure chain. J. Comput. Appl. Math ., 141(1-2) :65-73, 2002 . Special Issue on "Dy na m ic Equations on Time Scales " , edited by R. P. Agarwal, M . Bohner, and D . O'Regan. [37] D . Anderson, J. Bullock, L. Erbe, A. Peterson, and H . 'Ir a n. Nabla dynamic equations on time scales. Panamer. Math . 1.,2002. [38] D . Anderson and A . Peterson. Asymptotic properties of solutions of a 2nth-order differ ential equation on a time scale. Math. Comput. Modell ing, 32(5-6) :653 -660, 2000. Boundary value problems and related topics . [39J G . Aslim and G. Sh. Guseinov. Weak semirings, w-semirings, and measures. Bull . Allahabad Math . Soc ., 14:1-20, 1999 . [40] F . M . Atrci and A . C abada. The method of upper and lower solutions for discrete second order periodic boundary value problems. Comput. Math . Appl., 2002 . Advances in Difference Equations IV. To appear. [41] F . M. AtlCI, P . W . Eloe, a nd B . Kayrnakcalan. The quasilinearization m ethod for boundary value problems on time scales. J. Math . Anal. Appl. , 2002. To appear. [42] F . M. Atrci and G . Sh . Guseinov. On Green's functions and positive solutions for boundary value problems on time scales. J . Comput. Appl. Math ., 141(1-2) :75-99, 2002. Special Issue on "Dy na m ic Equations on Time Scales" , edited by R. P . Agarwal , M . Bohner, and D . O 'Regan. [43] F . M . Atici, G . Sh. Guseinov, and B . K aymakc:;alan . On Lyapunov inequality in stability theory for Hill 's equation on time scales. J. Inequal. Appl. , 5(6) :603 -620, 2000. [44] F . M . Atici, G . Sh. Guseinov, and B . Kaymakcalan. Stability criteria for dynamic equations on time scales with periodic coefficients. In Proceedings of Dynamic Systems and Applications (Atlanta, GA , 1 999) , volume 3, pages 43-48, Atlanta, GA , 2001. Dynamic publishers . BIBLIOGRAPHY 33 7 [45] B . Aulbach and S. Hilger. Linear dynamic processes with inhomogeneous t im e scale. In Nonlinear Dynamics and Quantum Dynamical Systems (Gaussig, 1990) , volume 59 of Math . Res ., pages 9- 20. Akademie Verlag , Berlin, 1990. [46] B. Aulbach a nd C . Potzsche. Reducibility of linear dynamic equations on measure chains . J. Comput. Appl. Math ., 141(1-2) :101-115, 2002 . Special Issue on "Dy na m ic Equations on Time Scales" , ed it ed by R . P. Agarwal, M . Bohner , and D. O 'Regan . [47] R . Avery. A generalization of the Leggett-Williams fixed point theorem. Math . Sci. Res. Hot-Lin e, 2:9-14, 1998. [48] R . Avery a nd J . Henderson. Two positive fixed points of nonlinear operators on ordered banach spaces. Comm. Appl. Nonlinear Anal., 8(1) :27-36, 2001. [49] J . H. Barrett. A Priifer transformation for matrix differential eq uat ions . Proc . Amer. Math. Soc ., 8:510- 518, 1957. [50] A. Ben-Israel and T . N. E. Grevill e . Generalized Inverses: Theory and Applications. John Wiley & Sons, Inc ., New York , 1974. [51] T. G . Bhaskar. Comparison theorem for a nonlinear boundary value problem on time scales. J. Comput. Appl. Math. , 141(1-2) :117-122 , 2002 . Sp ecial Issue on "Dynam ic Equations on Time Scales" , ed ited by R . P . Agarwal, M. Bohner, and D . O 'Regan. [52] S. Bodine and D. A. Lutz. Exponential functions on time scales: Their asymptotic beh avior and calculation. Dynam. Systems Appl. , 2002 . To appear. [53] M. Bohner . Controllability and dis conjugacy for linear Hamiltonian difference systems. In S. Elaydi, J. Graef, G . Ladas, and A. Peterson, editors, Conferen ce Proceedings of th e First International Conference on Differenc e Equations, pages 65-77, San Antonio, 1994. Gordon and Br each. [54] M. Bohner. Zur Posiiuniiii diskreter quadraiischer Funktionale. PhD thesis, Universitat Ulm, 1995. English Edition : On positivity of discrete quadratic fun ctionals. [55] M . Bohner . An oscillation theorem for a Sturm-Liouville eige nva lue problem . Math . Nachr., 182:67-72, 1996. [56] M . Bohner. Linear Hamiltonian differenc e systems: disconjugacy and Jacobi-type conditions. J . Math . Anal. Appl., 199(3) :804-826, 1996 . [57] M . Bohner. On disconjugacy for Sturm-Liouville differ ence equations. J . Differ. Equations Appl., 2(2) :227-237, 1996. [58] M. Bohner. Riccati matrix difference equat ions and line ar Hamiltonian difference systems. Dynam. Contino Discrete Impuls. Systems, 2(2) :147-159, 1996. [59] M . Bohner. Inhomogeneous discrete variational problems . In S. Elaydi, I. Gy6ri, and G . Ladas, ed it ors, Conference Proceedings of the S econd Int ernational Conference on Differen ce Equations (Veszprem, 1995), pages 89 -97, Amsterdam, 1997. Gordon a nd Breach. [60] M. Bohner. P ositive definiteness of discrete quadratic functionals . In C . Bandle, ed it or, General Inequalities, 7 (Oberwolfach, 1995) , volume 123 of Internat. Ser. Numer. Math., pages 55- 60, Basel, 1997. Birkhauser. [61] M . Bohner. Symplectic systems a nd related discrete quadratic fun ctionals . Facta Univ . Se r. Math. Inform., 12:143-156, 1997. [62] M . Bohner . Asymptotic behavior of discretized Sturm-Liouville eigenvalue problems. J . Differ. Equations Appl., 3:289-295, 1998 . [63] M . Bohner. Discrete line ar Hamiltonian eigenvalue problems. Comput. Math. Appl. , 36(1012) :179-192,1998. [64] M . Bohner. Discrete Sturmian theory. Math . Inequal. Appl. , 1(3) :375-383, 1998 . Preprint in Ulmer Seminare 1. [65] M. Bohner and J. Castillo. Mimetic methods on measure chains. Comput. Math. Appl., 42(3-5):705-710, 2001. Advances in Difference Equations, III. [66] M . Bohner, S. Clark, and J . Ridenhour. Lyapunov inequalities on time scales. J . Inequal . Appl., 7(1) :61-77, 2002. [67] M . Bohner and O. Dosly. Disconjugacy and transformations for symplectic systems. Rocky Mountain J. Math., 27(3) :707-743, 1997 . [68] M . Bohner and O. Dosly , Positivity of block tridiagonal matrices. SIAM J . Matrix Anal. Appl., 20(1) :182-195, 1998. [69] M. Bohner and O . Dosly. Trigonometric transformations of symplectic difference systems. J. Differential Equations, 163:113-129, 2000 . 338 BIBLIOGRAPHY [70] M. Bohner and O . Dosly . The discrete Priifer transformation. Proc. Amer. Math . Soc., 129(9) :2715-2726, 2001. [71] M . Bohner a nd O . Do sly . T rigonome t ric sys t ems in oscillation theory of difference equat ions. In G . S. Ladde, N . G. Medhin, and M. Sambandham , editors, Proceeding s of Dynamic Systems and Applications (Atlanta, GA , 1999), volume 3, pages 99-104, Atlanta, 2001. Dynamic publisher s. [72] M . Bohner , O . Do sly , and R . Hilscher. Linear Hamiltonian dynamic systems on time sca les : Sturmian property of the principal solution. Nonlinear Anal., 47 :849-860, 200l. [73] M. Bohner , O . Dosly, a nd W. Kratz. Inequalities and asymptotics for Riccati matrix difference op erators. J. Math . Anal. Appl., 221(1) :262-286, 1998 . [74] M . Bohner, O . Dosly, and W . Kratz. A Sturmian theor em for recessive so lu t ions of linear Hamiltonian difference systems. Appl. Math . Lett., 12:101-106, 1999 . [75] M . Bohner, O . Dosly, and W . Kratz . Discrete Reid roundabout theorems. Dynam. S ystems A ppl., 8(3-4) :345 - 352 , 1999 . Special Issue on "D iscret e a nd Continuous Hamiltonian Systems" , ed ited by R. P. Agarwal a nd M. Bohner. [76] M. Bohner , O . Do sly , and W . Kr atz . An oscillation theorem for discret e eigenva lue problems. Rocky Mountain J . Math ., 2002 . To appear. [77] M. Bohner a nd P. W. Elo e . Higher order dynamic eq uat ions on measure cha ins : Wronskians, dis conjugacy, a nd interpolating families of functions. J. Math . Anal. Appl., 246(2):639 -656, 2000 . [78] M. Bohner a nd G . Sh. Guseinov. Improper integrals on t ime scales. Dynam. Sy stems Appl., 2002 . To ap pear. [79] M . Bohner and R. Hering. P erturbations of dynamic equations. J. Differenc e Equ. Appl., 8(4):295-305,2002. In honor of Professor Lynn Erbe. [80] M . Bohner a nd R. Hilscher. An eigenvalue pr oblem for linear Hamiltonian systems on t ime scales. 2002. Submitted. [81] M . Bohner and S. Hui. Brain st ate in a convex body. IEEE Trans . N eural Networks, 6(5) :1053 -1060, 1995. [82] M. Bohner a nd B. Kaymak calan , Opial inequalities on time scale s. Ann. Polon . Math ., 77( 1):11-20, 2001. [83] M. Bohner a nd V . Lakshmikantham. Formulas of Bendixson a nd Alekseev for d iffer enc e eq uat ions . 2002 . Submitted . [84] M. Bohner a nd D . A . Lutz. Asymptotic behavior of d yn amic equ ations on time scales. J. Differ. Equations Appl., 7(1) :21-50, 2001. Special issue in memory of W. A . Harris, Jr. [85] M. Bohner a nd A . Pet erson. A survey of expone nt ial fun ctions on time scales. Rev. Cubo Mat . Edu c., 3(2):285-301 , 2001. [86] M . Bohner a nd A . Pet erson. Dynam ic Equa tions on Tim e Scales: An Introdu ction with Applications. Birkhauser , Boston, 200l. [87] M . Bohner a nd A . P eterson. First and second order linear dynamic eq uat ions on time scales . J. Differ. Equations Appl., 7(6 ):767-792 , 2001. On t he occasi on of t he 60th bi rthday of Calvin Ahl brandt. [88] M . Bohner a nd A . P et erson . Laplace t rans for m a nd Z-transform: Unification a nd extension . Methods Appl. Anal. , 9(1) :155-162 , 2002 . P re print in Ulmer Seminare 6. [89J M . Bohner a nd S. H. Saker. Oscillation of second order nonlinear d yn amic equat ions on time scales . Rocky Mou ntain J. Math. , 2002 . To ap pear. [90] W . E . Boyce a nd R. DiPrima . Elem entary Differential Equations and Boundary Value Problem s. John Wiley & Sons, Inc ., New York , sevent h ed it ion, 2001. [91J C . Chyan a nd W . K.C . Yin. A convergence theorem on a measure ch ain. Ma th. Sci. R es. Hot-Lin e, 5(2):15- 22, 2001. [92] C . J . C hyan . Un iq ue ness implies ex istence on time scales. J. Math . Anal. Appl. , 258(1) :359365 , 2001. [93] C . J . C hya n. Eigenv alue intervals for 2mth order sturm-liouville boundary value problems . J. Differ. Equations Appl. , 8( 5):403-413, 2002 . [94] C . J . C hya n . Positive solu tions of syst ems of second order differen tial equ ations on a measure ch ain . 2002 . Preprint . [95] C . J . C hyan, J . M. Davis, J . Henderson , a nd W . K. C. Yin . Eigenvalue com parisons for differ en ti al equations on a measure ch ain. Electron . J. Different ial Equ ations, pages No . 35, 7 pp . (electronic) , 1998. BIBLIOGRAPHY 339 [96] C . J. Chyan and J. Henderson. Eigenvalue problems for nonlinear differential equations on a measure chain. J. Math. Anal. Appl., 245(2) :547-559, 2000 . [97] C . J . Chyan and J . Henderson. Twin solutions of boundary value problems for differential equations on measure chains. J. Comput. Appl. Math ., 141(1-2):123-131, 2002. Special Issue on "Dy nam ic Equations on Time Scales", edited by R. P . Agarwal, M. Bohner, and D . O 'Regan . [98] C . J. Chyan, J. Henderson, and H. C . Lo . Positive solutions in an annulus for nonlinear differ ential equations on a measure chain . Tamkang J. Math ., 30(3):231-240, 1999 . [99] D. L. Cohn. Measure Theory. Birkhiiuser, Boston, 1980 . [100] W . A. Coppel. Disconjugacy, volume 220 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1971 . [101] V. Cormani. Liouville's formula on time scales. Dynam. Systems Appl., 2002 . To appear. [102] F . A. Davidson and B. P. Rynne. Global bifurcation on time scales. J. Math. Anal. Appl., 267(1) :345-360, 2002 . [103] J . M. Davis, J. Henderson, and K . R. Prasad. Upper and lower bounds for the solution of the general matrix Riccati differential equation on a time scale . J. Comput. Appl. Math., 141(1-2) :133-145, 2002 . Special Issue on "Dynamic Equations on Time Scales", edited by R. P. Agarwal, M. Bohner, and D. O 'Regan. [104] J . M. Davis, J . Henderson, K. R. Prasad, and W . Yin. Eigenvalue comparisons for differential equations on a measure chain. Electron. J. Differential Equations, pages 1-7, 1998 . [105] J . M. Davis, J . Henderson, K. R. Prasad, and W . Yin. Solvability of a nonlinear second order conjugate eigenvalue problem on a time scale. Abstr. Appl. Anal. , 5(2):91-99, 2000. (106] J . M. Davis, J. Henderson, K. R. Prasad, and W. Yin. Solvability of a nonlinear second order conjugate eigenvalue problem on a time scale. Abstr. Appl. Anal., 2001. To appear. [107] J . M. Davis, J . Henderson, and D. T . Reid. Right focal eigenvalue problems on a measure chain. Math . Sci. Res . Hot-Line , 3(4) :23-32, 1999 . [108] J . M. Davis and K. R. Prasad. Eventual disconjugacy on time scales. Appl. Math . Lett. , 13(6) :77-82, 2000 . [109] K. Deimling. Nonlinear Functional Analysis. Springer-Verlag, New York, 1985 . [110] O . Dosly. Principal and non principal solutions of symplectic dynamic systems on time scales. In Proceedings of the 6th Colloquium on the Qualitative Theory of Differential Equations (Szeged, 1999), pages No .5, 14 pp. (electronic) . Electron. J . Qual. Theory Differ . Equ., Szeged, 2000. [111] O. Dosly and S. Hilger. A necessary and sufficient condition for oscillation of the SturmLiouville dynamic equation on time scales. J. Comput. Appl. Math., 141(1-2) :147-158, 2002. Special Issue on "Dynamic Equations on Time Scales" , edited by R. P . Agarwal, M. Bohner, and D. O'Regan. [112] O. Dosly and R. Hilscher. Disconjugacy, transformations and quadratic functionals for symplectic dynamic systems on time scales. J. Differ. Equations Appl., 7:265-295, 2001. [113] Z. Drici. Practical stability of large-scale uncertain control systems on time scales. J. Differ. Equations Appl. , 2(2) :139-159, 1996. Difference Equations: Theory and Applications (San Francisco, CA , 1995) . [114] J . Ehme and J . Henderson. Differentiation of solutions of boundary value problems with respect to boundary conditions. Appl. Anal., 46:175-194, 1992 . [115] U. Elias. Green's functions for a nondisconjugate differential operator. J. Differential Equations, 37:319-350, 1980. [116] U. Elias. Generalizations of an inequality of Kiguradze. J. Math. Anal. Appl., pages 277-290, 1983. [117] U. Elias. Oscillation Theory of Two- Term Differential Equations, volume 396 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht , 1997 . [118] U. Elias. Bounds for solutions of a differential inequality. Proc . Amer. Math . Soc ., 128:475484 ,2000. [119] P . Eloe. The method of quasilinearization and dynamic equations on compact measure chains. J. Comput. Appl. Math. , 141(1-2):159-167, 2002 . Special Issue on "Dynamic Equations on Time Scales" , edited by R . P. Agarwal, M. Bohner, and D. O'Regan. [120] P . W . Eloe. Criteria for right disfocality of linear difference equations. J . Math. Anal. Appl., 120:610 -621, 1986. 340 BIBLIOG RAPHY [121] P. W. Eloe. A generalizat ion of concavity for finit e differ enc es . Comput. Math. Appl., 36:109-113 ,1998. [122] P . W . Eloe . Sign properties of Green 's functions for disconjugate dynamic equations on time scales. 2002 . Preprint . [123] P . W. Eloe, D. Hankerson, and J . Henderson. Positive solutions and conjugate points for multipoint boundary valu e problems. J. Differential Equations, 95:20-32, 1992 . [124] P. W . Eloe and J . Henderson. Analogues of Feket e and Decartes systems of solutions for differen ce equations. J. Approx. Th eory , 59:38-52, 1989. [125] P. W . Eloe and J . Henderson. Inequalities based on a generalization of concavity. Pro c, Amer. Math. Soc., 125:2103-2108, 1997. [126] P . W . Eloe , J. Henderson, and H. B. Thompson. Extremal points for impulsive lidstone boundary value problems. Math. Comput. Modelling, 32:687-698, 2000 . [127] P. W . Eloe and J . Ridenhour. Sign properties of Gr een's functions for a family or two-point boundary value problems. Proc. Amer. Math. Soc., 120:443-452 , 1994. [128] L. Erbe and S. Hilger . Sturmian theory on measure chains . Differential Equations Dynam . Sy st ems, 1(3) :223-244, 1993. [129J L. Erbe, R. Mathsen, and A. Peterson. Existence, multiplicity, and nonexistence of pos itive solutions to a differential equ ation on a measure chain. J. Comput. Appl. Math ., 113(12) :365-380, 2000 . [130] L. Erbe, R. Mathsen, and A. Peterson. Factoring line ar differential operators on measure chains. J. Inequal . Appl., 6(3) :287-303, 2001. [131] L. Erbe and A. Peterson. Green 's fun ctions and comparison theorems for differential equations on measure chains. Dynam. Contino Discrete Impuls. Sy stems, 6(1) :121-137, 1999. [132] L. Erbe and A. Peterson. Positive solutions for a nonlinear differential equation on a measure chain. Math . Comput. Mod elling , 32(5-6) :571- 585, 2000 . Boundary value problems and related topics. [133J L. Erbe and A . Peterson . Ricc ati equations on a measure ch ain . In G. S. Ladde, N. G. Medhin, and M . Sambandham, ed itors, Proceedings of Dynamic Systems and Applications (Atlanta, GA, 1999), volume 3, pages 193-199, Atlanta, GA , 2001. Dynamic publishers. [134J L. Erbe and A. Peterson. Averaging techniques for self-adjoint matrix equations on a measure chain. J. Math . Anal. Appl., 271:31- 58, 2002 . [135] L. Erbe and A. Peterson. Boundedness and oscillation for nonlinear dynamic equ ations on a time scale. 2002 . Submitted. [136] L. Erbe and A. Peterson . Oscillation criteria for second order matrix dynamic equ ations on a time scale. J. Comput. Appl. Math ., 141(1-2) :169-185, 2002 . Sp ecial Issue on "Dyna mic Equations on Time Scales" , edi ted by R . P . Agarwal, M. Bohner, and D. O'Regan . [137] L. Erbe, A. Peterson, and S. H. Sak er . Oscillation criteria for second order nonlinear dyn amic equations on time scales . J. London Math . S oc., 2002. To a ppe ar. [138] L. Erbe, A. Peterson , and P. Reh ak . Comparison theor ems for linear dynamic equations on time scal es . J. Math . Anal. Appl., 2002 . To ap pear. [139] L. H. Erbe and H. Wang. On the existe nce of posi tive solut ions of ordinary differential equations. Proc. Amer. Math . S oc., 120(3):743-748, 1994 . [140] K. M. Fick , J . Henderson , and W . Yin . Eventual right d isfocality on t ime scales . J. Difference Equ . Appl., 8(4) :371-387, 2002. In honor of Professor Lynn Erbe. [141J E. Fis cher. Int ermediat e R eal Analysis. Springer-Verl ag, New York , 1983. [142] J. A . G at ica and H. L. Smith. Fixed point te chniques in a cone with applica t ions. J. Math . Anal. Appl. , 61(1):58- 71, 1977. [143] S. Giilsan Topa!. Calculus and dyna m ic equations on time scales. PhD t hesis, Ege Universitesi , 2001. [144] S. Gulsan Topa!. Roll e's and generalized mean valu e theor ems on time scales . J. Difference Equ, Appl. , 8(4):333- 343, 2002. In honor of Professor Lynn Erbe. [145] S. Giilsan Topa!. Second order periodic boundary value problem s on t ime scales. Com put . Math . Appl. , 2002 . To appear. [146] D. Gu o and V. Lakshmikantham . Nonlin ear Problem s in Ab stra ct Con es. Academic Press , Boston, 1988. BIBLIOGRAPHY 341 [147] G . Sh. Guseinov and B. Kaymakcalan , On the Riemann integration on time scales. In B . Aulbach, S. Elaydi, and G . Ladas, editors, Conference Proceedings of th e Sixth International Conference on Differenc e Equations and Applications, Augsburg, 2001. Taylor and Francis. To appear. [148] G. Sh. Guseinov and B . Kayrnakcalan. Basics of Riemann delta and nabla integration on time scales. J. Differ. Equations Appl. , 2002 . To appear. [149] G . Sh . Guseinov and B. Kayrnakcalan. On a disconjugacy criterion for second order dynamic equations on time scales. J. Comput. Appl. Math ., 141(1-2):187-196,2002. Special Issue on "Dyna mic Equations on Time Scales" , edited by R. P. Agarwal, M. Bohner , and D. O'Regan. [150] G. Sh . Guseinov and E. Ozyrlrnaz. Tangent lines of generalized regular curves parametrized by time scales. Turkish J. Math., 25(4) :553-562, 2001. [151] P. R. Halmos. Measure Theory. Van Nostrand, Princeton, 1950. [152] P. Hartman. Ordinary Differential Equations. John Wiley & Sons, Inc ., New York, 1964 . [153] P. Hartman. Principal solutions of disconjugate nth order linear differential equations. Amer. J. Math. , 91:306-362, 1969 . [154] P. Hartman. Difference equations: disconjugacy, principal solutions, Green 's functions, complete monotonicity. Trans. Amer. Math. Soc., 246 :1-30, 1978 . [155] J . Henderson. k-point disconjugacy and disconjugacy for linear differential equations. J. Differential Equations, 54:87-96, 1984. [156] J . Henderson. Multiple solutions for 2mth order Sturm-Liouville boundary value problems on a measure chain. J. Differ. Equations Appl., 6(4) :417-429, 2000 . [157] J . Henderson. Double solutions of impulsive dynamic boundary value problems on a time scale. J. Difference Equ . Appl., 8(4) :345-356, 2002 . In honor of Professor Lynn Erbe. [158] J . Henderson and K. R. Prasad. Comparison of eigenvalues for Lidstone boundary value problems on a measure chain. Comput. Math. Appl. , 38(11-12):55-62, 1999 . [159] R. Higgins and P. Peterson. Cauchy functions and Taylor's formula for time scales. In B . Aulbach, S. Elaydi, and G . Ladas, editors, Conference Proceedings of the Sixth International Conference on Difference Equations, Augsburg, 2002 . Taylor and Francis. To appear. [160] S. Hilger. Ein Maftkettenkalkul mit Anwendung auf Zentrumsmannigfaltigkeiten. PhD thesis, Universitat Wilrzburg, 1988. [161] S. Hilger. Analysis on measure chains - a unified approach to continuous and discrete calculus. Results Math. , 18:18-56, 1990 . [162] S. Hilger. Generalized theorem of Hartman-Grobman on measure chains. J. Austml. Math . Soc . Ser. A , 60(2):157-191 , 1996. [163] S. Hilger. Special functions , Laplace and Fourier transform on measure chains. Dynam. Systems Appl., 8(3-4) :471-488, 1999. Special Issue on "Discret e and Continuous Hamiltonian Systems" , edited by R. P. Agarwal and M. Bohner. [164] S. Hilger. Matrix Lie theory and measure chains. J. Comput. Appl. Math., 141(1-2):197217 , 2002 . Special Issue on "Dyna m ic Equations on Time Scales" , edited by R. P . Agarwal, M. Bohner, and D . O 'Regan. [165] R . Hilscher. Linear Hamiltonian systems on time scales: Transformations. Dynam. Systems Appl. , 8(3-4) :489-501 , 1999 . Special Issue on "Discrete and Continuous Hamiltonian Systems", edited by R. P. Agarwal and M . Bohner. [166] R. Hilscher. Linear Hamiltonian systems on . timescales:Positivity ofquadratic functionals. Math. Comput. Modelling, 32(5-6) :507-527, 2000. Boundary value problems and related topics. [167] R. Hilscher. On disconjugacy for vector linear Hamiltonian systems on time scales. In Communications in Difference Equations (Poznan, 1998), pages 181-188. Gordon and Breach, Amsterdam, 2000 . [168] R . Hilscher. Inhomogeneous quadratic functionals on time scales. J. Math . Anal. Appl., 253(2) :473-481 , 2001. [169] R. Hilscher. Positivity of quadratic funct.ionals on time scales: Necessity. Math. Nachr., 226 :85-98, 2001. [170] R . Hilscher. Reid roundabout theorem for symplectic dynamic systems on time scales. Appl. Math. Optim., 43(2):129-146, 2001. 342 BIBLIOGRAPHY [171] R. Hilscher. A t ime sc ales ver sion of a Wirtinger t ype inequality and applications. J. Comput. Appl. Math., 141(1 -2) :219-226,2002. Sp ecial Issue on "Dynamic Equations on T ime Scales", edited by R . P. Agarwal, M . Bohner , and D . O 'Regan. [172] J . Hoffacker. Green's functions for higher order equations on time scales . Panamer. Math . J ., 11(4) :1-28, 2001. [173] J . Hoffacker. Basic partial dynamic equations on time scales . J . Difference Equ. Appl., 8(4):307-319,2002. In honor of Professor Ly n n Erbe. [174] S. Huff, G. O lumolode, N. Pennington, a nd A. P eter son. Oscillation of an Euler-Cauchy dynamic equation. In Proceedings of the Fourth Intern ation al Conference on Dynamical Systems and Differential Equations, Wilmington, 2002 . To appear. [175] D . Jiang and H . Liu . Existence of positive so lntions to (k, n - k) conjugate bonndary value problems. Kyushu J. Math., 53:115-125, 1999. [176] E. R. Kaufmann. Smoothness of solutions of conjugate boundary value problems on a measure chain. Electron. J. Differential Equations, p ages No . 54 , 10 pp. (electronic) , 2000. [177] B. Kaymakcalan. A survey of dynamic systems on measure ch ains. Funct. Differ. Equ., 6(1-2) :125-135, 1999 . [178] B . K ayrnakcal an . Lyapunov stability theory for dynamic systems on time scales. J. App/. Math . Stochastic Anal., 5(3) :275-281 , 1992 . [179] B . Kayrnakcalan. Existence a nd com parison results for dynamic systems on time sca les . J. Math. Anal. Appl., 172(1) :243-255, 1993. [180] B. Kayma kca lan, Monotone iterative method for dynamic systems on time scales . Dynam. Systems Appl., 2:213 -220, 1993. [181] B . Kaymakcalan. Stability analysis in terms of two measures for dynamic systems on time scales. J. Appl. Math . Sto chastic Anal., 6(5) :325- 344 , 1993 . [182] B. K ayrnakcalan, V . Lakshmikantham, a nd S. Sivasundaram . Dynamic Systems on Measure Chains , volume 370 of Mathematics and it s Applicat ions. Kluwer Academic Publishers Group , Dordrecht, 1996 . [183] B . Kayrnakcalan and S. Leela . A survey of dynamic systems on t ime scales . Nonlin ear Times Digest, 1:37-60, 1994. [184] B . K aymakca lan , S. A. Oz giin , and A. Zafer. Gronwall a nd Bihari type inequalities on ti me scales. In Conferen ce Proceedings of the Second Int ernational Conferen ce on Difference Equations (Veszprem , 1995), pages 481 -490, Amsterdam, 1997. Gordon and Breach. [185] B . Kaymakcalan , S. A. Ozgun, and A . Zafer. Asymptotic behavior of higher-order nonlinear equations on time sca les . Comput. Math . Appl., 36(10-12) :299-306, 1998 . Advan ces in Difference Equations, II. [186J B . K ayrnak calan and L. R angaraj an . Variation of Lyapunov's m ethod for dynamic systems on t ime scales . J. Math. Anal. Appl., 185(2) :356 - 366, 1994 . [187] M. S. Keen er a nd C. C. Tr avis. Positive cones and focal points for a class of nth order differential equations. Trans . Amer . Math . Soc., 237:331-351 , 1978. [188] S . Keller . A symptotisches Verhalt en invari an ter Faserbiindel bei Diskretisi eru ng und Mittelwertbildung im Rahmen der Analysis auf Z eitskolen . PhD thesis , Universitat Augsburg, 1999. [189] W. G . Ke lley a nd A . C. Peterson . Differen ce Equa tions: An Introduction with Applications. Academ ic Press, San Diego, second ed it ion , 2001. [190] W . G . Kelley a nd A . C . Peterson. Th e Theory of Differential Equat ions: Classical and Qualitative. Prentice Hall , New Jersey, 2002 . To ap pear. [191] J . W . Kitchen . Calculus of on e Variabl e. Addison-Wes ley, California, 1968 . [192] A . N. Kolmogorov a nd S. V. Fomin. Introdu ctory R eal Analysis. Dover, New York , 1975. [193] M . Q. Krasnosel'skii. Pos itive S olutions of Operator Equation s. P . Noordhoff Ltd., G roningen , The Netherlands , 1964 . [194] W . Kratz . Quadratic Functionals in Variational Analysis and Control Theory, volume 6 of Math ematical Topi cs. Akademie Verlag, Berlin , 1995 . [195] M . G. Krein and M. A. Rutman . Linear op erators leaving a cone invari an t in a banach sp ace . Amer. Math . Soc. Transl. Se r. 1, 10:199-325 , 1962 . [196] G . S. Ladde , V . Lakshmikantham , a nd A . S. Vatsala. Monotone It erative T echniques for Nonlinear Different ial Equations. Pitman Publishing Inc., 1985. [197] V . Lakshmikantham and B . Kayrnakcalan. Monotone flows a nd fixed points for dynamic systems on time scal es . Comput. Math. Appl. , 28( 1-3):185-189, 1994 . BIBLIOGRAPHY 343 [198J V . Lakshmikantham and S. Sivasundaram. Stability of moving invariant sets and uncertain dynamic systems on time scales. Comput. Math . Appl. , 36(10-12):339-346, 1998 . Advances in eifference Equations, II . [199J V. Lakshmikantham and A. S. Vatsala, Generalized Quasilinearization for Nonlinear Problems . Kluwer Academic Publishers, Dordrecht, 1998. [200] V . Lakshmikantham and A. S. Vatsala. Hybrid systems on time scales. J. Comput. Appl. Math., 141(1-2):227-235,2002. Special Issu e on "Dyna mic Equations on Time Scales", edited by R. P. Agarwal, M. Bohner, and D. O'Regan. [201] V . Laksmikantham. Monotone flows and fixed points for dynamic systems on time scales in a Banach space. Appl. Anal., 56(1-2) :175-184, 1995 . [202] V. Laksmikantham, N. Shahzad, and S. Sivasundaram. Nonlinear variation of parameters formula for dynamical systems on measure chains. Dynam. Contino Discrete Impuls. Systems, 1(2) :255-265, 1995. [203] A. C . Lazer and P. J . McKenna . On a singular nonlinear elliptic boundary-value problem. Proc. Amer . Math . Soc., 111(3):721-730, 1991. [204] S. Leela. Uncertain dynamic systems on time scales. Mem . Differential Equations Math. Phys., 12:142-148, 1997. International Symposium on Differential Equations and Mathematical Physics (Tbilisi, 1997) . [205] S. Leela and S. Sivasundaram. Dynamic systems on time scales and superlinear convergence of iterative process. In Inequalities and Applications, pages 431-436. World Scientific Publishing Co ., River Edge, NJ, 1994. [206] S. Leela and A. S. Vatsala. Dynamic systems on time scales and generalized quasilinearization. Nonlinear Stud. , 3(2):179-186,1996. [207] R. W . Leggett and L. R . Williams. Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ . Math. J., 28(4) :673-688, 1979. [208] W . C . Lian, C. C . Chou, C . T . Liu , and F . H . Wong. Existence of solutions for nonlinear BVPs of second-order differential equations on measure chains. Math. Comput. Modelling, 34(7-8) :821-837, 2001. [209] K. Messer. A second-order self-adjoint dynamic equation on a time scale. Dynam. Systems Appl., 2002 . To appear. [210] K. Messer. Riccati techniques on a time scale. Panamer. Math . J., 2002 . To appear. [211] R. N. Mohapatra, K. Vajravelu, and Y . Yin. Generalized quasilinearization method for second order boundary value problems. Nonlinear Anal., 36:799-806, 1999 . [212] M . Morelli and A. Peterson. A third-order differential equation on a time scale. Math. Comput. Modelling, 32(5-6):565-570, 2000. Boundary value problems and rel ated topics. [213] J . S. Muldowney. A necessary and sufficient condition for disfocality. Proc . Amer. Math . Soc., 74:49-55, 1979. [214] J. S. Muldowney. On invertibility of linear ordinary differential boundary value problems. SIAM J. Math . Anal., 12:368-384, 1981. [215] J . Munkres. Topology . Prentice Hall, Inc ., Englewood Cliffs , 1975. [216J K. N. Murty and G . V. S. R. Deekshitulu. Nonlinear Lyapunov type matrix system on time scales - existence uniqueness and sensitivity analysis. Dynam. Systems Appl., 7(4) :451-460, 1998. [217] K. N. Murty and Y. S. Roo. Two-point boundary value problems in homogeneous time-scale linear dynamic process. J. Math . Anal. Appl. , 184(1):22-34, 1994. [218] Z. Nehari. Disconjugate linear differential operators. Trans . Amer. Math . Soc., 129:500 -516, 1967. [219] L. Neidhart. Integration on measure chains. In B. Aulbach, S. Elaydi, and G . Ladas, editors, Conference Proceedings of the Sixth International Conference on Difference Equations, Augsburg, 2001. Taylor and Francis. To appear. [220] J. J . Nieto. Nonlinear second-order periodic boundary value problems. J. Math. Anal. Appl., 130:22-29, 1988. [221J D. O 'Regan. Fixed point theory for closed multifunctions. Arch. Math . (Brno), 34:191-197 , 1998. [222] A. Peterson and J . Ridenhour. Comparison theorems for Green's functions for focal boundary value problems. In Recent Trends in Differential Equations, volume 1 of World Scientific Series in Applicable Analysis, pages 493-501, River Edge, NJ , 1990. World Scientific. 344 BIBLIOGRAPHY [223] C . Potzsche. C hain rule and invariance principle on measure chains. J . Comput. Appl. Math ., 141(1-2) :249-254, 2002. Special Issue on "Dynamic Equations on Time Scales" , edited by R. P. Agarwa l, M . Bohner , and D. O'Regan. [224] K. R. Prasad. Matrix Riccati differential equations on time scales. Comm. Appl. Nonlinear Anal., 8(1) :37-49, 2001. [225] H. Priifer. Neue Herleitung der Sturm-Liouvilleschen Reihenentwicklung stetiger Funktionen. Math. Ann., 95:499-518, 1926 . [226] P. Rehak Half-linear discrete oscillation theory. PhD thesis, Masaryk University Brno, 2000 . [227] W. T. Reid . A Priifer transformation for diffe rential systems. Pa cific J. Math ., 8:575-584 , 1958 . [228J W. T. Reid . Generalized polar coordinate transformations for diffe rential systems . Rocky Mountain J. Math ., 1(2) :383 -406, 1971 . [229] W . T . Reid. Ordinary Differential Equations. John Wiley & Sons, Inc ., New York , 1971. [230] K. A. Ross . Elementary Analysis: The Theory of Cal culus. Springer-Verlag, New York , 1990. [231] S. Sail er . Riemann-Stieltjes Integrale auf Zeitmengen . Universitat Augsburg , 1992. [232] K. Schmitt and H . L. Smith. Positive solutions and conjugate points for systems of differential equations. Nonlinear Anal., 2:93-105, 1978 . [233] S. Siegmund. A spectral notion for dynamic equations on time scales. J. Comput. Appl. Math., 141(1-2) :255-265, 2002. Special Issue on "Dynamic Equations on Time Scales" , edited by R. P. Agarwal, M . Bohner, and D . O 'Regan. [234] S . Sivasundaram. Convex d ependence of solutions of dynamic systems on time sca les relative to initial data. In Advances in Nonlinear Dynamics, pages 329- 334 . Gordon and Breach, Amsterdam, 1997 . [235] S. Sivasundaram. The strict stability of dynamic systems on time scales. J. Appl. Math. Stochastic Anal. , 14(2):195-204,2001. [236] W. F. Tren ch . C anonical forms and principal systems for general disconjugate equations. Trans. Amer. Math . So c., 189:319-327, 1974 . [237] A . S. Vatsala. Strict stability crite ria for dynamic systems on t ime sca les . J . Differ . Equations Appl. , 3(3-4) :267-276, 1998 . [238] P. J . Y. Wong. Ab el-Gontscharoff boundary value problems on measure chains. J. Comput. Appl. Math. , 142(2) :331-355,2002. [239] P. J . Y. Wong. Optimal Abel-Gontscharoff interpolation error bounds on measure chains. J . Comput. Appl. Math., 141(1-2) :267-282, 2002 . Special Issue on "Dy na mic Equations on Time Scales" , ed ited by R . P. Agarwal , M . Bohner, a nd D . O 'Regan . [240] E. Zeidler. Nonlinear Fun ctional Analysis and it s Applications. I. Fixed-Point Th eorems . Springer- Verlag, New York, 1985. [241] W . Zhang, R. P. Ag arwal , and E . Akm-Bohner. On well-posedncss of impulsive problems for nonlinear parabolic equations. Nonlinear Stud. , 9(2) :145-153, 2002 . Index tl.-in t egr able , 135 , 141 tl.-meas urable , 158 tl.-pre- antiderivative, 14 1 'V-in t egr able , 125 8 , 34 8 , 10 $, 10 characte ristic p olynomial E u ler eq uatio n , 24 lin ea r eq u at io n , 19 , 65 , 94 ci rcle d ot multiplication , 34 cir cle minus su btract ion, 10 a lph a case, 13 m a trix case, 75 n a bl a case, 48 scala r case, 10 circle p lus add it io n , 10 a lp ha case, 13 m a trix case, 75 n abla case , 48 scala r case, 10 ci rcle square a lpha case, 14 delta case , 40 n abla case , 48 Clairaut eq uat io n, 43 Cld ,73 compar iso n test im p ro p er int egral , 147, 155 co m parison t heorem, 177, 193 concave , 169 co ndit io n ally co nve rgent im p ro p er in t egral , 146 co ne, 190 expans ion a nd compressio n, 225 , 236 reproducing , 190 solid, 190 co njoined b ases , 295 solution, 295 s pecial normali zed b as es , 327 co nj ugate point , 297 co nj ugate problem, 210 co nj ug a te trans pose, 76 co nvex, 169 Cr d , 7 critical so lution , 32 Abel' s lemma, 143 Abel' s t heorem converse, 97 h igh er o rder eq uatio n , 257 se co nd order eq uation , 63, 64 se lf-adjoint eq uat ion , 96 a bso lut ely co nvergent im prop er in t egr a l, 146 adjoint eq uatio n , 19 , 58, 77 adjoint operator , 59 ad m issi b le, 300 a lmost eve ry whe re , 161 , 162 alpha d iffere ntiable, 12 antiderivative, 8 , 117 associated so lution , 295 Avery-Hender son fixed p oi nt theorem , 225 , 229 b ackward gr aininess , 47 b ack ward j u m p o perator, 1 Banach s pace p a rtiall y o rdered, 190 Bendixson's formula , 33 Bernoulli eq uat io n, 34, 38 bou ndary co nd it io ns joint , 328 se parated , 321, 323 boundary value problem co nj ugate, 210 im pulsive , 233 r igh t focal, 193, 210 , 230 Caratheodo ry extension, 157 Cauchy criter ion improper int egr al , 146 Cauchy function , 195 , 197 , 267 hi gh er order equation, 81 Cauchy integral, 8 , 117 change of var iable , 141 D arb ou x tl.- integr al , 118 'V-int egr a l, 125 int egr al , 117 d el t a diffe rent iable , 2 345 346 integrable, 118 integral, 8 dense, 2 dense point , 296 derivative d efinition, 2, 74 exchanging ~ and \7 , 88 polynomials , 3 properties, 2, 3, 74 Descartes system , 257, 258 Dirichlet-Abel test improper integral , 148 disconjugate, 100 , 258 symplectic case, 296 , 298 dominant solution, 105 dynamic equation Bernoulli, 38 Clairaut, 43 Euler, 24 first order linear, 19 higher order linear, 19 logistic, 30 Ricc ati,40 Verhulst, 30 environmental carrying capacity, 32 equilibrium solution, 32 Euler equat ion , 24 multiple root case , 26 Euler 's formula, 53 Euler -Lagrange equation, 300 existe nce theorem antiderivatives, 8 pre-antiderivatives , 7 existence-un iq uenes s theorem matrix cas e, 75 second order linear, 6 1 self- adjoint equation , 96 exp onent ial function , 10, 76 eq uiva lence of e a nd e, 90 harmonic numbers, 11, 55 properties , 10, 76 sign, 52 t able, 55, 56 extend ed Pi con e id entity, 307 Fekete syst em, 257, 258 first order lin ear eq ua t ion, 19 five fun ctionals fixed point theo rem, 241 fixed point theorem Avery-Henderson, 225, 229 five fun ct ion als , 241 G atica-Smith, 218 Guo-Krasnosel'skii, 194 Leggett-Williams , 236 , 237 Sch auder , 176,220 t riple, 236 flow of sy mplect ic system s, 329 focal points, 296 INDEX forward difference op er ator, 3 forw ard jump operator, 1 Frechet space, 275 Frobenius factorization, 258 fundamental system , 62 fundamental theorem of calculus, 137 , 138 Furi-Per a , 275 Furi-Pera theorem, 276 G atica-Smith fixed point theorem, 218 general solution, 62, 97 gener alized exponential fun ction, 12 graininess, 12 polynomials, 79 quasilinearization, 165 square , 14, 40, 48 time scales, 12 zero, 100 higher order case, 254 sympletic case, 297 graininess, 2 Green 's formula, 97 Green 's function , 171 , 175, 184, 194, 198, 223, 225 , 237 , 241 , 267 , 268 symmetry condition, 198 Gronwall 's inequality, 290 Guo-Krasnosel'skii fixed point theorem, 194 GZ ,254 Hamiltonian sy stem, 294 , 332 , 334 harmonic numbers, 11, 55 Harnack ineq ua lit ies , 273 higher order Euler eq uat ion, 24 higher order linear equat ion, 19, 81 Hilger der ivative, 2 hyperbolic functions , 66 , 67 hyperbolic system , 330 hyperconcave, 166 , 169 , 174 hyperconvex , 166 , 169 , 174 improper integral convergent, 146 diverg ent , 146 first kind , 145 second kind , 155 impulsive problem, 233 indefin ite integral, 8 infinit e intervals , 285 initial valu e problem first order linear, 10, 19, 58- 60 matrix case, 77, 78 seco nd order linear, 61, 66 com plex roots, 70 distinct real roots, 68 double root, 71 inner product , 97 int egr abl e Cauchy criteri on , 120 INDEX d elt a , 118 Riem ann , 121 , 122 int egr al Cauchy, 8, 117 co nsec utive point s, 89 Darbou x, 117 im prop er , 145 , 155 indefinit e, 8 Leb esgu e, 159 nabla, 124 Newt on, 117 pr op er ti es, 8, 9 Ri em ann , 121 int egr ation by p arts, 8, 137 integrati on by substitution , 141 interior, 12 int erpolating families, 257 intrinsic growt h fun ction, 32 isolated ,2 J acobi 's cond it ion, 114 streng t he ne d, 311 join t bou nd ary cond it ions, 328 jump ope rator backward , 1 forward, 1 Kiguradze inequali ti es , 273 K rein-Rutman t heory, 272 kth qu as i-A d eri vative, 263 L'H6pit al 's rule delt a de rivatives, 86 na bla derivat ives , 86 Lagr an ge br acket , 96 Lagr an ge ident ity, 58 self-adjoint equation, 96 ld- con tinuous, 47 , 73 Leb esgu e A-int egral, 159 A-measure , 157 , 158 "V-integr al, 159 cr ite rion, 161 Leb esgu e dominated convergence theorem, 159, 161 left neighbo rho od , 85 left-dense, 2 left- scatter ed , 2 Legendre cond it ion , 297, 316 Legget t -Williams fixed point t heo re m, 236, 237 Ler ay- Sch auder nonlinear alternative , 207 , 275 Lidst on e problem , 191, 194 linear eq uatio n first or de r , 19 highe r or der, 19 Liou ville's formula , 78 Lip schi t z con d it ion, 130 , 179 347 Lip sch it z constant, 130 local right-maximum, 4 lo cal righ t-minimum, 4 logarithm, 35 logist ic equation , 30, 38, 42 lower Darbou x A -int egr al , 118 , 125 Darboux A- sum, ll8 Darbou x "V-sum, 124 lower so lution , 167, 175, 271 , 283 PBVP, 177 Markov sys tem, 257, 258 , 262 matrix ex pone nt ia l, 76 mean value theor em , 5, 142 , 143 , 145 n abla d erivative , 12 expone nt ia l fun ction, 49 matrix case, 76 sign , 53 hyperb olic fun ctions, 66 integr al , 124, 125, 162 Riccati eq uations , 73 t r igono me tric fun cti on s, 69 , 70 Wr onski an scala r case, 62, 63 Newton int egr al , ll 7 nonoscillatory, 100 normali zed con joined bas es , 295 II-regr essive, 48 , 61 osc illatory, 100 par t ial der ivati ve, 33 par tition, 118 PBVP, 166 p eriodic boundary value problem , 166 P er ron theor em , 272 Picon e id entity, 112, 304, 305 extende d, 307 P 6lya factorization , 102 P6lya mean value t he ore m , 263 p opulation mod el , 11 ,32 positive d efinite, III p ositively reg ress ive , 10, 18 , 53 Priifer transforma t ion , 331 pre-an t ider ivative, 8, 117 pre-differ en ti able, 6 prin cip al soluti o n, 295 principal sys tem of so lutions, 265 product rule, 3, 13 , 74 quadrat ic convergence, 172 , 176 quadra ti c fun cti on al , 300 nonhom ogen eous, 318 quasi -A d eriva ti ve, 263 quotien t rul e, 3, 13, 74 R , 10 , 75 348 INDEX n+ ,18,53 rd-continuous, 7, 285 reachable boundary states, 318 recessive solution , 105 reduction of order, 70, 72 self-adjoint equation, 97 refinement, 118 regressive , 20 , 89 , 285 alpha case, 13 Euler equation, 24 first order equat ion, 59 group, 10, 75 matrix case, 75 matrix function , 252 scalar case, 10 second order eq uat ion , 63 symplectic cas e, 294 vector space, 18, 34 regulated, 7, 129 Reid roundabout theorem, 116, 328 Riccati equation, 40 , 42 symplectic case, 299 Riccati factoriz ation , 109 Riccati operator mixed derivatives , 109 nabla, 73 symplectic case, 299 Riemann ~-integral, 118, 122 ~-sum , 122 'V-integrable, 125 'V-sum , 125 integral , 121 , 127 right focal problem , 193, 210, 230 right neigborhood , 86 right-decr easing, 4 right-dense, 2 right-incr easing, 4 right-maximum local, 4 right-minimum local,4 right-scatter ed , 2 rising function , 55 , 80 Rolle's t heore m , 255 , 269 roundabout t heorem , 328 m atrix case, 76 sep arated boundary cond it ions, 321 , 323 se parated boundary value problem , 165 solution, 167 symplectic sys tem , 294 special normalized conjoine d bases , 296 , 327 Stirling's formula , 11 strengthened J acobi condition, 311 strongly (R~ : I)-normal, 322 strongly normal , 310 strongly oscillatory, 55 Sturm comparison theorem , 115,316,317 sep aration theorem , 101, 316 Sturm-Liouville equation, 294 , 334 continuous cas e, 331 discrete cas e, 297 sublinear , 199, 201 sup erline ar, 199 , 200 superposition principle, 61 Sylvester 's id entity, 258 symplectic matrix, 294 system, 293 , 294 saturation level , 32 SBVP, 165 Schauder fixed point theorem , 176 , 220 Schauder-Tychonoff theorem, 275 second order line ar eq ua t ions const a nt coe fficie nts, 94 se lf-ad joint form , 92 , 93 sector, 167 self-ad joint equation mix ed d erivatives, 92 self-r eciprocal , 329 semigroup property, 11, 49 Wallis product , 57 well-posed, 253 Wronskian, 96 , 97 , 256 identity, 295 time scal e, 1 topological transversality method, 194 , 207 trace, 75 Trench factorization , 103, 264 trigonometric fun ctions , 69 , 70 sy st em , 329 triple fixed point t heore m , 236 upper Darboux ~- integral, 118 Darboux ~-sum, 118 Darboux 'V-integral, 125 Darboux 'V-sum, 124 upper solution , 175, 271 , 283 PBVP,l77 variation of paramet er s first order , 19, 59, 60 higher order , 81 m atrix cas e, 77, 78 Verhulst eq ua t ion, 30
© Copyright 2024 ExpyDoc