COUPLING OF CHARGE AND SPIN ORDER IN ORGANIC CHARGE TRANSFER SALTS Martin Dressel 1. Physikalisches Institut, Universität Stuttgart, Germany Outline 1. 2. Introduction organic materials, ferroelectrics Mixed-Stack Compound TTF-CA neutral-ionic transition 3. Pressure-Temperature Phase Diagram change of ionicity 4. Dynamics of the Neutral-Ionic Transition photo-induced phase transition, random-walk model 5. Summary A.Dengl, R. Beyer, T. Ivek, T. Peterseim, P. Haremski 1. Physikalisches Institut Universität Stuttgart M. Masino, A. Girlando Universita Parma 4 Organic Conductors basics Organic solids are in general insulators because the bonds are saturated, the electronic bands are filled. Universität Stuttgart Requirements for electrical conductivity: • overlap of orbitals: band formation • add or extract electrons: - electrical field effect - charge transfer salts partially filled bands 5 Organic Conductors charge-transfer salts TTF-TCNQ The structure consists of TTF and TCNQ stacks. TTF is a strong electron donor, TCNQ is an electron acceptor. Morpurgo 6 Organic Conductors charge-transfer salts TTF-TCNQ The structure consists of TTF and TCNQ stacks. TTF is a strong electron donor, TCNQ is an electron acceptor. Along the segregated stacks the π-orbitals overlap leading to one-dimensional conductivity. 7 Organic Conductors charge-transfer salts TTF-TCNQ • The crystals are highly conducting along the chains: σ|| = 5⋅102 (Ωcm)-1. • The anisotropy approximate σ|| /σ⊥ = 100, but grows upon cooling. • At T = 53 K the material undergoes a CDW transition. D. Tanner, C.S. Jacobsen, et al. Phys. Rev. B 13, 3381 (1976) M.J. Cohen et al., Phys. Rev. B 10, 1298 (1974), 13, 2254 (1976); 16, 688 (1977) 8 Ferroelectrics basics Ferroelectrics spontaneous (permanent) electric polarization Requirements for ferroelectricity: • spontaneous dipole moment that can be switched in an applied electric field • loss of center symmetry -q d +q 9 TTF-CA charge-transfer salts TTF-CA Charge transfer compound with single mixed stack: donor: TTF, DMTTF acceptor: QCl4 (CA), QBrCl3, QBr4, … _ + _ + _ + _ + Universität Stuttgart 10 TTF-CA neutral-ionic transition TTF-CA Charge transfer compound with single mixed stack: donor: TTF, DMTTF acceptor: QCl4 (CA), QBrCl3, QBr4, … Neutral-ionic transition D0A0 → D+ρA-ρ Ionicity The antisymmetric CA mode ν10(b1u) is a very sensitive local probe of the charge: Dimerization The appearance of the totally symmetric CA mode ν5(ag) indicates the loss of symmetry at low temperatures. 11 TTF-CA neutral-ionic transition TTF-CA Charge transfer compound with single mixed stack: donor: TTF, DMTTF acceptor: QCl4 (CA), QBrCl3, QBr4, … Neutral-ionic transition D0A0 → D+ρA-ρ TTF-CA: TNI = 81 K TTF-QBrCl3: TNI = 66 K TTF-BA: TNI = 50 K εmax = 500 εmax = 800 εmax = 20 Ferroelectric phase K. Kobayashi et al. Phys. Rev. Lett. 108, 237601 (2012) J.B. Torrance et al., Phys. Rev. Lett. 47, 1747 (1981) S. Horiuchi et al. J. Phys. Soc. Jpn. 69, 1302 (2000) 13 TTF-CA ferroelectricity TTF-CA electronic ferroelectricity of 6.3 µC/cm2 due to change of ionicity from 0.3e to 0.6e plus a small dimerization. • Switching effect, • Curie behavior, • etc. K. Kobayashi et al. Phys. Rev. Lett. 108, 237601 (2012) 14 DMTTF-BA quantum phase transition DMTTF-BA Suppression of neutral-ionic transition by physical or chemical pressure results in quantum phase transition DMTTF-BA S. Horiuchi et al. Science 299, 299 (2003) 15 TTF-CA pressure dependence TTF-CA Pressure-dependent studies of the molecular vibrations yield that the charge per molecule changes with pressure. At room temperature the neutral ionic transition takes place at around 0.9 GPa = 9 kbar. There seems to be a regime of coexistence or some intermediate phase. M. Masino, A. Girlando and A. Brillante, Phys. Rev. B 76, 064114 (2007) 16 Optical Measurements experimental setup Fourier transform infrared spectrometer combined with IR microscope Frequency range: 15 cm-1 – 25 000 cm-1 (2 meV – 3 eV) Temperature range: 2 K ≤ T ≤ 300 K Coherent-source THz spectrometer Frequency range: Temperature range: 0.3 K ≤ T ≤ 300 K 1 cm-1 – 48 cm-1 (0.1 meV – 6 eV) Corbino microwave spectrometer Frequency range: Temperature range: 50 MHz GHz – 50 GHz 0.1 K ≤ T ≤ 300 K Pin Vector network analyzer Sample holder Coaxial cable Spring Corbino adapter Sample 17 Optical Measurements under hydrostatic pressure Hydrostatic piston-clamp cell 1) 2) 3) 4) Body made from Cu-Be IR Clamping nuts Pistons applying and holding the pressure Inset with optical access, holding the diamond window and the sample 5) Teflon cap with pressure medium. (1) (2) (4) (3) (2) (3) (5) (1) Pressure Temperature Frequency 1 – 11 kbar 5 – 300 K 100 – 14000 cm-1 R. Beyer, N. Barisic, M. Dressel (2014) 18 TTF-CA temperature and pressure dependence TTF-CA Pressure- and temperature dependent studies of the molecular vibrations yield a single charge per molecule. No additional phase exists, no regime of coexistence. 300 This work IR (Phys. Rev. B 36, 3884–3887 (1987)) DC (Phys. Rev. B 35, 427–429 (1987)) 280 NI-Transitiontemperature [K] Upon applying pressure, TNI shifts to higher temperatures dTNI/dp = 25 K/kbar and the ionicity becomes larger. 260 240 220 neutral 200 180 160 ionic 140 120 100 80 0 1 2 3 4 5 6 7 8 9 10 11 12 Pressure [kbar] A. Dengl, R. Beyer, T. Peterseim, T. Ivek, G. Untereiner and M. Dressel, J. Chem. Phys. 140, 244511 (2014) 19 TTF-CA Peierls-coupled mode TTF-CA Upon approaching TNI • electrons become delocalized and the effective Peierls coupling increases • the lattice phonons become soft • the dielectric constant increases A. Girlando, M. Masino, A. Painelli, N. Drichko, M. Dressel, A. Brillante, R.G. DellaValle, E. Venturi, Phys. Rev. B 78, 045103 (2008) M. Masino, A. Girlando, A. Brillante, R.G. DellaValle, E. Venturi, N. Drichko, M. Dressel, Chem. Phys. 325, 71 (2006) 20 TTF-CA photoinduced phase transition TTF-CA Switching between neutral and ionic phase • by temperature TNI = 81 K, • by pressure pNI = 8.5 kbar and • by light. Cooperative charge transfer induced by laser pulses: • switching from ionic to neutral phase, switching from neutral to ionic phase; • kick-off of domain walls depending on • temperature, • power and • pulse duration. D A D A D A D ħω D0A0 D+A- D0A0 D0A0 D0A0 D0A0 D0A0 D0A0 D0A0 D0A0 D0A0 D0A0 photo switching photo switching D+A- D+A- D+AD+A- D+A- D+A- D+A- D+A- D+AD+A- D+A- D0A0 ħω A S. Koshihara et al. J. Phys. Chem. B. 103, 2592 (1999); H. Okamoto et al. Phys. Rev, B 70, 165202 (2004) 21 TTF-CA photoinduced phase transition TTF-CA Switching between neutral and ionic phase • by temperature TNI = 81 K, • by pressure pNI = 8.5 kbar and • by light. Neutral-ionic domain walls motion explains: • dielectric properties • optical properties • dc transport • solitons: charge or spin • polaron D A D A D A D ħω D0A0 D+A- D0A0 D0A0 D0A0 D0A0 D0A0 D0A0 D0A0 D0A0 D0A0 D0A0 photo switching photo switching D+A- D+A- D+AD+A- D+A- D+A- D+A- D+A- D+AD+A- D+A- D0A0 ħω A S. Koshihara et al. J. Phys. Chem. B. 103, 2592 (1999); H. Okamoto et al. Phys. Rev, B 70, 165202 (2004) 22 TTF-CA photoinduced phase transition TTF-CA • What are the properties of the photoinduced state? • How long does the metastable state exist? • By which process does it relax back to the initial state? Starting from the ionic state at T = 78 K, we can switch the system locally to the neutral state by a laser pulse: • photon energy ħω = 2.33 eV • wavelength λ = 532 nm • pulse length 8 ns • repetition rate 20 Hz T. Petersheim, P. Haremski and M. Dressel (2014) 23 TTF-CA photoinduced phase transition TTF-CA Switching between neutral and ionic phase • by temperature TNI = 81 K, • by pressure pNI = 8.5 kbar and • by light. The change in the optical reflectivity indicates the transformation from the neutral back to the ionic phase. ν = 1390 cm-1 T. Petersheim, P. Haremski and M. Dressel (2014) 24 TTF-CA photoinduced phase transition TTF-CA The stretched-exponential time dependence can be explained by a one-dimensional random walk model of photo-induced neutral-ionic domain walls (NIDW). • The light pulse creates neutral domains with number and size depending on temperature and intensity. • The NIDW diffuse left or right. • They can eventually annihilate • The survival probability S(t) of a domain wall pair decays in a stretched-exponential way: T. Petersheim, P. Haremski and M. Dressel (2014) 25 TTF-CA photoinduced phase transition 26 TTF-CA photoinduced phase transition temperature dependence Temperature TNI Intensity TTF-CA The stretched-exponential time dependence can be explained by a one-dimensional random walk model of photo-induced neutral-ionic domain walls (NIDW). 0K intensity dependence T. Petersheim, P. Haremski and M. Dressel (2014) 27 TTF-CA domain wall motion Neutral phase D0A0 D0A0 D0A0 D0A0 D0A0 D0A0 D0A0 D0A0 D0A0 TTF-CA Neutral-ionic domain walls • motion explains dielectric properties • optical properties • dc transport • solitons: charge or spin • polaron D A D A D A D Ionic phase D+A- D+A- D+A- D+A- D+A- D+A- D+A- D+A- D+AD+ A-D+ A-D+ A-D+ A-D+ A-D+ A-D+ A-D+ A-D+ A- NI domain wall D0A0 D0A0 D+A- D+A- D+A- D+A- D+A- D0A0 D0A0 type A +ρ -ρ NI domain wall D0A0 D0A0 A-D+ A-D+ A-D+ A-D+ D0A0 D0A0 D0A0 type B -ρ +ρ Spin-soliton pair D+A- D+ A-D+ A-D+ A-D+ A-D+ A- D+A- D+A- D+A- Charged soliton pair D+ A-D+A0 D+A- D+A- D+A- D+A- D0 A-D+ A-D+ A +ρ -ρ Polaron pair D0A0 D+A- D+ A-D+ A0 D0A0 D0 A-D+ A- D+A- D0A0 +ρ -ρ A H. Okamoto et al. Phys. Rev. B 43, 8224 (1991) F. Kagawa et al., Phys. Rev. Lett. 104, 227602 (2010) 28 TTF-CA domain wall motion TTF-CA Neutral-ionic domain walls • motion explains dielectric properties • optical properties • dc transport • solitons: charge or spin • polaron • reduction of domain walls by external electric field • spinless solitons enhance dielectric response • but suppress dc conductivity F. Kagawa et al., Phys. Rev. Lett. 104, 227602 (2010) 29 TTF-CA domain wall motion TTF-CA Neutral-ionic domain walls • motion explains dielectric properties • optical properties • dc transport • solitons: charge or spin • polaron • reduction of domain walls by external electric field • spinless solitons enhance dielectric response • but suppress dc conductivity F. Kagawa et al., Phys. Rev. Lett. 104, 227602 (2010) 30 TTF-CA domain wall motion TTF-CA Neutral-ionic domain walls • motion explains dielectric properties • optical properties • dc transport • solitons: charge or spin • polaron • reduction of domain walls by external electric field • ESR allows to detect spin solitons • temperature independent • well separated Spin-soliton pair D+A- D+ A-D+ A-D+ A-D+ A-D+ A- D+A- D+A- D+A- Charged soliton pair D+ A-D+A0 D+A- D+A- D+A- D+A- D0 A-D+ A-D+ A +ρ -ρ F. Kagawa et al., Phys. Rev. Lett. 104, 227602 (2010) 31 TTF-CA multiferroicity TTF-CA One-dimensional Heisenberg chain with J = 1600 K Ab initio calculations predict multiferroicity • depending on the electron-phonon coupling α • Coulomb repulsion U G. Giovannetti et al. Phys. Rev. Lett. 103, 266401 (2009) M. Filatov, Phys. Chem. Chem. Phys. 13, 144 (2011) 32 TTF-BA multiferroicity TTF-BA • One-dimensional Heisenberg chain that undergoes a spin-Peierls transition at 53 K. • accompanied by a dielectric anomaly F. Kagawa et al. Nature Physics 6, 169 (2010) 33 TTF-BA multiferroicity TTF-BA • One-dimensional Heisenberg chain that undergoes a spin-Peierls transition at 53 K. • accompanied by a dielectric anomaly with a magnetoelectic coupling F. Kagawa et al. Nature Physics 6, 169 (2010) 34 TTF-BA multiferroicity TTF-BA • One-dimensional Heisenberg chain that undergoes a spin-Peierls transition at 53 K. • accompanied by a dielectric anomaly with a magnetoelectic coupling F. Kagawa et al. Nature Physics 6, 169 (2010) 35 Mixed-Stack Compound with supramolecular network A.S. Tayi et al., Nature 488, 485 (2012) 36 Summary Mixed-Stack Compound TTF-CA • organic ferroelectrica • change in ionicity and dimerization • switching by light • tuning by pressure
© Copyright 2025 ExpyDoc