Paul Scherrer Institut - Indico

Wir schaffen Wissen – heute für morgen
Paul Scherrer Institut
Alexander Gabard
The PSI Experience: a Theory of Evolution
or „the quest for compactness“
Paul Scherrer Institut, ATK division
PSI, 27. November 2014
Outline
• PSI History
• Proton facility (HIPA)
• PROSCAN
• SLS
• SwissFEL
• Conclusion
• Outlook
A very brief history of PSI
• 1960: creation of EIR in Würenlingen
• 1960: physics department at ETH decides to build a particle accelerator
• 1968: location found (across the river from the EIR), creation of SIN
• 1974: 590 MeV Cyclotron in operation (High Intensity Proton Accelerator HIPA)
• 1989: EIR and SIN merged into PSI
• 1996: SINQ
• 2001: SLS
• 2007: PROSCAN cancer treatment facility
• 2010: SwissFEL 250 MeV Injector test facility (SITF)
• 2016: SwissFEL 6 GeV machine
• 2020: SLS 2.0?
PSI, 27. November 2014
Seite 3
Facilities
SwissFEL
HIPA
SITF
PROSCAN
18-22 MW
SLS
PSI, 27. November 2014
Seite 4
HIPA
1200
1200
650
800
1200
400
1000
1200
1200
3600
1050
numbers indicate magnet current in Amps; most other main beamline magnets run at 400-500 Amps
PSI, 27. November 2014
Seite 5
Considerations?
PSI, 27. November 2014
Seite 6
Considerations?
• „In the old days, we would just order what the physicists wanted“
PSI, 27. November 2014
Seite 7
Considerations?
Cost considerations:
• Discussion of initial investment vs. Operating costs
• Base: seven years, including a 50% factor for quads
• Stick to internal standards in terms of PS: 50 A, 200 A, 500 A
• Main constraint: space
PSI, 27. November 2014
Seite 8
Ring accelerator sector magnets
Main goals in 1969:
• Pion and Muon production (Targets)
• 500 MeV energy (590 MeV in the end)
• 100 µA beam current (today: 2400 achieved,
3000 in preparation)
Specs:
• Gap: 55 to 86 mm
• Conductor 19.5 sq by Ø11.5mm, 80 turns
• Current: 1000 A, power 60 kW / magnet
• Field: 1.9 Tesla
PSI, 27. November 2014
Seite 9
Sector Magnets
Bulletin Oerlikon, January 1969
PSI, 27. November 2014
Seite 10
Short Quads
Main constraint: Space?
Mean Lifetime
•
•
•
μ− : 2 μs
π+, π - : 26 ns
πo : 84 as
-> reduce length of flight path
Aperture: 260 mm
Iron length: 270 mm
PSI, 27. November 2014
Seite 11
PROSCAN
PSI, 27. November 2014
Seite 12
PROSCAN
COMET
250 MeV
3.9 Tesla SC
160A
Ø 4m
90 tons
Magnet dimensions mostly defined by beam optics
• Degrader shifts energy 70-230 MeV, creates divergence (99% loss at 70 MeV)  wide poles, large gaps
• Degrader shifts with Δt = 80ms  all components downstream must follow  laminated, low field [1,2]
• Gantry 2: large 90 degree dipole due to upstream sweeping [3]
PSI, 27. November 2014
Seite 13
PROSCAN dipoles
480mm
Dimensions 2 x 1 x 0.5 m
Mass: 12 t
Gap: 65mm
B=1T
PSI, 27. November 2014
Seite 14
PROSCAN quads
•
•
•
•
•
PSI, 27. November 2014
Aperture 100 mm
G = 16.25 T/m
Pole Tip Field = 0.65 T
750 kg
9 kW
Seite 15
Gantry 2 90 degree dipole
PSI, 27.11.2014
Seite 16
Gantry 2 90 degree dipole
46 tons
Gap 150 mm
500 A
85 kW
B=1.56 T
?
Integrated
Vacuum
chamber
PSI, 27.11.2014
Seite 17
SLS – first electron machine @ PSI
Aperture 60 mm
G = 23 T/m
380 / 420 kg
2.5 kW
Aperture 68 mm
G = 742 T/m2
400 kg
1.4 kW
Gap 41 mm
B = 1.4 T
2700 kg
10 kW
• Watercooling used as feature for temperature stability (ΔT = 10C, low current density)
• Aperture defined by beam optics
•
•
•
•
•
PSI, 27. November 2014
Sextupoles with correctors; correctors operate at 50 Hz
«reasonably fast» beam based alignment
Three different lengths for each quad profile
Two different dipole lengths
Cycling after PS failure much faster
laminated magnets
Seite 18
Context : The Swiss Free Electron
Laser- SwissFEL
Two FEL Beamlines:
Hard X-ray Beamline Aramis: SASE FEL (1 – 7 Å), tuning mostly by energy (2016)
Soft X-ray Beamline Athos: SASE FEL (7 – 70 Å), seeded FEL (10 – 70 Å), tuning by gap and energy (2018)
One injector , two bunch compressor chicanes, three linacs for a beam energy up to 5.8 GeV
Status and Milestones
Injector and booster test facility (250 MeV) in operation; Facility will be moved to SwissFEL in 2015
End 2014: Building ready; Magnet installation planned from beginning 2015
Mid 2017: Routine operation of the Aramis line; End of 2018: Athos line installation
162 small aperture quadrupoles
S.Sanfilippo / M.Buzio 20th IMEKO TC4 International Symposium – Benevento (Italy) Sep 15-17. 2014
SwissFEL
Power supply costs: CHF
PSI, 27. November 2014
20k
5k
Seite 20
Considerations - SwissFEL
• Reduce operating costs
• Reduce magnet size
• Reduce machine size and length  combined function magnets)
• Eliminate water cooling (and thus flow induced vibrations)
Consequences:
• Small aperture with relatively large iron body to increase airflow
• Combined function:  good cooling  eight coils instead of twelve  large stray field
• Fast feedback – up to 1 kHz correction

laminated magnets, low core loss iron, some parts non-metallic
• High operating temperature; temperature drift
• Increased mechanical precision requirements
PSI, 27. November 2014
Seite 21
Considerations - SwissFEL
Aperture 45 mm
G = 1.5 T/m
11 kg
5W
PSI, 27. November 2014
Aperture 45 mm
G = 25 T/m
94 kg
3.2 kW
Aperture 12 mm
G = 50 T/m
32 kg
40 W
Aperture 22 mm
G = 50 T/m
180 kg
870 W
Seite 22
Considerations - SwissFEL
Integrated
X/Y steerers
Laminated
yoke
Room for
ventilation
Non-magnetic
parts (1kHz
fast feedback)
Air cooled
coils
PSI, 27. November 2014
Seite 23
Considerations - SwissFEL
12º C
Magnet temperature [deg. C]
Magnet thermal expansion vs. time (QFD)
11 µm
PSI, 27. November 2014
8 hrs
Time [hrs]
Magnet vertical expansion [µm]
11 µm
Magnet thermal expansion vs. temp. (QFF)
Magnet vertical expansion [µm]
Magnet vertical expansion [µm]
Magnet vertical expansion [µm]
Magnet thermal expansion vs. temp. (QFD)
7 µm
11º C
Magnet temperature [deg. C]
Magnet thermal expansion vs. time (QFF) [4]
7 µm
6 hrs
Time [hrs]
Seite 24
Considerations - SwissFEL
Operating temperature?
PSI, 27. November 2014
Seite 25
•
Considerations - SwissFEL
• QFB Design: 10 A max. current
• Depicted above: 20 A current
•
PSI, •
27. November 2014
•
Seite 26
Measuring small magnets
• For SwissFEL: 150+ quads
• Mechanical deviations  forbidden harmonics
• Small aperture  small rotating coil  strong restraints regarding pick-up coil positioning
• Long, thin rotating coil: coil warps  asymmetric rotation inside quad  artificial dipole harmonics
• Compensation measurements required to eliminate artificial harmonics; but lack of room for
compensation coils so reduced number of turns, which limits coil sensitivity
• Solutions: PCB coils (max. 500mm); In-Situ calibration; hybrid measurement systems like
vibrating, rotating wire (CERN)
• Conclusion: Compact magnets are harder to measure accurately
•

see presentation of Marco Buzio
PSI, 27. November 2014
Seite 27
Considerations - SwissFEL
Conclusion: the SwissFEL Magnets are PSI‘s idea of the current state
of the art in terms of Compact and Low Consumption Magnets
PSI, 27. November 2014
Seite 28
Outlook
In technical terms:
• Watercooled – outdated
• Air cooled resistive – works but has its limits
• Laminated (ramping, fast feedback, flexibility in magnet length)
• Superconducting magnets
• Permanent magnets?
• Push development of measurement systems to increase precision
For PSI:
• SLS 2.0
• SC Gantry
PSI, 27. November 2014
Seite 29
PSI‘s theory of evolution
PSI, 27. November 2014
Seite 30
Thank you for your attention
PSI, 27. November 2014
Seite 31
References
[1] M. Negrazus et al., "Eddy Current Reduction in Fast Ramped Bending Magnets"; Proceedings of
the 19th International Conference on Magnet Technology, MT-19, IEEE Transactions on Applied
Superconductivity, Vol. 16, No. 2, pp. 228-230, June 2006.
[2] M. Negrazus et al., "The Fast Ramped Bending Magnets for the Gantry 2 at PSI"; Proceedings of
the 20th International Conference on Magnet Technology MT-20, IEEE Transactions on Applied
Superconductivity, Vol. 18 No.2, pp. 869-898, June 2008.
[3] A.Gabard et al., “Magnetic Measurements and Commissioning of the Fast Rapmed 90º Bending
Magnet in the PROSCAN Gantry 2 Project at PSI”; Proceedings of the 21 st International
Conference on Magnet Technology, MT-21, IEEE Transactions on Applied Superconductivity, Vol.
20 No. 3, pp. 794-797, June 2010.
[4] R.Ganter et al., “Status of SwissFEL Undulator Lines; Proceedings of FEL 2013“, New York,
August 2013, pp. 263-266
PSI, 27. November 2014
Seite 32