Incorporating In Vitro Information into Models which Integrate Intestinal and Renal Drug Transport Amin Rostami-Hodjegan, PharmD, PhD, FCP, FJSSX, FAAPS Professor of Systems Pharmacology University of Manchester, Manchester, UK & Vice President R&D Simcyp , Sheffield, UK [email protected] Drug Transporters: Local vs Systemic PK Intestine Lumen Enterocyte MDR1 (P-gp) Blood MRP BCRP Apical (urine) PepT1, PepT2, OATP1A2, OATP2B1, OCT3, OCTN1, OCTN2, IBAT, CNT1, CNT2, MCT1, MCT4, MCT5 Liver OATP1B 1 OATP1B 3 Kidney Kidney cell Basolateral (blood) OATP1A2 OCTN1 OAT1 OCTN2 OAT2 OAT4 OAT3 URAT1 MATE1 OCT2 MATE2-K MDR1 (P-gp) MRP1 MRP2 MRP3 MRP4 MRP6 Blood Hepatocyte MDR1 (P-gp) MRP2 BCRP The Blood-Brain Barrier MDR1 Blood OATP1A2 BCRP (P-gp) MRP4 OATP2B1 luminal OCT1 Endothelial cells BCRP abluminal MRP 3 The Blood-CSF Barrier BCRP MRP4 basolateral Choroid epithelium apical MDR1 (P-gp) Astrocyte feet Brain parenchyma Cerebrospinal fluid (CSF) Scaling from In Vitro Assays Liver In vitro data Jmax/Km or CLuint T CLuint, T per g Liver HHEP In vitro CLuint, T SF 1: REF/RAFHHEP CLuint, T per Liver Intestine SF 2: HPGL SF 3: Liver Weight Caco-2, MDCK- II, LLC-PK1 etc. Jmax/Km or CLuint T CLuint, T In Jejunum I Kidney In vitro data Jmax/Km or CLuint T PTC In vitro CLuint, T SF 1: REF/RAFPTC Brain In vitro data Jmax/Km or CLuint T CLuint, T per Kidney SF 1: REF/RAFJejunum I Replacement / Additional Organ SF 2: PTCPGK H-BMv In vitro CLuint, T SF 1: REF/RAFH-BMv CLuint, T per g Kidney Scaling via the Permeability and Surface area product SF 3: Kidney Weight CLuint, T per g Brain SF 2: H-BMvPGB CLuint, T per Brain @ BBB SF 3: Brain Weight Jmax/Km or CLuint T CLu, T per whole organ User needs to scale to whole organ! SF: Scaling Factor Linking Local Sub-Models to Larger PBPK CYP3A Distribution Gastric Emptying Luminal Transit Segregated Blood Flows Relative P-gp Distribution Colon Ileum IV Ileum III Ileum II Ileum I Jejunum II Jejunum I Duodenum The Advanced Dissolution, Absorption & Metabolism - ADAM Interplaying Factors: Transporters Biopharmaceutics & Drug Disposition 34: 2–28 (2013) fa (ADAM) (Sub) Effect of REF and Dose on Fa 1.0 0.5 1.0 0.5 0.002 mg 0.0 0.001 0.1 10 1000 0.0 0.001 1.0 400 mg 0.1 2000 mg 0.5 10 1000 0.0 0.001 0.1 10 REF (intestinal P-gp) As REF ↑ for a P-gp (apical efflux) substrate fa ↓… 1.0 1.0 REF = 0.001 0.5 0.0 0.01 0.1 1 10 100 Dose [mg] 1000 10000 100000 fa (ADAM) (Sub) fa (ADAM) (Sub) …effect is less marked as dose ↑ REF = 100 0.5 0.0 0.01 1 100 Dose [mg] 10000 1000 In Vitro-In Vivo Extrapolation of Transporters PK In vitro apparent active permeability per gut segment. Papp,Tran, n Peff ,Tran, n Transfer Papp,Tran,n to in vivo effective active permeability using the selected prediction model. Scale up Peff,Tran,n to transport clearance in the gut segment. Amount of drug pumped backed into lumen (efflux) per gut segment. J max A Km fu gutCent, n Peff ,Tran,n Sn FTran, n REFTran, n CLTran,n fu gutCent, n In calculations for uptake transporters Clumen is used. A = area of filter; Sn = Surface area of gut segment; FTrans,n = relative abundance of transporter in gut segment. Correlations? (e.g. MRP2 in Gut vs. Liver) No correlation between the intestinal and hepatic content of MRP2 Therefore they are independently assigned within Simcyp Co-variation of transporters and metabolising enzymes currently under investigation 3 R² = 0.0266 Hepatic MRP2 2 protein expression [rel. Units/mg 1 protein] 0 0 1 2 3 4 5 Intestinal MRP2 protein expression [rel. Units/mg protein] Data from: H. Gläser, thesis 2003 Quantitative Proteomic in Manchester - QconCAT Schematic of the QconCAT method. Russell et al 2013, J Proteomics, Revised version under Review Achour et al, in Preparation C Y P 4F2 C Y P 3 A4 3 C Y P 3 A7 C Y P 3 A5 C Y P 3 A4 C Y P 2J2 C Y P 2D 6 C Y P 2C 18 C Y P 2C 9 C Y P 2C 8 C Y P 2B 6 C Y P 2 A6 C Y P 1 A2 C y t o c h r o m e P 4 5 0 e n z y m e a b u n d a n c e ( p m o l/m g ) Quantitative Proteomic in Manchester - QconCAT CYP Abundance and Interindividual Variability 200 B) 150 100 50 0 Achour et al, in Preparation U G T 2B 15 U G T 2B 7 U G T 2B 4 U G T 1 A9 U G T 1 A6 U G T 1 A4 U G T 1 A3 U G T 1 A1 U G T e n z y m e a b u n d a n c e ( p m o l/m g ) Quantitative Proteomic in Manchester - QconCAT UGT Abundance and Interindividual Variability 300 B) 200 100 0 Inter-correlations: A Realistic Virtual Patient Error! UGT2B15 UGT 2B15 UGT2B7 UGT 2B7 UGT2B4 UGT 2B4 UGT1A9 UGT 1A9 UGT1A6 UGT 1A6 UGT1A4 UGT 1A4 UGT1A3 UGT 1A3 UGT1A1 UGT 1A1 CYP4F2 CYP 4F2 CYP3A43 CYP 3A43 CYP3A7 CYP 3A7 CYP3A5 CYP 3A5 CYP3A4 CYP 3A4 CYP2J2 CYP 2J2 CYP2D6 CYP 2D6 CYP2C18 CYP 2C18 CYP2C9 CYP 2C9 CYP2C8 CYP 2C8 CYP2B6 CYP 2B6 CYP2A6 1 CYP 2A6 CYP 1A2 CYP1A2 0.44 NS NS NS 0.45 NS 0.58 NS NS NS 0.63 0.47 0.42 0.36 0.48 NS 0.45 0.67 0.70 0.57 1 0.59 0.56 0.68 NS NS NS 0.50 NS NS 0.41 0.35 0.43 NS 0.51 0.38 0.36 0.45 0.59 0.53 1 0.56 NS NS NS NS 0.63 NS NS NS NS 0.35 NS 0.48 NS NS NS 0.36 0.49 1 0.56 NS 0.44 NS 0.62 NS NS NS NS NS 0.42 0.38 NS NS NS NS NS 1 0.57 NS NS NS NS NS 0.47 NS 0.43 0.42 0.70 0.48 0.45 0.64 0.66 0.61 1 NS 0.39 NS NS -0.43 0.61 0.39 NS NS NS NS NS NS 0.43 NS 1 NS 0.37 NS 0.58 NS NS NS NS NS NS NS NS NS NS 1 NS NS NS 0.42 NS NS NS 0.48 NS NS 0.45 NS NS 1 0.36* 0.50 NS NS 0.51 NS 0.48 NS NS 0.45 NS NS 1 0.39 NS 0.37 NS NS 0.43 0.62 0.50 0.43 NS NS 1 NS NS NS NS NS NS NS NS NS NS 1 NS NS 0.46 0.51 NS NS 0.51 0.39 NS 1 0.42 NS NS 0.49 0.45 0.38 0.61 0.46 1 NS 0.41 0.42 NS 0.65 0.50 0.55 1 0.57 0.56 0.55 0.46 NS NS 1 0.75 0.75 0.82 0.55 0.61 1 0.82 0.72 0.50 0.61 1 0.73 0.61 0.69 1 0.65 0.71 1 0.91 1 Time-variant, Compartmental Luminal Fluid Volumes Fasted State 250 mL fluid taken with dose: Average healthy individual Fasted Gut Lumen Fluid Volumes (250 mL taken with dose) 1000 Whole Gut Luminal Fluid Volumes (mL) Luminal Fluid Volumes (mL) Stomach SI Total 100 Duodenum Jejunum I II Colon 10 Ileum I - IV C bulk(segment ,t) Inter-individual variability not shown Dissolved mass(segment ,t) Fluid Volume(segment ,t ) 1 0.01 0.1 1 Time (hours) Time (hours) 10 100 Substrate and Inhibitor with ADAM - DDIs Luminal Transit Luminal Transit Segregated Blood Flows Segregated Blood Flows CYPs/ Efflux/ Influx Transporters Note an inhibitor could be an excipient etc Colon Ileum IV Ileum III Ileum II Ileum I Jejunum II Jejunum I Duodenum Colon Ileum IV Ileum III Ileum II Ileum I Main inhibitor Jejunum II Jejunum I Duodenum Substrate Kidney: Nephron and Its Function (Guyton & Hall, 2006) Kidney: Inter-Species Differences and Transporters Human Rat CLrenal [mL/min/kg] CLrenal [mL/min/kg] CLsecretion [mL/min/kg] Famotidine alone 42 ± 9 297 ± 19 196 ± 21 with probenecid 46 ± 10 107 ± 5 22 ± 4 Renal proximal tubule cell Urine Octn Rat Oat1 (Shitara et al., 2006) Blood probenecid Mrp2,4 Oat3 Oat-K1 No change Oct1 Oat-K2 famotidine Oct2 Oatp1 probenecid Human Decrease in the renal clearance OCTNs OAT1 MRP2,4 OAT3 OAT4 OCT2 famotidine Increase in the plasma concentration Model Structure: Mechanistic Kidney (Mech KiM) Glomerulus Renal mass Vur-pt1 Henle’s loop Distal tubule Vur-he Qur-dt Vur-dt Qur-cd1 Collecting duct Vur-cd1 Qur-cd2 Vur-cd2 Qblad Bladder CLinuc-pt2 Vblad CLinuc-pt3 PS Quc-he uc-he Qurine Vce-pt3 Vce-cd1 PS Quc-cd2 uc-cd2 Vbl-pt2 CLout cb-pt2 CLce-pt2 CLin PS Qcb-pt3 cb-pt3 cb-pt3 Vce-dt PS Quc-cd1 uc-cd1 Qbl-pt2 Vce-pt2 Vce-he PS Quc-dt uc-dt Vbl-pt1 CLout cb-pt1 CLce-pt1 CLin PS Qcb-pt2 cb-pt2 cb-pt2 Qur-pt3 CLout PS Quc-pt3 uc-pt3 uc-pt3 Qur-he Qbl-pt1 Vce-pt1 CLinuc-pt1 Qur-pt2 CLout PS Quc-pt2 uc-pt2 uc-pt2 Vur-pt3 Vbl-glom CLin PS Qcb-pt1 cb-pt1 cb-pt1 uc-pt1 uc-pt1 uc-pt1 Vur-pt2 Qbl-glom=(1-abypass)Qkidney GFR Vur-glom Qur-pt1CLoutPS Q Proximal tubule Renal blood Vce-cd2 Qbl-pt3 CLout cb-pt3 Q =b CLce-pt3 bl-he bypassQbl-pt PS Qcb-he cb-he PS Qcb-dt cb-dt Vbl-he Qbl-cd2 Qbl-pt Qbl-dt=(1-bbypass)Qbl-pt Vbl-dt Qbl-cd1 PS Qcb-cd1 cb-cd1 PS Qcb-cd2 cb-cd2 Vbl-pt3 Vbl-cd1 Qbl-vein1 Vbl-cd2 Qbl-vein2 Urine Qbypass=abypassQkidney Urinal tubule Vbl-vein Qvein Blood Modelling Kinetics in the Kidney (Mech KiM) Filtration Secretion (passive + active) Reabsorption (passive + active) Urinal tubule Renal blood Cell (renal mass) PT – S1 PT – S2 PT – S3 Transporters are available in all three Proximal Tubule Cell compartments on the apical and basal membrane. Thus, the model can address: Regional distribution and changes in activity for transporters as known for PepT1/PepT2 Nephrotoxicity as well as change in systemic exposure due to: HL DT • interplay between transporter on the apical and basal membrane Cort-CD Medu-CD Bladder • interplay between uptake, efflux and passive permeation on the same membrane • interplay between metabolism and transporter Considerations • GFR directly from the glomerular blood compartment to the glomerular urinal compartment (filtration); • Fluid balance within the kidney, i.e. the fluid flow into and out from the urinal tubular compartments, the renal blood compartments, as well as the renal mass cell compartments (reabsorption and secretion); • Passive permeability at basal and apical sides of each of the renal cell compartments (passive components of reabsorption and secretion); • Transporters on basal and apical sides of each of the proximal tubular cell compartments (active components of reabsorption and secretion); • Metabolic clearance within the proximal tubular cell compartments; Input data - Renal In Vitro Models • Commonly used Renal Cell Lines are MDCK, LLC-PK1, OK, however they are from animal origin. • Transfected Cells are used in the industry - CHO and HEK for the basolateral uptake transporters, - MDCK and LLC-PK1 for the efflux transporters • Human Kidney Slices are from intact tissue, however the assay is limited to basolateral transporters and not a HTS method in the industry (expensive, technical advanced, tissue demanding) • Human Proximal Tubule Cells (HPTC): - HRPT, Caki-1, Caki-2, RPTEC, HK-2, HKC-5 Scaling Factor for Renal Transporters HEK-293, CHO etc. CLuint, T per g Kidney PTC Jmax/Km CLuint T Scaling Factor 1 In vitro CLuint, T Scaling Factor 2 CLuint, T per Kidney Scaling Factor 3 Input Units REF/RAFPTC PTCPGK Kidney Weight REF/RAF: Dimensionless factor that reflects the difference in activity and/or expression between the in vitro system and the in vivo system Assuming activity of PTC in vitro equals PTC in vivo REF = 1 PD Inputs from Mech KiM PD Basic 2 PD Basic 1 Output PD Link 2 • PD Basic 3 Output PD Link 3 PD Basic 3 Output Output Output PD Link 3 Output PD will be possible for the cell and the urinal compartments for PT-S1, PT-S2 and PT-S3. • Output The cumulative amount in the cells and urine will be available for PD simulations (planned for V.12 Release 2). PBPK to Help with Understanding ‘Local Exposure’ (DDI & Genetic Polymorphism of Transporters) Xe(t) X(t) Compound PK C Effect compartment E PD Basic Response E Hysteresis t AUCtissue C AUCsys .CLin CLout Reabsorption of Water – Concentrated Drug a 100 Upper proximal tubule Concentration (mg/L) Mid proximal tubule 10 Lower proximal tubule Loop of Henle 1 Distal tubule Cortical collecting duct 0.1 Medullary collecting duct 0.01 0 48 96 Time (h) 144 Impact on Systemic Drug Concentrations Systemic Concentration (mg/L) b 1 CLPD = 0 CLPD = 0.0001 CLPD = 0.001 0.8 0.6 0.4 0.2 0 0 48 96 Time (h) 144 Impact on Excreted Drug Amount of substrate excreted unchanged in urine (mg) c 120 100 80 60 40 CLPD = 0 CLPD = 0.0001 CLPD = 0.001 20 0 0 48 Time (h) 96 144 Drug in Plasma, Urine, Kidney Cells Impact of Urine pH: A weak base (pKa 10) (100 mg iv) 80% renally cleared CLPD = 0.05 ml/min per million cells 120 100 80 60 40 pH 8 pH 7.4 pH 5 20 0 0 24 Time (h) 48 Accumulated Drug in Urine 14 Systemic Concentration (mg/L) b Amount of substrate in Kidney cells (mg) Amount of substrate excreted unchanged in urine (mg) a Drug Concentration in Tubular Cellc 0.5 7 0 0 24 Time (h) 48 0.25 0 0 24 Time (h) 48 Drug Concentration in Plsma Memantine – CLrenal pH-dependency Plasma Concentration (µg/L) Memantine primary amine pKa = 10.27 logP = 3.2 95% renally cleared Acidic Urine (pH 5) Alkaline Urine (pH 8) 45 45 40 40 35 35 30 30 25 25 20 20 0 4 • CLPD: 50 µl/min/million cells (PE from urine pH 7) • OCT2 (basal uptake): 4.7µl/min/million cells • ASSUMED apical efflux in the same range! Burt et al., 2012 Gordon Conference 8 12 Time (h) 16 20 24 Acidic Urine (pH 5) 0 4 8 12 Time (h) 16 20 Alkaline Urine (pH 8) 24 Transporter Inhibition/Induction/Genetics 50 40 30 Uptake CL 20 10 b 0.002 Systemic Drug C(t) 0.001 0.0005 0 0 6 12 18 24 Time (h) 0.01 0.008 Urine Drug C(t) 0.006 0.004 0.002 0 0 d Concentration in the upper proximal tubule cell compartment (mg/L) Concentration in the upper proximal tubule urine compartment (mg/L) Inhibition of Major Route 0.0015 0 c No Inhibition Inhibition of Minor Route 6 12 18 24 e Time (h) 0.01 0.008 Tubular Drug C(t) 0.006 0.004 0.002 6 12 Time (h) 18 24 0.01 0.008 Efferent Blood C(t) 0.006 0.004 0.002 0 0 0 Concentration in the upper proximal tubule blood compartment (mg/L) Intrinsic uptake clearance on basolateral interface (L/h) a 0.0025 Systemic Concentration (mg/L) Transporter Inhibition/Induction/Genetics 0 6 12 Time (h) 18 24 0 6 12 Time (h) 18 24 Concentration in medullary collecting duct compartment (mg/L) Physiological Variability 80 60 40 20 0 0 12 Time (h) 24 Further Details Springer Book Chapter: Bente Steffansen & Yuichi Sugiyama; Editors Howard Burt Linzhong Li Gaohua Lu Sibylle Neuhoff [email protected] [email protected] [email protected] [email protected]
© Copyright 2024 ExpyDoc