Interaction with matter Understanding/description of interaction between matter and high energetic particles/radiation important: ● ● ● ● Principles of detection of particles/radiation Limitation of detectors Efficiency Position resolution Energy resolution Time resolution Impact on biological systems Radiation damage Radiation protection Radiation therapy Literature K. Kleinknecht, Teilchendetektoren C. Grupen, Teilchendetektoren (BI Wissenschaftsverlag) J. Ferbel, Experimental Techniques in High Energy Physics Particle data group, chapter 26 , http://pdg.lbl.gov/pdg.html The particle detector brief book http://rkb.home.cern.ch/rkb/titleD.html dEdX: http://www.srim.org/SRIM/SRIMPICS/SRIM-High%20Velocity.pdf Katharina Müller, Autumn 14 1 Interaction with matter Energy loss per distance (dE/dx) many different interactions, dominating processes depend on energy and particle type e± ,μ±, ± , , p,n, Z, A, z, m, E, Θ Charged particles: defined reach ● Ionisation and excitation of electrons on shell → Bethe-Bloch formula ● ● Coulomb Scattering: Scattering in Coulomb field of nucleus small energy loss, but deflection Bremsstrahlung : dominant for low masses → radiation length Photons: Absorption in matter, highly energy dependent – attenuation, no defined reach ● Photo electrical effect ● Compton scattering ● Pair production Hadrons: inelastic scattering ● Hadron+nucleus → π±,0 , K, p,n, fragments of nucleus Katharina Müller, Autumn 14 2 Energy loss of charged particles in matter Energy loss due to ionisation and excitation Energy loss per distance (dE/dx) : many theoretical works ● N. Bohr Classical derivation ● Bethe, Bloch Quantum mechanical description ● L. Landau Charge distribution function ● E. Fermi Density correction ... Katharina Müller, Autumn 14 3 Ionisation: classical derivation (Bohr) Energy loss via inelastic collisions with electrons on shell → Ionisation and excitation Assumptions: M(particle) >> me Shell electron at rest (collision time small wrt orbital time) Projectile M, v = βc , charge ze, Target: charge Ze x ze r b b: collision parameter Ze Energy transfer onto target with mass mt: ΔE=Δp/(2mt) ∞ Momentum transfer: time integral longitudinal forces cancel only transversal forces important Katharina Müller, Autumn 14 p= ∫ F Coulomb dt −∞ FC= 1 zZe 2 /r 2 4 0 F l x=−F l −x b F t =F C⋅ =F C⋅cos ∣r∣ 4 4 Ionisation: classical derivation (Bohr) I 2 r=b/cosθ 1 zZ e 1 z Z e 2 ˙3 cos˙ = cos Transversal forces on projectile F C t = 2 4 0 r 4 0 b2 Momentum transfer onto target Integration → ∞ ∞ dx 1 zZe p b= ∫ F C t dt= ∫ F C t = v 4 b2 −∞ −∞ 0 2 b d / cos 2 ∞ dx v ∫ cos3 −∞ / 2 1 z Z e2 1 2 z Z e2 = ∫ cos d = 4 b v 4 0 b v − / 2 0 Energy transfer onto target with mass mt 2 4 p2 2z e E b= = 2 mt me c 2 2 b 2 1 ≡1 4 0 shell electron Z = 1, mt=me 1/m: collisions with nucleus may be neglected Now: Sum over all shell electrons Integration over all collision parameters b Katharina Müller, Autumn 14 5 Ionisation: classical derivation (Bohr) II Energy loss due to collisions with electrons in tube (length dx, thickness db) at radius b: # of electrons: 2 π b db dx Ne electron density −dE b= E b N e dV = 4 z2 e 4 2 2 me c Ne b dx db Ne = NA Z/A ρ db dx (NA Avogadro's constant, A mass number) b Integration over collision parameter from bmin to bmax 2 4 b max 2 4 4 z e −dE Z 1 dE 4 z e Z b= N db − = N ln AA b AA 2 2 2 2 dx dx b min me c me c maximal energy transfer: central collision 2 4 2 z e 2 2 2 E b=2 me c = m e c2 2 b 2 minimal energy transfer: mean excitation energy I (averaged excitation potential per electron in the target) Katharina Müller, Autumn 14 b min = note: 1/β2 z e2 me c 2 2 2 ze b max = c 2 me I 6 (dE/dx) classical derivation (Bohr) III −dE 4 z e Z b max = N A ln 2 2 dx A b min m c 2 4 e b min = z e2 m e c2 2 z e2 2 b max = c me I Classical formula for energy loss due to ionisation 2 −dE K z Z 1 = 2 ln dx A 2 2 c 2 2 2 m e I K= 4 e 4 c2 me N A =0.31 MeV cm 2 / g Unit [dE/dx] = MeV /cm Warning: usually energy loss is divided by density: [dE/dX] = MeV cm2/g → dE/dX almost independent of material only material dependence through Z/A and ln(1/I) Katharina Müller, Autumn 14 7 (dE/dx) Bethe Bloch Formula full quantum mechanical derivation: Bethe-Bloch Formula −dE Z 1 1 =K z2 [ ln dX A 2 2 2 m e c 2 2 2 T max I2 C −2 − − ] 2 Z K= 4 e4 2 c me 2 N A =0.31 MeV cm / g I mean excitation energy Z atomic number A mass number of absorber Validity: 6 MeV < E < 6 GeV (π), generally 0.02< β<0.99 (1% accuracy!!) T max: max kinematic energy transferred z: Charge of particle dE/dX ∝ z2 Corrections ● ● δ(β) C/Z Density correction due to polarisation, important for high energies Correction close to shell boundaries, relevant for small energies 1% @ βγ =0.3 Katharina Müller, Autumn 14 8 (dE/dx) Bethe-Bloch-(Sternheimer) Formula classical result: 2 2 2 2 −dE K z Z 1 2 m e c = 2 ln dX I A2 full quantum mechanical derivation: Bethe-Bloch Formula −dE Z 1 1 =K z 2 [ ln 2 dX Aβ 2 2 me c 2 β 2 γ 2 T max I2 C −β2 − δ − ] 2 Z describes mean energy loss or stopping power ● T max: max kinematic energy transferred from particle (M) onto electron T max = ● ● ● ● ● ● 2 me c 2 2 2 2 12 me / M me / M ≈ 2 me c 2 2 2 ≈ M c2 m e ≪M ∞ small energies and particles with high masses: result equals classical result except factor 2 (imperfect description of very far collisions : binding of electrons cannot be neglected) independent of mass of particle ! (γm e<<M) Unit MeV/(g/cm2) dx = ρ ds is material occupancy dE/dX almost independent of target material Formula needs to be modified for electrons Bethe-Bloch formula is not valid for slow particles βγ<0.02 where dE/dX ∝ β Katharina Müller, Autumn 14 9 9 Energy loss dE/dX dE/dx of muons in copper ● ● ~β ● ~1/β 2 ● ● ~2 ln(γβ) Titel ● ● βγ < 3 dE/dX ∝ 1/β2 βγ ≃ 3.5 minimum dE/dX 1-1.7 MeV cm2/g βγ > 3.5 logarithmic rise dE/dX ≃ 2 MeV cm2/g βγ > 1000 Bremsstrahlung dominant very low energy: BB not valid, empirical models low energies: shell corrections high energies: density corr. PDG http://pdg.lbl.gov/pdg.html Minimum: βγ 3-4 minimum ionising particle (MIP) looses ~ 1-1.7 MeV/(g/cm2) Katharina Müller, Autumn 14 10 Shell correction −dE Z 1 1 =K z2 [ ln 2 dX A 2 2 m e c 2 2 2 T max I2 ● ● C −2 − − ] 2 Z Shell corrections (C/Z) constitute a correction to slow particles (e.g for protons in the energy range of 1-100 MeV) Correction for the assumption that particle velocity >> bound electron velocity ● Assumption that electron is at rest not valid ● Maximal about 6% ● Calculation with various approximations ● ● J. F. Ziegler, Applied Physics Reviews / J. Applied Physics, 85, 1249-1272 (1999). http://www.srim.org/SRIM/SRIMPICS/IONIZ.htm Copper: about 1% at βγ=0.3 (6 MeV Pion), decreases rapidly with velocity Katharina Müller, Autumn 14 11 Mean excitation energy I 2 2 2 2 m c T max −dE Z 1 1 e 2 2 C =K z [ ln − − − ] 2 dX A 2 2 2 Z I I characteristic for target material PDG http://pdg.lbl.gov/pdg.html I = 16 Z 0.9 eV for Z > 1 Mean excitation energy > ionisation E Theoretical calculation of I has a long history. Summaries can be found in several reviews : U. Fano, Chr., Studies in Penetration of Charged Particles in Matter, Nucl. Sci. Rpt.. 39, U. S. National Academy of Sciences, Washington, 1-338 (1964). J. F. Ziegler, “Handbook of Stopping Cross-Sections for Energetic Ions in All Elements”, Pergamon Press (1980). I=10 eV·Z for Z>20 Example Argon: Z = 18, I = 215 eV, measured 190.8 eV (Ionisation energy 15.7eV) Katharina Müller, Autumn 14 12 Charge dependence 2 2 2 2 m c T max −dE Z 1 1 e 2 2 C =K z [ ln − − − ] 2 dX A 2 2 2 Z I Tracks of ions in emulsion Energy loss depends quadratically on charge of projectile width allows estimate of charge Iron Z = 26 Thorium Z = 90 Katharina Müller, Autumn 14 13 dE/dX discussion −dE 2Z 1 1 =K z [ ln dX A 2 2 2 m e c 2 2 2 T max I 2 2 C − − − ] 2 Z depends on velocity not on mass → ● particle identification without 1/2 T max≈2 me c 2 2 2 ● ● ● βγ small dE/dx ∝ 1/β2 βγ ≅ 3.5 broad minimum light absorbers: Z/A ≃ 0.5 dE/dx(min) ≃ 1.5 MeV /(g/cm2) → MIP relativistic rise ● minimal ionising particles (MIP) βγ > 4 dE/dx ∝ 2 ln(βγ2) logarithmic (relativistic) rise ≅ 3-4 Katharina Müller, Autumn 14 14 dE/dxmin different materials −dE Z 1 1 =K z2 [ ln dX A 2 2 2 m e c 2 2 2 T max I2 C −2 − − ] 2 Z dE/dX depends on A, Z of target material βγ≅ 3.5 broad minimum → minimum ionising particles (MIP) H2 Z/A≅ 1 dE/dXmin ≅ 4 MeV /(g/cm2) others Z/A≅ 0.5 dE/dXmin ≅ 2 MeV /(g/cm2) dE/dXmin ≅ 1-1.7 MeV /(g/cm2) only weak material dependence PDG http://pdg.lbl.gov/pdg.html Katharina Müller, Autumn 14 15 dE/dX at minimum βγ → 3.5 broad minimum dE/dXmin ≅ 1-1.7 MeV/(g/cm2) only small material dependence PDG http://pdg.lbl.gov/pdg.html dE/dX(min) for different chemical elements fitted by a straight line Z>6 Katharina Müller, Autumn 14 16 Relativistic Rise E- field Lorentz-contraction of field lines transversal component of E-field grows with γ → larger collision distances, more collisions Saturation for high energies→ Fermi plateau Tmax = E Solids (dE/dX)β→1≈ 1.05-1.1 (dE/dX)MIP Gases (dE/dX)β→1≈ 1.5 (dE/dX)MIP at rest δ-correction, density effect: E-field gets partially shielded for high densities due to polarisation δ(γ) = 2 ln γ +ζ (ζ material constant) → less collisions with far distant electrons, smaller dE/dX Fermi plateau without correction with correction Katharina Müller, Autumn 14 17 Particle identification −dE Z 1 ≈K z 2 [ln 2 dx A 2 2 2 me c I 2 C − 2 − − ] 2 Z as long as 2 m e ≪M dE/dx only depends on velocity not on mass of particle → Particle identification ALICE TPC measured energy loss • Heavy particles dE/dx well described by Bethe-Bloch formula • Electrons not described by Bethe-Bloch http://aliceinfo.cern.ch/ Katharina Müller, Autumn 14 18 ALICE TPC 88 m3 cylinder filled with gas, 5.1 m long Divided in two drift regions by the central electrode located at its axial centre. Uniform electric field along the z-axis electrons drift towards the end plates Signal amplification:avalanche effect near anode wires Readout: 570132 pads in cathode of multi-wire proportional chamber http://aliceinfo.cern.ch/Public/en/Chapter2/Chap2_TPC.html Katharina Müller, Autumn 14 Cosmic muon in TPC 19 Restricted Bethe Bloch Particle detectors don't measure energy loss, but energy deposited in detector. Eg. highly energetic electrons may leave the detector → measured energy is too small Restricted Bethe Bloch: Cut off parameter Tcut :dE with T>Tcut are neglected −dE Z 1 1 =K z 2 [ ln dX A 2 2 2 m e c 2 2 2 T upper I2 2 − 1 T upper T cut C − − ] 2 Z Tupper = min(Tcut,Tmax) Katharina Müller, Autumn 14 20 Range in matter mean range R/M (M mass of particle) PDG http://pdg.lbl.gov/pdg.html Formally: integration of Bethe-Bloch formula 0 R=∫ E dX dE dE statistical process → mean penetration depth range in cm: divided by density! Example 1 GeV particle in lead K+ M= 493.6 MeV βγ = 2.02 → R/M = 800 g cm-2 GeV-1 R = 395 g cm-2 ds = R= 35 cm in lead Katharina Müller, Autumn 14 Myon R/M = 7000 g cm-2 GeV-1 ds = 64 cm Proton R/m = 220 g cm-2 GeV-1 ds = 18 cm 21 Ionisation tracks Energy loss largest for low energy particles → increase of energy deposits (ionisation) towards end of range (Bragg peak) δ-(knock-on) electrons: have high enough energy for ionisation track Tracks of mono energetic α particles in cloud chamber: range 8.6 cm, small variation Katharina Müller, Autumn 14 22 Range: Bragg curve Bragg curve: describes energy loss of particle as function of penetration depth Particle in matter → particle de-accelerates → energy loss increases as particle gets slower Bragg-Peak: largest energy deposit at end of the track important for radiation therapy! Charged particles Photons 70 MeV protons in water Bragg peak Penetration depth Katharina Müller, Autumn 14 23 Medicine: radiation therapy Ionisation profile for 12 C ions in water Application in medicine: Concentration of energy deposit at end of reach allows treatment of tumours with moderate exposure dose for the surrounding tissue, contrary to x-ray Possible to precisely deposit dose at well defined depth by varying beam energy Katharina Müller, Autumn 14 24 Proton therapy at PSI Spread out Bragg peaks (SOBP) Different absorbers → almost constant dose in region of tumour Katharina Müller, Autumn 14 25 Energy loss (Straggling) N Energy loss probability Δ E=∑i=0 δ E i N: number of collisions Energy loss is statistical process ● ionisation loss distributed statistically ● collisions with small dE more probable ● large dE rare → electrons with keV (δ-electrons) ● δ-rays have enough energy for ionisation ● asymmetry: mean energy loss > most probable energy loss Parametrisation: asymmetric Landau distribution Landau-Tail: rare interactions with large energy transfer Tails up to the kinematic maximum Bethe-Bloch gives mean energy loss Thick layers or dense material: Gaussian distr. Energy loss dEdX: most probable value ≠mean energy loss Katharina Müller, Autumn 14 26 Landau distribution Measurement ΔEmp =82 keV ΔEmp = 56.5 keV 1 1 exp− e− Landau: Probability (Δ E) = 2 2 = E − E mp / ξ: material constant mean energy loss in layer x ξ= K ρ x /β2 depends on density, thickness and velocity Δ E mean E- loss, Δ Emp most probable E-loss Katharina Müller, Autumn 14 27 δ Electrons Energy distribution of secondary electrons: F T =1− 2 T /T max (Spin 0) d N2 1 2 Z 1 F T = k z dT d x 2 A 2 T 2 Example: 500 MeV pion in 300 μm Si: 5% produce an electron with T>166 keV important background in Cherenkov counter Number of δ-electrons proportional z2/β2 Katharina Müller, Autumn 14 28 δ Electrons 1969 Mc Cusker: Evidence of quarks in air shower cores (Phys Rev Lett) Narrow tracks in cloud chambers: low ionisation→ charge < 1! Number of δ electrons proportional to z2/β2 Katharina Müller, Autumn 14 29 Summary dE/dx through ionisation described by Bethe-Bloch Formula ● only small material dependence ● Energy loss ∝ z2 (particle) ● independent of mass → particle identification most of the energy is deposited towards the end of the range ● ● ● ● ● ● βγ < 3 dE/dX ∝ 1/β2 βγ ≃ 3.5 minimum dE/dX 1-1.7 MeV cm2/g βγ > 3.5 logarithmic rise dE/dX ≃ 2 MeV cm2/g βγ > 1000 Bremsstrahlung dominant Bethe-Bloch is not valid for slow particles (βγ<0.05) (dE/dX ∝ β) here only phenomenological models available Katharina Müller, Autumn 14 30 Additional Material: Ranges Range of electrons, protons and α particles in air and water Katharina Müller, Autumn 14 31 Additional Material: Ionisation yield Material Density g/cm3 Eion[eV] I[eV] W[eV] np [cm-1] nt [cm-1] H2 8.99 10-5 15.4 19.2 37 5.2 9.2 He N2 1.78 10-4 24.5 1.25 10-3 15.6 41.8 82 41 35 5.9 10 7.8 56 Ne Ar Xe C4H10 9.00 10-4 1.78 10-3 5.89 10-3 2.67 10-3 137 188 482 48.3 36 26 22 23 12 29 44 46 39 94 307 195 Ar-f Xe-f Si 1.4 3.06 2.33 15.4 12.1 3.6 188 482 172 29.6 15.6 98000 245000 1000000 21.6 15.7 12.1 10.8 ● W = E/nt mean energy per electron-ion pair ● np Primary ionisation: directly produced electron-ion pairs ~ 1.45 Z ● nT= nP +secondary ionisation: add. electron-ion pairs through primary electrons W: mean energy for production of electron-ion pair ● W higher than ionisation energy ● ● Semiconductors, W small, many electron-ion pairs, good resolution, small detectors Katharina Müller, Autumn 14 32 Additional material: dE/dX: Mixtures Since BB applies to pure elements, direct measurements are needed in compounds for accurate values. Good approximation: weighted sum of loss rates of constituents weighted according to fraction ai of electrons a i Ai 1 dE ∑ w i dE = w i= dx i d x i A e ff Z e ff =∑ a i Z i A e ff =∑ a i A i ai is the molar fraction of element i with atomic weight Ai, Aeff is the atomic weight of all constituents Tables for density and shell correction Katharina Müller, Autumn 14 33
© Copyright 2025 ExpyDoc