Corso gratuito MODULO 1 COMPUTER VISION Finanziamento della Provincia di Bologna PROGRAMMA 1. Introduzione – Definizioni di base inerenti l'elaborazione di immagini e la computer vision. Panoramica sui principali scenari applicativi. 2. Formazione ed Acquisizione dell'Immagine - Modello geometrico della formazione dell'immagine. Camera pinhole e proiezione prospettica. Ricostruzione 3D mediante visione stereo. Impiego di lenti. Campo visivo e profondità di campo. Coordinate proiettive e PPM (Perspective Projection Matrix). Calibrazione della telecamera: parametri intrinseci, estrinseci e distorsioni ottiche. Calibrazione mediante target planari e stima dell'omografia (algoritmo di Zhang). Rettificazione e calibrazione stereo. Concetti di base inerenti sensing, campionamento e quantizzazione dell'immagine. 3. Trasformazioni dell'Intensità - Istogramma. Incremento lineare e non-lineare del contrasto. Equalizzazione e matching dell'istogramma. 4. Filtraggio di immagini – Operatori lineari invarianti per traslazione e convoluzione. Trasformata di Fourier per segnali 2D. Media e filtro Gaussiano. Filtro di Sharpening. Filtro Mediano. Filtro Bilaterale. Non-local means.. 5. Segmentazione dell'Immagine – Binarizzazione mediante soglia globale. Determinazione automatica della soglia. Sogliatura adattativa. Region growing. Segmentazione basata sul colore. 6. Segmentazione mediante stima del movimento – Differenze fra frames successivi e confronto con il background. Inizializzazione ed aggiornamento del background, Robustezza alle variazioni di illuminazione. 7. Morfologia Binaria – Dilatazione ed erosione. Apertura e chiusura. Trasformata Hit-and-Miss. Thinning. T3LAB – Via Sario Bassanelli n° 9/11 - 40129 Bologna (BO) – Codice Fiscale e Partita IVA 02451831206 Tel: +39 051-58.70.187 Fax: +39 051-58.70.186 [email protected] www.t3lab.it 8. Analisi delle Componenti Connesse – Distanze sul piano immagine e connettività Labeling delle componenti connesse. Descrittori di base: area, perimetro, compattezza, circolarità, numero di Eulero. Orientamento e rettangolo che racchiude l'oggetto. Fattore di forma e relativi descrittori. Momenti dell'immagine e momenti invarianti. 9. Estrazione dei contorni - Gradiente dell'immagine. Derivate “smooth”: Prewitt, Sobel, FreiChen. Determinazione degli estremanti del gradient. Laplaciano della Gaussiana. Operatore di Canny. 10. Features locali invarianti – Il paradigma “detector/descriptor”. Harris Corners. SIFT e SURF. Riconoscimento di features locali mediante randomized trees. 11. Individuazione di oggetti – Pattern matching mediante SSD, SAD, NCC and ZNCC. Pattern matching veloce. Shape-based mathing. Trasformata di Hough per forme analitiche. Trasformata di Hough generalizzata. Individazione di oggetti mediante features locali invarianti: matching per mezzo di kd-trees, Hough-based voting, stima ai minimi quadrati della similarità. 12. Computer Vision 3D – Tecnologie: visione stereo, laser-scanning, TOF. Immagini RGB-D (e.g. sensore Kinect). Algoritmi di matching stereo: approcci locali, semi-globale e globali. Elementi di base inerenti l'elaborazione e l'analisi di nuvole di punti. DOCENTI Prof. Luigi di Stefano Luigi Di Stefano received the degree in electronic engineering from the University of Bologna, Italy, in 1989 and the PhD degree in electronic engineering and computer science from the Department of Electronics, Computer Science and Systems (DEIS) at the University of Bologna in 1994. In 1995, he was postdoctoral research fellow at Trinity College, Dublin. He is currently an associate professor at the Department of Computer Science and Engineering, University of Bologna, His research interests include computer vision, image processing and computer architecture. Prof. Di Stefano is the author of more than 150 papers and five patents. He is a member of the IEEE Computer Society and the IAPR-IC. From 2012 he is a member of the Scientific Advisory Board of Datalogic Group. T3LAB | Technology Transfer Team | www.t3lab.it pagina 2 di 4 Federico Tombari Federico Tombari holds an appointment as an Assistant Professor (“RTD”) at the University of Bologna, after obtaining from the same institution a Ph.D. in 2009. His current research activity concerns computer vision and robotic perception, and it encompasses co-authoring more than 60 papers on peer-reviewed international conferences and journals, mainly focused on 2D/3D object recognition, stereo vision, video analysis for surveillance and efficient indexing. In 2004 he has been visiting student at University of Technology, Sydney, while in 2008 he was an intern at Willow Garage, California. He is a Senior Scientist volunteer for the Open Perception foundation and a developer for the Point Cloud Library. In 2012 and 2013 he held a position as an Adjunct Professor at the University of Bologna. He is member of IEEE and IAPRGIRPR. He is the recipient of the “Best Paper Award Runner-up” of the International Conference on 3D Imaging, Modeling, Processing and Visualization Technologies (3DIMPVT 2011). Alioscia Petrelli Alioscia Petrelli received the degree in computer science engineering from the University of Bologna, Italy, in 2005. He spent four years as research fellow at the Computer Vision Laboratory of the Department of Electronics, Computer Science, and Systems in Bologna. Currently, he is a Ph.D. student with the Department of Computer Science and Engineering, University of Bologna. His research focuses on computer vision, including 3D surface matching and machine learning. He serves as a reviewer for the IEEE International Conference on Computer Vision and is a member of the IEEE Computer Society. Samuele Salti Samuele Salti received the M.Sc. degree in computer science engineering in 2007 and the Ph.D. degree in computer science engineering in 2011, both from the University of Bologna, Italy. Since 2011 he is a Post-Doc at Computer Vision Lab, DISI (Department of Computer Science and Engineering), University of Bologna. In 2007 he visited the Heinrich-Hertz-Institute in Berlin, Germany working on human computer interaction. In 2010 he visited the Multimedia and Vision Research Group (MMV) at Queen Mary, University of London, where we investigated adaptive appearance models for video tracking. His research interests are adaptive video tracking, 3D shape matching, Bayesian filtering and object recognition. Dr. Salti has co-authored 19 publications in international conferences and journals. He was awarded the best paper award runner-up at 3DIMPVT, the International Conference on 3D Imaging, Modeling, Processing, Visualization and T3LAB | Technology Transfer Team | www.t3lab.it pagina 3 di 4 Transmission in 2011. He serves as a reviewer for IEEE Transactions on Signal Processing, IEEE Transactions on Image Processing and a number of international conferences. He is a member of the IEEE and GIRPR. Tommaso Cavallari Tommaso Cavallari received a M.Sc degree in Computer Science Engineering from the University of Bologna, Italy, in spring 2013. He spent six months as a research fellow at the Computer Vision Lab, DISI (Department of Computer Science and Engineering), University of Bologna, working on the topics of computer vision and machine learning applied to industrial problems. He is currently enrolled as a Ph.D student, working for the Computer Vision Lab; his research is focused on computer vision. In 2012 he has been an intern at Willow Garage, California, working on the detection and tracking of moving objects to allow a reliable grasping action from a robot. T3LAB | Technology Transfer Team | www.t3lab.it pagina 4 di 4
© Copyright 2024 ExpyDoc