Coarse Graining via Polynomial Chaos Expansion: Circadian Rhythms in the Suprachiasmatic Nucleus Tom Bertalan 15 May, 2014 May 17, 2014 1 / 26 Outline Outline Heterogeneous network systems Kuramoto coupled oscillators Hodgkin-Huxley neurons Coarse dynamics Coarse variables Coarse projective integration Polynomial chaos expansion (PCE) Multidimensional PCE basis functions Circadian rhythms Biology Gene expression model Intercellular signaling Signals Topology Results bibliography May 17, 2014 2 / 26 Heterogeneous network systems May 17, 2014 3 / 26 Heterogeneous network systems May 17, 2014 4 / 26 Heterogeneous network systems May 17, 2014 5 / 26 Heterogeneous network systems Kuramoto coupled oscillators Kuramoto coupled oscillators N X ˙θi = ωi + K Ai,j sin(θj − θi ) N j=1 ω ∼ N (µ, σ) May 17, 2014 6 / 26 Heterogeneous network systems Kuramoto coupled oscillators (video: slowmoving.mp4) May 17, 2014 7 / 26 Heterogeneous network systems i C dV dt dmi dt dhi dt dni dt dsi dt Hodgkin-Huxley neurons = I − gNa mi3 hi (Vi − VNa ) − gK ni4 (Vi − VK ) − gl (Vi − Vl ) + Isyn,i i = m∞τm(V(Vi )−m i) = = = h∞ (Vi )−hi τh (Vi ) n∞ (Vi )−ni τn (Vi ) 1−si − sτi 1+e −Vi /5 f∞ (Vi ) = ax (Vi )/(ax (Vi ) + bx (Vi )) τx (Vi ) = 1/(ax (Vi ) + bx (Vi )) P Isyn,i = − Ng N j6=i Ai,j sj (t)[Vi (t) − Vsyn ]. ax and bx are various exponential and sigmoidal functions of V .1 1 Sung Joon Moon et al. “Coarse-grained clustering dynamics of synaptically coupled heterogeneous neurons”. Submitted (2014). May 17, 2014 8 / 26 Coarse dynamics Coarse projective integration May 17, 2014 9 / 26 Coarse dynamics Polynomial chaos expansion (PCE) For the response variable y and explantory variable x ∼ ρ(x), we seek the expansion M X yi ≈ yˆi = αj φj (xi ), j=1 where the orthonorality of the basis is shown by δj,k = hφj (x), φk (x)iρ , hφj (x), φj (x)iρ and the inner product is defined as Z hφj (x), φk (x)iρ = φj (x)φk (x)ρ(x)dx. x∈Ω The density ρ is the PDF according to which the {xi } sample is drawn from the space Ω. For continuous functions, the coeffecients can be found by an inner product αj = hy (x), φj (x)iρ . May 17, 2014 10 / 26 Distribution Gamma Beta Poisson Gaussian Uniform Negative binomial Binomial Hypergeometric Polynomials2 Laguerre Jacobi Charlier Hermite→ Legendre Meixner Krawtchouk Hahn Polynomial chaos expansion (PCE) 4 2 φi (x) Coarse dynamics 0 1 2 4 2.0 1.5 1.0 x x2 −1 x3 −3x x4 −6x2 +3 0.5 0.0 x 0.5 1.0 1.5 2.0 The first few probabalists’ Hermite polynomials, orthogonal with respect to 2 ρ(x) = e −x /2 . 2 Dongbin Xiu and George Em Karniadakis. “The Wiener–Askey polynomial chaos for stochastic differential equations”. SIAM Journal on Scientific Computing 02912.2 (2002). May 17, 2014 11 / 26 Coarse dynamics Polynomial chaos expansion (PCE) For two uncorrelated heterogeneities with weightings ρa (xa ) and ρb (xb ), We can create a 2D basis as the Cartesian product of the 1D bases Φl=j,k = φj (xa )φk (xb ). Since the heterogeneities are independent, R(xa , xb ) = ρa (xa )ρb (xb ), so the orthogonality integral can be separated, and we can use the former scheme for developing bases. RR δlm ∼ hΦl , Φm iR = RR Φl (xa , xb )Φm (xa , xb )dxa dxb = R φla (xa )φlb (xb ) · φma (xRa )φmb (xb )dxa dxb = φla (xa )φma (xa )dxa φlb (xb )φmb (xb )dxb May 17, 2014 12 / 26 Coarse dynamics Polynomial chaos expansion (PCE) PCE on Kuramoto N X ˙θi = ωi + K Ai,j sin(θj − θi ) N j=1 ω ∼ N (µ, σ) Ai,j = 1 May 17, 2014 13 / 26 Coarse dynamics Polynomial chaos expansion (PCE) PCE on Kuramoto with heterogeneous network N KX Ai,j sin(θj − θi ) θ˙i = ωi + N j=1 Ai,j created by a random process, such that degree di = in distribution. P j Ai,j converges May 17, 2014 14 / 26 Coarse dynamics Polynomial chaos expansion (PCE) PCE on Hodgkin-Huxley PCE for state h in a simulation of 128 spiking Hodgkin-Huxley neurons, heterogeneous in membrane capacitance C and potassium reversal potential VK . May 17, 2014 15 / 26 Coarse dynamics Polynomial chaos expansion (PCE) (video: tiled.mp4) May 17, 2014 16 / 26 Circadian rhythms I I Biology Bialateral suprachiasmatic nucleus (SCN) of the mammal hypothalamus (Karatsoreos et al. 2004). Core gene expression model3 has 16 ODEs. 3 Jean-christophe Leloup and Albert Goldbeter. “Toward a detailed computational model for the mammalian circadian clock”. Proceedings of the National Academy of Sciences of the United States of America 100.12 (2003). May 17, 2014 17 / 26 Circadian rhythms Gene expression model mRNA ODEs (PER, CRY, and BMAL1) Key: (variables), (parameters). d(MP) dt = −(kdmp)(MP) − (vmP)(MP) (KmP)+(MP) + d(MC ) dt = −(kdmc)(MC ) − (vmC )(MC ) (KmC )+(MC ) + d(MB) dt = (KIB)(m) (vsB) (KIB)(m) +(BN)(m) (np) ((L)+1) (vsP)(BN) (KAP) (np) (np) +(BN) (nc) (vsC )(BN) (nc) (KAC ) − (kdmb)(MB) − +(BN) (nc) (vmB)(MB) (KmB)+(MB) May 17, 2014 18 / 26 Circadian rhythms Gene expression model Per and Cry protein ODEs includes phosphorylated, nuclear, and complexed variants (V 1P)(PC ) (V 2P)(PCP) (V 1C )(CC ) (V 2C )(CCP) d(PC ) dt = − (Kp +(PC ) + (Kdp +(PCP) − (k3)(CC )(PC ) + (k4)(PCC ) − (kdnp) (PC ) + (ksP)(MP) p) p) d(CC ) dt = − (Kp +(CC ) + (Kdp +(CCP) − (k3)(CC )(PC ) + (k4)(PCC ) − (kdnc)(CC ) + (ksC )(MC ) c) c) d(PCP) dt = (V 1P)(PC ) (Kpp) +(PC ) − (Kdp +(PCP) − (kdnpp) (PCP) − (Kd +(PCP) p) p) d(CCP) dt = (V 1C )(CC ) (Kpc) +(CC ) − (Kdp +(CCP) − (kdncp) (CCP) − (Kd +(CCP) c) c) d(PCC ) dt = − (Kp (V 2P)(PCP) (vdPC )(PCP) (V 2C )(CCP) (vdCC )(CCP) (V 1PC )(PCC ) pcc) +(PCC ) (V 2PC )(PCCP) + (Kdp − (k1)(PCC ) + (k2)(PCN) + (k3)(CC )(PC ) pcc) +(PCCP) −(k4)(PCC ) − (kdnpcc) (PCC ) d(PCN) dt = (V 3PC )(PCN) pcn) +(PCN) − (Kp (V 4PC )(PCNP) + (Kdp + (k1)(PCC ) − (k2)(PCN) − (k7)(BN)(PCN) pcn) +(PCNP) +(k8)(IN) − (kdnpcn) (PCN) d(PCCP) dt = (V 1PC )(PCC ) (Kppcc) +(PCC ) − (Kdp − (kdnpccp) (PCCP) − (Kd pcc) +(PCCP) pcc) +(PCCP) (V 2PC )(PCCP) (vdPCC )(PCCP) d(PCNP) dt = (V 3PC )(PCN) (Kppcn) +(PCN) − (Kdp − (kdnpcnp) (PCNP) − (Kd pcn) +(PCNP) pcn) +(PCNP) (V 4PC )(PCNP) (vdPCN)(PCNP) May 17, 2014 19 / 26 Circadian rhythms Gene expression model Bmal1 protein and inactive complex ODEs includes phosphorylated, nuclear, and complexed variants (V 1B)(BC ) bc) +(BC ) d(BC ) dt = d(BCP) dt = (V 1B)(BC ) (Kpbc) +(BC ) d(BN) dt = − (Kp − (Kp (V 2B)(BCP) + (Kdp +(BCP) − (k5)(BC ) + (k6)(BN) − (kdnBc) (BC ) bc) +(ksB)(MB) (V 2B)(BCP) (vdBC )(BCP) − (Kdp +(BCP) − (kdnbcp) (BCP) − (Kd +(BCP) bc) bc) (V 3B)(BN) bn) +(BN) (V 4B)(BNP) + (Kdp +(BNP) + (k5)(BC ) − (k6)(BN) − (k7)(BN)(PCN) bn) +(k8)(IN) − (kdnbn) (BN) (V 4B)(BNP) (vdBN)(BNP) d(BNP) dt = (V 3B)(BN) (Kpbn) +(BN) d(IN) dt = (k7)(BN)(PCN) − (k8)(IN) − (kdnin) (IN) − (Kd +(IN) in) − (Kdp +(BNP) − (kdnbnp) (BNP) − (Kd +(BNP) bn) bn) (vdIN)(IN) May 17, 2014 20 / 26 Circadian rhythms Intercellular signaling To et al. 20074 add one more differential equation for phosphorylated cAMP response element binding (CREB) protein, (CB ∗ ), allowing for intercellular vasoactive intestinal peptide (VIP) signalling. For N cells, the number of equations rises from 16 to N · 17. Key: (variables), (parameters), (algebraic equations). d(MP) dt d(CB ∗ ) dt (np) (L+1) (vmP)(MP) + (vsP)(BN) = −(kdmp)(MP) − (KmP)+(MP) (np) (n (KAP) +(BN)i p) h ∗ ∗ (vP) (vK ) 1−(CB ) (CB ) = (CBT ) (vP) (K 1)+(1−(CB ∗ )) − (K 2)+(CB ∗ ) ∗ )(CB ) (vsp) = (vsp0) + (CT ) (KC(CBT )+(CBT )(CB ∗ ) (CaC ) (vK ) = (VMK ) (Ka)+(CaC ) (CaC ) = ((v 0) + (v 1)(β) + (v 2)(L))/(k) (β) = (γ)/((KD) + (γ) (γi ) = (ρi ) = PN j=1 (αi,j )(ρj ) PN PN i=1 j=1 (αi,j )/N (MPi ) (a) (MPi )+(b) 4 Tsz-Leung To et al. “A molecular model for intercellular synchronization in the mammalian circadian clock.” Biophysical Journal 92.11 (June 2007), pp. 3792–3803. May 17, 2014 21 / 26 Circadian rhythms Intercellular signaling Cells are embedded in 2D physical space and connected in an undirected graph with pairwise weights (αi,j ) inversely proportional to their distances. In future work, distinct signaling topologies will be used for the anatomically separate core and shell regions of the SCN. Figure from To et al. 20075 . 5 Tsz-Leung To et al. “A molecular model for intercellular synchronization in the mammalian circadian clock.” Biophysical Journal 92.11 (June 2007), pp. 3792–3803. May 17, 2014 22 / 26 Circadian rhythms netIntegrate1400125128 7 L 0.10 5 t =128.0 [hr] 2.5 0.08 0.06 3 0.04 2 MP MC 0.02 MB 1 20 40 60 80 time [hr] 100 120 0.00 140 (a) The three mRNA trajectories. 2.0 MP [nM] 4 0 0 0.12 light level L mRNA concentration [nM] 6 Results O(2) Hermite fit data 1.5 1.0 0.5 0.0 1.50 1.55 1.60 vsP0 [nM h−1 ] 1.65 1.70 1.75 (b) A fit with O(3) Legendre polynomials. Square-wave light forcing with uniformly-distributed vsP0 (basal rate of PER transcription). May 17, 2014 23 / 26 Circadian rhythms Results (video: images/netIntegrate1400125128.mp4) May 17, 2014 24 / 26 Conclusion Heterogeneous network systems Kuramoto coupled oscillators Hodgkin-Huxley neurons Coarse dynamics Coarse variables Coarse projective integration Polynomial chaos expansion (PCE) Multidimensional PCE basis functions Circadian rhythms Biology Gene expression model Intercellular signaling Signals Topology Results bibliography May 17, 2014 25 / 26 bibliography Ilia N Karatsoreos et al. “Phenotype matters: identification of light-responsive cells in the mouse suprachiasmatic nucleus.” Journal of Neuroscience 24.1 (Jan. 2004), pp. 68–75. arXiv: 48. Jean-christophe Leloup and Albert Goldbeter. “Toward a detailed computational model for the mammalian circadian clock”. Proceedings of the National Academy of Sciences of the United States o 100.12 (2003). Sung Joon Moon et al. “Coarse-grained clustering dynamics of synaptically coupled heterogeneous neurons”. Submitted (2014). Tsz-Leung To et al. “A molecular model for intercellular synchronization in the mammalian circadian clock.” Biophysical Journal 92.11 (June 2007), pp. 3792–3803. Dongbin Xiu and George Em Karniadakis. “The Wiener–Askey polynomial chaos for stochastic differential equations”. SIAM Journal on Scientific Computing 02912.2 (2002). May 17, 2014 26 / 26
© Copyright 2024 ExpyDoc