RAPS Branched Co

Characterisation of Branched Co-Polymers by Triple and Tetra-Detection GPC/SEC
Sue Lewis
Viscotek Europe, Crowthorne, UK. [email protected]
Samples provided by Dr Robert Hunter of Unilever Research and Strathclyde University
Introduction
Experimental
Polymers which are complex both in structure and composition present
many difficulties for conventional GPC/SEC techniques. Triple detection
GPC/SEC, using refractive index, light scattering and viscometer
detectors overcomes these difficulties and shows the structural
differences between samples by measuring molecular weight, intrinsic
viscosity and molecular size across the distribution. By adding a UV
detector signal (tetra detection) the compositional differences between
samples can be identified and compensated for.
4 samples of co-polymer were analysed: 1 linear and 3 branched (Low,
Mid and High). The samples were run on a Viscotek Tetra-Detector
GPC system with OmniSEC software. Data on molecular weight,
intrinsic viscosity and molecular size were obtained directly.
Using the OmniSEC software branching view, the amount of branching
was determined in the 3 samples relative to the linear reference.
The UV detector was used together with the RI detector to show the
chemical compositional differences in the branched samples.
Chromatograms
Linear co-polymer
Branched co-polymer
Data File: 2005-12-06_02;08;20_7-Low_Branching_02.vdt Method: UL1-LMW-0001.vcm
Data File: 2005-12-06_01;06;15_6-Linear_02.vdt Method: UL1-LMW-0001.vcm
-50.00
-40.00
Red = Refractive Index (RI)
-58.00
-67.00
Green = Light Scattering (LS)
-76.00
-85.00
Instrument:
-94.00
-66.00
Refractive Index Response (mV)
Blue = Viscometer (V)
-58.00
-74.00
-82.00
-90.00
-98.00
-106.00
-103.00
Viscotek TDA-GPCmax system
-114.00
-112.00
2 x Viscogel Columns
-121.00
-122.00
-130.00
-130.00
5.00
7.50
10.00
12.50
15.00
17.50
20.00
22.50
25.00
27.50
THF @ 1ml/min
30.00
5.00
7.50
10.00
12.50
15.00
17.50
20.00
22.50
25.00
27.50
30.00
Retention Volume (m L)
Retention Volume (mL)
Results
Calculated Data
Mw
14,488
87,918
84,264
79,075
Mn
4,838
5,158
4,168
6,159
IV
0.0927
0.1080
0.0953
0.0946
Mark Houwink Overlays
The Mark Houwink plot below shows clearly the
progression of branching from Linear to Low to
Mid/High.
dn/dc
0.083
0.083
0.092
0.093
Branching view - Low Branching Sample
The Mark Houwink plot for the linear
sample was extrapolated and used to
measure branching in the other
samples.
Overlay Plot: Log Intrinsic Viscosity Vs. Log Molecular Weight
Method: UL1-Branching-Auto-0003.vcm
0.00 2005-12-06_00;35;13_6-Linear_01.vdt : UL1-Branching-Auto-0003.vcm
2005-12-06_01;37;17_7-Low_Branching_01.vdt : UL1-Branching-Auto-0003.vcm
-0.10 2005-12-06_02;39;21_8-Mid_Branching_01.vdt : UL1-Branching-Auto-0003.vcm
2005-12-06_03;41;23_9-High_Branching_01.vdt : UL1-Branching-Auto-0003.vcm
.
2 0 0 5 -1 2 -0 6 _ 0 0 ;3 5 ;1 3 _ 6 -L in e a r_ 0 1 .v d t / M e th o d : U L 1 -B ra n ch in g -A u to - 0 0 0 3 .vc m
Sample ID
Linear
Low Branching
Mid Branching
High Branching
2005-12-06_01;37;17_7-Low_Branching_01.vdt - Branching Data View
-0.20
0.500
0.400
-0.30
Lambda
0
2.68
3.82
4.99
0.200
-0.40
-0.50
0.000
-0.60
-0.70
-0.80
-0.400
-0.600
-0.90
-0.800
-1.00
Lambda is branching frequency, in this case
expressed as branches per 1000 MMA units or
98,000 Da. The Mid and High samples are very
similar in branching level but due to the sensitivity
of the technique they are still clearly differentiated.
-1.10
-1.000
-1.20
-1.200
-1.30
-1.400
-1.500
-1.40
3.0
3.2
3.4
3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4
5.6
5.8
6.0
6.2
6.4
6.6
6.8
2.000
7.0
2.400
2.700
3.000
3.300
3.600
3.900
4.200
4.500
4.800
5.100
5.400
5.700
6.000
6.300
6.600
7.000
Log Molecular Weight
Log Molecular Weight
368.20
2005-12-06_01;37;17_7-Low_Branching_01.vdt : UL1-Branching-Auto-0003.vcm
2005-12-06_02;39;21_8-Mid_Branching_01.vdt : UL1-Branching-Auto-0003.vcm
2005-12-06_03;41;23_9-High_Branching_01.vdt : UL1-Branching-Auto-0003.vcm
341.90
315.60
0.80
g`
0.70
Bn
289.30
263.00
236.70
0.60
210.40
184.10
0.50
157.80
0.40
131.50
105.20
0.30
78.90
0.20
52.60
26.30
0.10
-20.00
0.00
3.5 3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4
5.6
5.8
6.0
6.2
6.4 6.5
3.0
3.2
3.4
3.6
3.8
1.500
1.000
6.0
0.500
0.0
0.000
10.00
13.6 15.3 17.0
Retention Volume (mL)
20.00
R e fra ctive In d ex R esp on se (m V )
2.000
RI / UV Ratio
7-Low_Branching_01.vdt Method: UL
12.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4
5.6
5.8
6.0
Log Molecular Weight
Log Molecular Weight
22.0
18.0
4.0
8-Mid_Branching_01.vdt Method: UL
2.000
1.500
12.0
1.000
6.0
0.500
0.0
0.000
13.6 15.3 17.0
6.4 6.5
7.5 0
2005-12 -06_01;37;1 7_7-Low_Branching_01 .vdt : UL1-Branching-Au to-0003.vcm
2005-12 -06_02;39;2 1_8-Mid_Branching_01 .vdt : UL1-Branching-Auto-0003.vcm
2005-12 -06_03;41;2 3_9-High_Branching_0 1.vdt : UL1-Branching-Au to-0003.vcm
7.0 0
6.5 0
Lambda
6.0 0
5.5 0
5.0 0
4.5 0
4.0 0
3.5 0
3.0 0
2.5 0
2.0 0
1.5 0
1.0 0
0.3 2
3.5 3.6
3.8
4.0
4.2
4.4
4.6
4.8
5.0
5.2
5.4
5.6
5.8
6.0
Log Molecul ar Weight
22.0
18.0
10.00
6.2
8.0 0
20.00
Retention Volume (mL)
9-High_Branching_01.vdt Method: UL
22.0
18.0
2.000
12.0
1.000
6.0
0.500
1.500
0.0
0.000
10.00
13.6 15.3 17.0
20.00
Retention Volume (mL)
CONCLUSIONS
• Triple detection GPC/SEC measures molecular weight, intrinsic viscosity, hydrodynamic radius and branching
• The UV detector enables correction of differences in chemical composition for true molecular weight .
• Tetra detection GPC/SEC enables complete characterisation of branched co-polymers
R I / U V R a tio
400.00
2005-12-06_01;37;17_7-Low_Branching_01.vdt : UL1-Branching-Auto-0003.vcm
2005-12-06_02;39;21_8-Mid_Branching_01.vdt : UL1-Branching-Auto-0003.vcm
2005-12-06_03;41;23_9-High_Branching_01.vdt : UL1-Branching-Auto-0003.vcm
2005-12-06_0 1;37;17_7-Low_Branching_01 .vdt / Method: UL1-Branching -Auto-0003.vcm
0.90
Overlay Plot: Lambda Vs . Log Molecu lar Weight
Method: UL1-Branchi ng-Auto-000 3.vcm
Overlay Plot: Branching Vs. Log Molecular Weight
Method: UL1-Branching-Auto-0003.vcm
Overlay Plot: g' Vs. Log Molecular Weight
Method: UL1-Branching-Auto-0003.vcm
1.00
R e fra ctive In d e x R e sp o n se (m V)
2005-12-06_01;37;17_7-Low_Branching_01.vdt / Method: UL1-Branching-Auto-0003.vcm
The values of g’, branching number (Bn) and
Lambda can be plotted against molecular weight
to illustrate differences in branching within the set
of samples as shown in the plots to the right. The
branching frequency plot is particularly revealing as
it shows how the branching is distributed across
the molecular weight distribution.
Using the integrated UV detector in the tetradetector instrument, the RI/UV ratio across each
sample chromatogram was plotted (right). These
show clearly that the chemical compositions of the
3 co-polymers samples are not the same. Using
either measured or supplied values of the refractive
index increment and UV absorption coefficients,
the OmniSEC co-polymer method can be used to
correct the concentration data. This results in even
more accurate molecular weight and branching
information.
-0.200
R I / U V R a tio
Bn
0
17.8
26.2
29.2
L o g In trin s ic V is c o s ity
Rh
2.60
4.47
4.07
4.12
2005-12-06_01;37;17_7-Low_Branching_01.vdt / Method: UL1-Branching-Auto-0003.vcm
Sample ID
Linear
Low Branching
Mid Branching
High Branching
R efractive Index R esponse (mV)
Refractive Index Response (mV)
-49.00
6.2
6.4 6.5