UNIVERSITY OF JOHANNESBURG - APM 1B SEMESTER TEST 1 solutions 21 August 2014 All physical quantities are in SI units. Angles are in radians QUESTION 1 [13] r (t) = t3 ; sin t v (t) = 3t2 ; cos t a (t) = ( 6t; sin t) (a) r (1) = ( 1; 0:8415) v (1) = ( 3; 0:5403) a (1) = ( 6; 0:8415) (b) r (1) = 1:3069 v (1) = 3:0483 a (1) = 6:0587 (c) rb = (d) r (1) = ( 0:7652; 0:6439) r (1) b = ( 0:6439; 0:7652) r_ = v (1) rb = 2:6433 2 r• = a (1) rb + r _ = 5:8126 (e) b _ = v (1) = 1:1616 r b 2r_ _ • = a (1) = 1:2503 r rb = (cos ; sin ) ) rb x b = cos ) = arccos (( 0:7652; 0:6439) (1; 0)) = arccos ( 0:7652) = 2:4421 rad (= 139:92 deg) QUESTION 2 [12] cos t; 6t; et + 2 Z v (t) = a (t) dt = sin t; 3t2 ; et + 2t + A Z r (t) = v (t) dt = cos t; t3 ; et + t2 + At + B; a (t) = where A and B are vectors of constants. r (0) = ( 1; 0; 1) + B = (0; 0; 0) ) B = (1; 0; 1) and r (1) = ( cos 1; 1; e + 1) + A + (1; 0; 1) = (3; 2; 1) ) A = (2 + cos 1; 1; 1 e) = (2:540; 1; 1:718) : Hence, v (0) = (0; 0; 1) + (2:540; 1; 1:718) = (2:540; 1; 0:718) : ____________________________________________ Information provided: dr = r_ dt dv a = = v_ dt v = v = rb _r + r _ b rb = (cos ; sin ) a = r• r_ v = jvj 2 rb + r• + 2r_ _ b b = ( sin ; cos ) r= Z vdt + C
© Copyright 2024 ExpyDoc