14 13. ROTATING SADDLE 14 Task A ball is placed in the middle of a rotating saddle. Investigate it's dynamics and explain the conditions under which the ball does not fall off the saddle. How can the rotation help the stability? • Static saddle: just rolls off • Rotating saddle: rolls around the saddle effect of slopes cancels 14 14 (laboratory ref. frame) 1. Goes around with the saddle Centripetal force needed unstable 2. Remains stationary (Rolls back quickly enough) stable 14 1. Sufficient saddle rotation – Cancels the effect of slopes 2. Rolling backwards – Avoids centrifugal force How can these be achieved? 14 Existing theory • Thompson: The rotating-saddle trap: a mechanical analogy to RF-electricquadrupoleion trapping? Canadian journal of Physics, Vol. 80, 2002 • Koch: Konzeption und Aufbau einer mobilen Experimentiereinheit fur Schuleräprsentationen zum Thema Teilchenfallen Universität Stuttgard, 2004 • Point mass in gravitational potential – Constrained to saddle’s surface mgh0 2 U x' , y' = 2 x' y' 2 r0 F = U • Mathematical trick: – coordinates in complex plane z x iy z k (x2 y2 ) 14 b POSITION z τ = ( Ae Solution +β+ t + Be β+ t + Ce +β-t + De β-t Ω: angular velocity (saddle rotation) The only requirement for stability: f > f c Condition of stability (z does not diverge): A,B,C,D: determined by initial conditions β± = ± 2 gh0 1 2 2 r0 gh0 0 .5 2 2 r0 f ≥ 2gh 0 2πr0 f CRITICAL )e i 14 EXPERIMENTAL VERIFICATION 14 Apparatus: Saddles h0 = 6,5cm r0 = 8cm h0 = 1,5cm r0 = 8cm • fc = 1,08 Hz material = plastic • fc = 2,25 Hz material = nylons 14 Radius range: 1,88 cm – 5,0 cm Mass range: 2,46 g 26,56 g hollow Radius range: 0,63 cm – 3,26 cm Mass range: 8,39 g 35,79 g solid Apparatus: Balls 14 14 14 Stability vs. Frequency YELLOW saddle big ping pong ball WHY? 20 4,5 fc 18 16 3,5 Lifetime (s) Lifetime (s) fc 4 14 12 10 8 6 3 2,5 2 1,5 drag forces 1 4 0,5 2 0 BLUE saddle big ping pong ball 0 0,4 0,6 0,8 1 1,2 1,4 frequency (Hz) f fC 1,6 1,8 2 0,7 0,9 1,1 1,3 1,5 1,7 1,9 2,1 frequency (Hz) Significant increase in lifetime but clearly not infinite 2,3 2,5 2,7 14 Second condition: Must roll back fast enough Friction/rolling resistance: Drags the ball to rotate with the saddle Ball becomes unstable 14 Literature: Effect of friction • Thompson: FFriction kv – Analytical solution; always diverges • Koch: FFriction v k v – Numerical solution; no record of stability Stability Maximal lifetime 14 Parametres affecting the lifetime 1. Drag forces & Friction 2. Frequency 3. Ball 4. Initial position ? 14 1. DRAG FORCES & FRICTION 14 Effect of friction Thompson: 1 r0 TL = ln σ Ω R TL = trapping lifetime σ ~ friction coefficient R = initial distance from the center r0= trap's radius Higher friction lower lifetime 14 1. Lifetime vs. Friction: Experiment DRY NYLON SADDLE NYLON SADDLE SOAKED WITH WATER μ=0,25 > μ=0,09 PREDICTION CONFIRMED MAXIMUM LIFETIME: MAXIMUM LIFETIME: 2,25s < 6,33s 14 Not so simple Koch’s article: Teflonspray (lower friction) Lifetime Clean saddle (higher friction) 10,1s HIGHER FRICTION HIGHER LIFETIME ? 54,7s 14 What if the ball does NOT slip? EXPECTATION: FRICTION HighSUFFICIENT friction Slipping Short lifetime Avoids slipping 14 Sufficient friction: no slipping Similar to zero friction (no slip) Dragging effect: only rolling resistance (much lower than dynamic friction) Relatively stable: • Zero friction • Sufficient friction Measurement: Slipping vs. Rolling 14 SUFFICIENT FRICTION = AVERAGE LIFETIME: AVERAGE LIFETIME: HIGHER LIFETIME Slipping (dynamic friction) Rolling (static friction) (30 measurements) (30 measurements) 2,7 s 0,4 s 8,8 s 2,6 s 14 Parameters affecting lifetime 1. Friction – dynamic: the lower, the longer lifetime – static: fulfills condition ? 2. Frequency 3. Moment of inertia 4. Initial position 14 2. FREQUENCY 14 JUMPING 14 1. Ball free to move upwards • Very fast rotation: • Height changes harmonically height UP UP DOWN DOWN Harmonic frequency = 2Ω time 14 Condition of jumping h kr cos(2t ) • Saddle shape in polar coordinates 2 • Vertical acceleration: a 2 kr 2 cos(2t ) 2 ag ag Constrained to surface Jumps Critical frequency for jumping: r h f f jump 1 4r g k 14 Estimation vs. reality TOO HIGH FREQUENCY • We measured the distance in which jump occurred and estimated the frequency 1 g f NO MORE CONSTRAINED TO 0,14 Hz f 3,43Hz 4r k • Measured frequency: f LOWER 3,69 Hz LIFETIME 14 Parameters affecting lifetime 1. Friction 2. Frequency – Lower limit: rise of lifetime – Upper limit: jumping ? 3. Moment of inertia 4. Initial position 14 3. MOMENT OF INERTIA 14 Hollow VS. Solid Ball Greater moment of inertia More energy needed for rolling M J Lower speed Longer lifetime 2 2 J = mR 3 Should have longer lifetime than 2 2 J = mR 5 14 EXPERIMENT Greater moment of 2 2 J = mR J = mR 3 inertia 5 = AVERAGE LIFETIME: AVERAGE LIFETIME: longer lifetime 2 2 (30 measurements) (30 measurements) 8,96 s ± 1,74 s 2,11 s ± 0,34 s 14 Parameters affecting lifetime 1. Friction 2. Frequency 3. Moment of inertia – Higher moment of inertia = longer lifetime ? 4. Initial position 14 4. INITIAL POSITION 14 INITIAL POSITION Lifetime VS Initial distance 2,5 Lifetime [s] 2 1,5 1 0,5 saddle 0 0,10 0,30 0,50 R [cm] 0,70 The further from the center we place the ball, the sooner it falls off 14 Conclusions • Conditions under which the ball should be stable 20 18 16 Lifetime (s) – Sufficient saddle rotation 14 Theory: Critical frequency fc Experiment never stable (rise od lifetime) – Avoiding centripetal force Theory: No or low drag force Our contribution: by backward rotation 12 10 8 6 4 2 0 0,4 0,6 0,8 1 1,2 1,4 1,6 1,8 frequency (Hz) 2 14 Conclusions • Examined – Friction: Theory: solution only for specific case Our contribution: sufficient friction = more stable – Jumping (not mentioned in theory) upper limit for frequency exists + estimation – Rotation of the ball (not mentioned) Dependence on the moment of inertia 14 Thank you for your attention Ball's trajectory (Yellow saddle) small ping pong ball 10 8 6 Y (cm) 4 2 0 -15 -13 -11 -9 -7 -5 -3 -1 1 -2 -4 -6 X (cm) 3 5 14 APPENDICES 14 Prediction: Stability vs. Frequency f f critical f f critical 14 Similar to predicted behaviour f fC Ball's trajectory (Yellow saddle) small ping pong ball 10 But always limited lifetime 8 6 Y (cm) 4 2 0 -15 -13 -11 -9 -7 -5 -3 -1 1 -2 f fC -4 -6 X (cm) 3 5 14 Apparatus: Rotation • Rotation: driller – Frequency range: 0.6Hz 3.7Hz 14 Small ping pong ball YELLOW saddle BLUE saddle small ping pong ball small ping pong ball 12 2,5 10 8 Trapping lifetime (s) Trapping Lifetime (s) 2 6 4 1 0,5 2 0 0 0,4 1,5 0,6 0,8 1 1,2 frequency (Hz) 1,4 1,6 1,8 2 1 1,5 2 2,5 frequency (Hz) 3 3,5 4 14 INITIAL POSITION Lifetime VS Initial distance 2,5 Lifetime [s] 2 1,5 1 saddle 0,5 0 0,10 0,30 0,50 R [cm] 0,70 14 Hollow balls' parameters white ball: r=2,9cm m=46,79g big red-yellow ball: r=5,0cm m=26,56g ping-pong ball: d= 3,94 cm m= 2,46 g α (friction coef.) = 0,19 small ping pong ball: d= 3,76 cm m= 3,16 g big orange ball: r= 3,26 cm m= 6,93g α (friction coef.) = 0,25 14 Hollow balls' parameters Big green ball: r= 3,26 cm m= 13,30g α (friction coef.) = sufficient small green ball: r= 1,77 cm m= 17,72g Small metal ball: r=0,63cm m=8,39g Big metal ball: r= 1,01 cm m= 35,79g 14 Sufficient friction (no slipping) No friction • 2. ma mg N I Sufficient friction ma mg N I F J RF n nv R 14 Saddle • Convex in one direction; concave in the other • Various saddle types: z k(x y ) 2 2 • Convenient for mathematical description 14 POINT MASS vs BALL DEEPER SADDLE M = Fr= J ϵ TRAP'S CENTER THE BIGGER COMPONENT OF FG CAUSES THE TORQUE THE LESS IT RESEMBLES POINT MASS 14 'DEEP' vs 'SHALLOW' saddle MAXIMUM LIFETIME: 4,07 s MAXIMUM LIFETIME: 23,91 s THE SMALLER THE SADDLE'S HEIGHT IS, THE MORE STABLE THE BALL IS 14 FRICTION 14 Friction –blue saddle f F friction FN 14 Friction –blue saddle+ WATER 14 TRAPPING LIFETIME THOMPSON'S ARTICLE 14 THEORY 14 Theory Gravitational potential: - assigned to the rotating frame (fixed to U) mgh0 2 U x' , y' = 2 x' y' 2 r0 - converted to the laboratory frame: mgh0 2 2 U ( x , y)= [( x − y )cos(2Ω t )+2xy sin (2Ω t )] 2 r0 14 using the following formula yields F=− ∇ U 2 ∂ x 2mgh 0 [− x cos(2Ω t )− y sin (2 Ω t )] 2 = 2 ∂t r0 ∂ 2 y 2mgh 0 = 2 [ y cos(2Ω t )− x sin (2Ω t )] 2 ∂t r0 using dimensionless parameters converting to the complex plane τ = Ω t and q= gh0 r 20 Ω 2 ( z= x+iy) , the 2 equations are reduced into: ∂2 z i2 τ +2q∗ e =0 2 ∂τ 14 Applying another substitution yields the solution: +β+ τ f (τ )= Ae − β+ τ +Be +β- τ +Ce z (τ )= f (τ )ei τ − β- τ +De where A,B,C,D are real parameters depending on initial conditions and β ±= √± 2∣q∣− 1 β± ∈ R - {0} => result will diverge in any case => particle is trapped only if β± ∈ I, thus 2∣q∣≤ 1 => q ≤ 0,5 q= gh0 2 Ω r 2 0 ≤ 0,5 14 • The condition for stability is: • 2gh 0 √ Ω≥ r0 regardless of initial position of the ball q≤0,5 2gh 0 √ f≥ 2 πr 0 q>0,5 14 Limited trapping lifetime 1) unstable trapping parameters (q>0,5) r0 1 T L= ln ( ) β+ Ω R 2) friction (q r0 1 T L= ln ( ) √2q− 1 R r0 1 T L= ln ( ) βΩ R β ~ friction coefficient 14 14 BALL'S PATH – short trapping lifetimes video 14 BALL'S MOTION – longer trapping lifetimes OUR DIAGRAM THEORETICAL DIAGRAM Ball's trajectory (Yellow saddle) small ping pong ball 10 8 6 Y (cm) 4 2 0 -15 -13 -11 -9 -7 -5 -3 -1 1 3 -2 -4 -6 X (cm) KOCH'S ARTICLE video 11:35 5 Ball's trajectory (Yellow saddle) STABLE TRAPPING PARAMETERS 14 small ping pong ball 10 8 6 4 Y (cm) • 2 0 -15 -13 -11 -9 -7 -5 -3 -1 1 -2 -4 -6 X (cm) stable unstable 3 5 14 BALL'S MOTION – longer trapping lifetimes Ball's trajectory (Yellow saddle) Ball's Trajectory (BLUE saddle) small ping pong ball big ping pong ball 10 1 8 0,8 0,6 6 0,4 y (cm) Y (cm) 4 2 0,2 0 -2,6 -2,1 -1,6 -1,1 -0,6 -0,1 -0,2 0 -15 -13 -11 -9 -7 -5 -3 -1 1 3 -0,4 5 -2 -0,6 -0,8 -4 -1 -6 X (cm) x (cm) 14 BALL'S PATH – longer trapping lifetimes OUR DIAGRAM THEORETICAL DIAGRAM Ball's distance form the center in time small ping pong ball 5 4,5 4 3,5 r (cm) 3 2,5 2 1,5 1 0,5 0 4,4 4,6 4,8 5 5,2 5,4 t (s) KOCH'S ARTICLE 5,6 5,8 6 6,2 6,4 14 ANGLE 14 β ± = √± 2∣q∣− 1 β ± ∈ R− { 0}=> result will diverge in any case => particle is trapped only if 2∣q∣≤ 1 β ±∈ I , thus => q ≤ 0,5 gh0 q = 2 2 ≤0,5 r0 The condition for stability is: 2gh 0 √ Ω≥ r0 f ≥ 2 gh0 2πr0 14 Theory (Thompson's article) Gravitational potential: - assigned to the rotating frame (fixed to U) U ( x ' , y ' )= mgh0 r0 2 ( x ' 2− y ' 2 ) - converted to the laboratory frame: mgh0 2 2 U ( x , y)= [( x − y )cos(2Ω t )+2xy sin (2Ω t )] 2 r0 14 β ± = √± 2∣q∣− 1 β ± ∈ R− { 0}=> result will diverge in any case => particle is trapped only if β ±∈ I , thus gh0 q = 2 2 ≤0,5 r0 The condition for stability is: 2gh 0 √ Ω≥ r0 2gh 0 f≥ 2 r0 14 SOURCES R.I. Thompson, T.J. Harmon, and M.G. Ball: The rotating-saddle trap: a mechanical analogy to RFelectricquadrupoleion trapping? (Can. J. Phys. Vol. 80, 2002) Wolfgang Rueckner, Justin Georgi, Douglass Goodale, Daniel Rosenberg, David Tavilla: Rotating saddle Paul trap (American Journal of Physics 63, 186 (1995); doi: 10.1119/1.17983) A. K. Johnson and J. A. Rabchuk: A bead on a hoop rotating about a horizontal axis: A one-dimensional ponderomotive trap (Citation: American Journal of Physics 77, 1039 (2009); doi: 10.1119/1.3167216) Tobias Koch: Konzeption und Aufbau einer mobilen Experimentiereinheit fur Schuleräprsentationen zum Thema Teilchenfallen 14 Stara prezentacia 14 Friction & Initial conditions friction in equations exponential growth limited trapping lifetimetime TL 2 reasons for lifetime limitation: 1) unstable trapping parameters 2) friction f < f critical 14 Conclusion 2gh 0 2πr0 f CRITICAL • Conditions under which the ball should be stable – Critical frequency • We found its limitations and examined the effects – Jumping – Friction, initial position – Rotation of the ball +VERIFICATION • We constructed 2 saddle traps with parameters, used different types of balls different • Analysis of ball and motion while being trapped +comparison with theory 14 Conclusions Our contribution 1. Stability I. Calculation of critical frequency II. Infinite trapping lifetime for f fc I. Experimental verification II. Experimentally confuted • Lifetime rise for f fc 14 Conclusions 1. Friction Our contribution i. Dynamic I. Solved for special case only II. not mentioned ii. Static I. Experimental verification II. Correlates best with point-mass theoryoptimal case 2. Jumping 2) not mentioned III. upper limit for frequency + estimation 3. Rotation 3) not mentioned IV. Dependence on moment of inertia + verification
© Copyright 2024 ExpyDoc