MODEL ANSWER Subject: ENGINEERING MATHEMATICS Que. Sub. No. Que. 1. Subject Code: 17216 Model answers Marks Attempt any TEN of the following: Total Marks 09 (a) Ans. x 1 i y 2 i 6 0 x xi 2 y iy 6 0 x 2y 6 x y i 0 ½ By equality x 2y 6 0 and x y By solving above equations. x 2 y 2 0 ½ 1 1 03 (b) Ans. x 1 , y r x2 3 y2 tan 1 = tan 1 = tan 1 3 12 2 3 2 y x 1 1 03 3 1 3 or 600 1 c) Ans. Let f x f 2 f 3 x3 6 x 3 23 6 2 33 6 3 3 1 0 2 3 12 0 root lies between 2 & 3 1 03 No. 1. Sub. Model answers Que. Marks Total Marks (d) Ans. 1 18 2 y 3z 5 1 y 22 x 3z 7 1 z 22 2 x y 6 Initial iterations: x0 1 x 03 y0 z0 0 First iteration: x1 y1 z1 1 18 2 y0 3z0 3.6 5 1 22 x1 3z0 3.6571 7 1 22 2 x1 y1 1.8572 6 2 Que. Sub. No. Que. 2. Model answers Marks Attempt any FOUR of the following: Total Marks 16 (a) Ans. z z 3 4i 1 i 1 3 4i = ½ 1 i 3 4i 2 1 i 2 9 24i 16i 2 1 2i i 2 = 3 4i - 3i - 4i 2 9 24i 16 1 2i 1 = 3 i 4 7 22i = 7 i = = = = = ½ 1 i 3 4i 7 22i 7 i 7 i 7 i 49 7i 154i 22i 2 72 i 2 49 161i 22 49 1 27 161i 50 27 161 i 50 50 z z 3 1 3 = 1 3 = 4i i 4i 1 i i 1 i 3i 4i 4i 2 12 i 2 3 7i 4 1 7i = = 1 1 2 1 i 3 4i 1 1 i 3 4i 3 4i 3 4i 3 4i 3i 4i 2 = = 32 4i 2 i2 1 1 ½ ½ i2 1 ½ ½ OR ½ 1 ½ 04 Que. Sub. No. Que. Model answers Marks Total Marks 2. 3 7i 4 9 16 1 7i = 25 1 7i 1 7i z1 2 25 25+175i 2 14i = 50 27+161i = 50 27 161 = i 50 50 = z 1 ½ ½ (b) Ans. Let z=1+i 12 12 r 2 x +ve and y +ve 1 = tan =tan 1 y x 1 1 =tan 1 1 1 4 Polar form of a complex no.is, z r cos 1 i i sin 2 cos 4 i sin 4 Similarly, 1 i 2 cos 4 i sin 4 1 04 Que. Sub. No. Que. 2. Model answers 1 i 8 Marks 8 i sin 4 8 2 cos 4 8 8 = 2 Marks 8 1 i 2 cos Total cos i sin 4 4 i sin 4 8 8 2 4 cos i sin 4 ½ 4 By De-Moivre's theorem =16 cos 8 4 8 4 i sin =16 cos 2 16 cos i sin 2 8 4 16 cos 2 i sin 8 4 1 i sin 2 =32cos2 ½ = 32 04 (c) Ans. e 2i cos 2 e 2i = = = = = ei sin 2 e 2 2 i ei e 2i i 2 e 2i 2ei e 4 i e 2i e 2i 2ei e i 4i 2 e 2i e 2i 2ei e 4 i e 2i e 2i 2ei e 4 e 2i e 2i 2ei e i e 2i e 2i 4 2e 2i 2e cos 2 2ei e i i e 1 i2 1 1 2i ½ 2i ½ 4 2i e e 2i = 2 From (1) and (2) cos 2 ½ ...(1) 2 Consider cos 2 ...(2) ½ 04 sin 2 Que. Sub. No. Que. 2. (d) Model answers Marks Total Marks ½ Ans. cos 3 i sin 3 cos 4 i sin 4 cos 4 i sin 4 cos 5 i sin 5 cos 3 i sin 3 cos 4 i sin 4 cos i sin cos i sin = cos i sin = cos i sin = cos 40 (a) 3. Ans. 4 5 3 4 4 3 12 12 cos i sin cos i sin cos i sin i sin cos 4 i sin 4 cos 5 i sin 5 i sin cos i sin 20 12 20 cos cos 12 ½ ½ ½ ½ 5 4 20 20 04 1 20 20 40 1 i sin 40 Using Bisection method, find the approximate root of (three iterations only.) xex 1 Let f x f 0 1 0 f 1 1.71 0 1 the root lies in (0,1) x1 a b 2 0 1 2 1 0.5 04 0.17 <0 f 0.5 the root lies in (0.5,1) x1 b 2 x2 f x2 0.5 1 2 1 0.75 0.5 0 the root lies in (0.5,0.75) x3 x2 b 2 0.5 0.75 2 0.625 1 (b) Ans. Using Regula – Falsi method, find the root of (three iterations only). x2 2 x 1 Let f x f 2 1 0 f 3 2 0 1 the root lies in (2,3) af b f b x1 bf a f a 2 2 2 3 1 7 3 1 2.333 1 0.223 <0 f 2.333 04 the root lies in (2.333,3) x1 f b f b x2 f x2 bf x1 f x1 1 2.333 2 3 0.223 2 0.223 2.40 0.04 0 the root lies in (2.4,3) x2 f b f b x3 (c) bf x2 f x2 2.4 2 2 3 0.04 0.04 2.412 1 Using Newton –Raphson method, find approximate root of (three iterations only). x3 2x 5 0 Let f x f 2 1 f 3 16 f 2 1 f 3 16 f (2) is nearer to zero f' x 3x2 2 f' 2 x1 x2 x0 1/2 2 ½ 10 x0 f x0 =2 f ' x0 x1 f x1 f ' x1 1 10 2.1 2.1 3 1 2 2.1 2.1 3 2.1 5 2.095 2 1 2 04 x3 (d) x2 f x2 f ' x2 2.095 3 2 2.095 2.095 3 2.095 2 5 2.095 2 Using Newton –Raphson method, find the approximate value of (three iterations only). 1 Ans. 3 Let, x 100 x3 100 x3 100 0 x3 100 f x f 4 36 f 5 25 1 f (5) is nearer to zero x1 f' x 3x 2 f' 5 75 x0 f x0 25 =5 ' 75 f x0 x0 5 4.667 1 f 4.667 x2 x1 f 4.642 x3 x2 and 1.651 f x1 f ' x1 4.667 4.642 0.027 64.644 65.343 4.642 and 0.027 f x2 f ' x2 1.651 65.343 f ' 4.667 f ' 4.642 64.644 1 04 4.642 1
© Copyright 2024 ExpyDoc