Received 02/06/14 On an inequality of Grüss type via variant of Pompeiu’s mean value theorem Mehmet Zeki SARIKAYA Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce-TURKEY, e-mail: [email protected] Abstract The main of this paper is to establish an Grüss type inequality by using a mean value theorem. 1 Introduction In 1935, G. Grüss [4] proved the following inequality: 1 b a Zb f (x)g(x)dx 1 b a a Zb f (x)dx 1 b a a Zb g(x)dx 1 ( 4 ')( a provided that f and g are two integrable function on [a; b] satisfying the condition ' f (x) and for all x 2 [a; b]: g(x) The constant 14 is best possible. µ In 1882, P. L. Cebyš ev [2] gave the following inequality: jT (f; g)j 1 (b 12 a)2 kf 0 k1 kg 0 k1 ; where f; g : [a; b] ! R are absolutely continuous function, whose …rst derivatives f 0 and g 0 are bounded, 0 10 1 Zb Zb Zb 1 1 1 T (f; g) = f (x)g(x)dx @ f (x)dxA @ g(x)dxA b a b a b a a a a and k:k1 denotes the norm in L1 [a; b] de…ned as kpk1 = ess sup jp(t)j : t2[a;b] 1 ); For a di¤erentiable function f : [a; b] ! R; a b > 0, Pachpatte has in [6] proved, using Pompeiu’s mean value theorem [9], the following Grüss type inequality: 0 b 1 Z Zb Zb Zb Zb 1 @ f (t)dt: tg(t)dt + g(t)dt: tf (t)dtA f (t)g(t)dt 2 b a2 a a kf `f 0 k1 Zb 1 2 jg(t)j a t dt + kg a+b a `g 0 k1 a a Zb jf (t)j 1 2 t dt a+b a where `(t) = t; t 2 [a; b] : In [7], Pecaric and Ungar proved a general estimate with the p-norm, 1 < p < 1, which will for p = 1 give the Pachpatte [6] result. The interested reader is also referred to ([1], [3], [5]-[10]) for integral inequalities by using Pompeiu’s mean value theorem. In this paper, we establish some new integral inequalities similar to that of the Grüss type integral inequality via Pompeiu’s mean value theorem. 2 Main Results First we give the following notations used to simplify the details of presentation F (u; v) = uvfuv (u; v) ufu (u; v) vfv (u; v) + f (u; v) G(u; v) = vguv (u; v) ugu (u; v) vgv (u; v) + g(u; v); A(x; y; p) = (b ( + + + 1 a) p 1 (d 1 c) p 1 a2 q x 2 q x2 + (1 2q) (2 q) (1 a2 q x 2 q x2 + (1 2q) (2 q) (1 b2 (1 b2 (1 q x2 q x2 + 2q) (2 q) (1 q x2 q x2 + 2q) (2 q) (1 q a1+q x1 2q 2q) (1 + q) q a1+q x1 2q 2q) (1 + q) q b1+q x1 2q 2q) (1 + q) q b1+q x1 2q 2q) (1 + q) 1 q y2 q y2 + 2q) (2 q) (1 q c1+q y 1 2q 2q) (1 + q) d2 q y 2 q y2 + (1 2q) (2 q) (1 q d1+q y 1 2q 2q) (1 + q) y2 q y2 + 2q) (2 q) (1 q c1+q y 1 2q 2q) (1 + q) d2 q y 2 q y2 + (1 2q) (2 q) (1 q d1+q y 1 2q 2q) (1 + q) c2 (1 1 q 1 q c2 (1 1 q q q To prove our theorems, we need the following lemma: 2 1 q 1 q 1 q 1 q ) ; Lemma 1 f : = [a; b] [c; d]! R be an absolutely continuous function such that the partial derivative of order 2 exists for all (t; s) 2 with 0 < a < b; 0 < c < d: Then for any (t; s); (x; y) 2 ; we have stf (x; y) ytf (x; s) xsf (t; y) + xyf (t; s) = xyst Zx Zy t 1 1 ; ! R by Proof. De…ne : 1b ; a1 d c function is continuously di¤erentiable on 1 1 (x1 ; y1 ) ; (x2 ; y2 ) 2 1b ; a1 ; ; we get d c (x1 ; y1 ) (x1 ; y2 ) Zx1 Zy1 2 @ (t; s) = dsdt @t@s = x2 y 2 Zx1 Zy1 1 1 ; t s f 1 fs s (x2 ; y1 ) + 1 1 ; t s F (u; v) dvdu : u2 v 2 s (t; s) := tsf 1t ; 1s . The 1 1 ; , and for all d c 1 1 ; b a (x2 ; y2 ) 1 ft t 1 1 ; t s + 1 fts ts 1 1 ; t s dsdt: x2 y 2 Using the change of the variable in last integrals with u = we get (x1 ; y1 ) 1 x1 = (x2 ; y1 ) + [f (u; v) vfv (u; v) and v = 1s ; (1) (x2 ; y2 ) 1 y1 Z Z 1 x2 (x1 ; y2 ) 1 t ufu (u; v) + uvfuv (u; v)] dvdu : u2 v 2 1 y2 Denote x1 = x1 ; x2 = 1t ; y1 = y1 and y2 = 1s : Then for all (x; y) ; (t; s) 2 [a; b] [c; d] from (1), we have 1 1 f (x; y) f (x; s) xy xs Z t Zs dvdu = F (u; v) 2 2 uv x 1 1 f (t; y) + f (t; s) ty ts y which gives (2) and completes the proof. Theorem 2 f : ! R be an absolutely continuous function such that the partial derivative of order 2 exists for all (t; s) 2 with 0 < a < 3 b; 0 < c < d: Then for p1 + 1q = 1 with 1 we have Zb Zd f (x; y)g(x; y)dydx a ; (2) c 1 (d2 c2 ) 1 (b2 a2 ) Zb Zd Zd [f (x; s)g(x; y) + g(x; s)f (x; y)] ydsdydx a c c Zb Zd Zb [f (t; y)g(x; y) + g(t; y)f (x; y)] xdtdydx a + 1 any (t; s); (x; y) 2 p; q c a 2 (b2 + a2 ) (d2 c2 ) 2 (b (b2 a c Zb Zd @ c2 ) a 0 a2 ) (d2 1 p c 1 p a) (d a2 ) (d2 + kl1 guv @ Zb Zd 0 2 (b2 0 c) @ kl1 fuv c2 ) l2 gu l3 gv + gkp 10 b d 1 Z Z xyg(x; y)dydxA @ f (t; s)dsdtA a c Zb a Zd Zb Zd 10 xyf (x; y)dydxA @ l2 fu l3 fv + f kp c a Zb a Zd c 1 g(t; s)dsdtA xy jg(x; y)j A(x; y; p)dydx c 1 xy jf (x; y)j A(x; y; p)dydxA where l1 (x; y) = xy, l2 (x; ) = x and l3 ( ; y) = y for all (x; y) 2 : Proof. From Lemma 1, we have stf (x; y) stg(x; y) ytf (x; s) ytg(x; s) Zx Zy F (u; v) t s Zx Zy G(u; v) xsf (t; y) + xyf (t; s) = xyst xsg(t; y) + xyg(t; s) = xyst t dvdu ; u2 v 2 dvdu : u2 v 2 s Multiplying these identities by g(x; y) and f (x; y) respectively, and adding the results gives 2tsf (x; y)g(x; y) ty [f (x; s)g(x; y) + g(x; s)f (x; y)] xs [f (t; y)g(x; y) + g(t; y)f (x; y)] + xy [f (t; s)g(x; y) + g(t; s)f (x; y)] Zx Zy Zx Zy dvdu dvdu = xtysg(x; y) F (u; v) 2 2 + xtysf (x; y) G(u; v) 2 2 uv uv t s t 4 s By integrating with respect to (t; s) on [a; b] (b2 a2 ) (d2 2 c2 ) (b2 f (x; y)g(x; y) a2 ) 2 [c; d] ; we get y Zd [f (x; s)g(x; y) + g(x; s)f (x; y)] ds c (d2 c2 ) 2 Zb x [f (t; y)g(x; y) + g(t; y)f (x; y)] dt a +xy Zb Zd a [f (t; s)g(x; y) + g(t; s)f (x; y)] dsdt c 2 x y 3 Z Z dvdu = xyg(x; y) st 4 F (u; v) 2 2 5 dsdt uv a c t s 2 x y 3 Z Z Zb Zd dvdu G(u; v) 2 2 5 dsdt +xyf (x; y) st 4 uv Zb Zd a t c s and therefore by integrating with respect to (x; y) on [a; b] taking the modulus, we obtain (b2 a2 ) (d2 2 c2 ) Zb Zd a (b2 a2 ) 2 c2 ) 2 (3) f (x; y)g(x; y)dydx c Zb Zd Zd [f (x; s)g(x; y) + g(x; s)f (x; y)] ydsdydx Zb Zd Zb [f (t; y)g(x; y) + g(t; y)f (x; y)] xdtdydx a (d2 a c c c a 0 b d 10 b d 1 Z Z Z Z +@ xyg(x; y)dydxA @ f (t; s)dsdtA a 0 +@ c Zb Zd a c [c; d] ; and a 10 xyf (x; y)dydxA @ c Zb Zd a 5 c 1 g(t; s)dsdtA 0 2 x y 3 1 Z Z dvdu xyg(x; y) @ st 4 F (u; v) 2 2 5 dsdtA dydx uv a c a c t s 0 b d 2 x y 3 1 Zb Zd Z Z Z Z dvdu + xyf (x; y) @ st 4 G(u; v) 2 2 5 dsdtA dydx : uv Zb Zd a Zb Zd c a c t s For the …rst added in the right-hand side of (3), we have 0 b d 2 x y 3 1 Z Z Z Z Zb Zd dvdu F (u; v) 2 2 5 dsdtA dydx st 4 xyg(x; y) @ uv t s a c a c 2 x y 3 Zb Zd Zb Zd Z Z dvdu jxyg(x; y)j st 4 F (u; v) 2 2 5 dsdt dydx uv a c a c t (4) s and for the second factor under the integral on (x; y) (i.e the outher most integral) in (4), we have 3 2 x y Zb Zd Z Z dvdu (5) st 4 F (u; v) 2 2 5 dsdt uv = a Zb a c Zd c Zx t t y Z Zx Zy Zt Zs a c x jF (u; v)j dvdu dsdt s F (u; v) ts dvdu dsdt u2 v 2 y + Zx Z t Zs F (u; v) ts dvdu dsdt u2 v 2 + Zb Zy Z t Zs F (u; v) ts dvdu dsdt u2 v 2 x c x y Zb Zd Zt Zs F (u; v) ts dvdu dsdt: u2 v 2 a + x Zd s y y x x y y 6 By using Hölder’s inequality, the sum in the last line (5) is 0 @ Zx Zy a c 0 @ 1 Zx Zy t 1 p1 0 jF (u; v)jp dvduA dsdtA @ s Zx Zy a c 0 @ Zx Zy t s q q 1 1 1q t s dvdu A dsdtA (6) u2q v 2q 0 1 1 p1 0 x d 0 x s 1 1 1q Zx Zd Zx Zs Z Z Z Z q q t s dvdu A @ @ jF (u; v)jp dvduA dsdtA @ +@ dsdtA u2q v 2q 0 a t y y a t y y 1 1 p1 0 b y 0 t y 0 1 1 1q Zb Zy Z t Zy Z Z Z Z q q t s dvdu A @ @ jF (u; v)jp dvduA dsdtA @ +@ dsdtA u2q v 2q 0 0 x c x s x y x y x x c s 0 1 1 p1 0 b d 0 t s 1 1 1q Zb Zd Z t Zs Z Z Z Z q q t s dvdu A @ @ +@ jF (u; v))jp dvduA dsdtA @ dsdtA u2q v 2q x y x y 0 0 1 1 p1 Zb Zd Zb Zd @ @ jF (u; v)jp dvduA dsdtA a c a c 80 0 1 1 1q 0 x d 0 x s 1 1 1q > Z Z Z Z q q < Zx Zy Zx Zy tq sq dvdu t s dvdu A @ @ A dsdtA + @ @ dsdtA 2q 2q 2q v 2q > u v u : a 0 +@ c Zb Zy x c t s a y t y x y x y 0 t y 1 1 0 b d0 t s 1 1 1q 9 > Z Z q q Z Z Z Z q q = t s dvdu t s dvdu @ A dsdtA + @ @ A dsdtA > u2q v 2q u2q v 2q ; 1 q x s The …rst factor in (6) equals 0 @ = (b Zb Zd a c 0 @ 1 p Zb Zd a a) (d c 1 1 p1 jF (u; v)jp dvduA dsdtA 1 c) p kl1 fuv l2 fu l3 fv + f kp : and by Lemma, the second factor equals A(x; y; p): Plugging into (5) 7 shows that for the …rst added on the right-hand side in (4), we get. 3 1 0 b d 2 x y Z Z Z Z Zb Zd dvdu xyg(x; y) @ st 4 F (u; v) 2 2 5 dsdtA dydx uv c a a Zb Zd a = (b jxyg(x; y)j (b c t 1 s 1 c) p kl1 fuv a) p (d l3 fv + f kp :A(x; y; p)dydx l2 fu c 1 p a) (d 1 p c) kl1 fuv l2 fu l3 fv + f kp Zb Zd a xy jg(x; y)j A(x; y; p)dydx: c An analogous inequality holds for the second added in (3), so putting (b2 a2 )(d2 c2 ) these two inequalities into (3) and dividing gives the re2 quired inequality (2), proving the theorem. References [1] A. M. Acu, A. Babo¸s and F. D. Sofonea, The mean value theorems and inequalities of Ostrowski type. Sci. Stud. Res. Ser. Math. Inform. 21 (2011), no. 1, 5–16. µ [2] P. L. Cebyš ev, Sur less expressions approximatives des integrales de…nies par les autres prises entre les memes limites, Proc. Math. Soc. Charkov, 2, 93-98, 1882. [3] S.S. Dragomir, An inequality of Ostrowski type via Pompeiu’s mean value theorem, J. of Inequal. in Pure and Appl. Math., 6(3) (2005), Art. 83. [4] G. Grüss, Über das maximum des absoluten Betrages von Rb Rb Rb 1 1 f (x)g(x)dx f (x)dx g(x)dx; Math. Z., 39, 215-226, b a (b a)2 a [5] [6] [7] [8] [9] (7) a a 1935. I. Muntean, Extensions of some mean value theorems, Babes-Bolyai University, Faculty of Mathematics, Research Seminars on Mathematical Analysis, Preprint Nr. 7, 1991, 7-24. B. G. Pachpatte, On Grüss like integral inequalities via Pompeiu’s mean value theorem, J. of Inequal. in Pure and Appl. Math. 6(1995), Article 82, 1–5. P.P Pecaric and S. Ungar, On an inequality of Grüss type, Mathematical Communications, 11(2006), 137-141. E. C. Popa, An inequality of Ostrowski type via a mean value theorem, General Mathematics Vol. 15, No. 1, 2007, 93-100. D. Pompeiu, Sur une proposition analogue au théorème des ac8 croissements …nis, Mathematica (Cluj, Romania), 22 (1946), 143– 146.. [10] F. Ahmad, N. A. Mir and M.Z. Sarikaya, An inequality of Ostrowski type via variant of Pompeiu’s mean value theorem, J. Basic. Appl. Sci. Res., 4(4)204-211, 2014. 9
© Copyright 2024 ExpyDoc