1 2 3 4 5 6 7 Claude E. Shannon (1916∼2001) A Mathematical Theory of Communication, B.S.T.J, 1948 8 9 10 11 12 13 14 M M C C K K M C K M C K 15 M M C K M C K KP C KS M K M C K KP KS C K 16 M M C K M C K KP C KS M K M C K KP KS C K 17 M M C K M C K KP C KS M K M C K KP KS C K 18 ap−1 p p≡aa1 (mod 1a≤p−1 ap) ≤≡ p −11 (mod ap−1 ≡ p) 1 (mod p) p a M KM K CP(mod KSKK ≤ a ≤ p −M1 C ap−1 =K 1C p)P KKPS KS K K P 5 KS p= p=5 14 = 1 = 1 (mod 5) 24 = 16 =114 =(mod 5) 4= 34 = 81 = 41 (mod 5) 2 = 16 = 4 4 = 256 = 1 (mod 5) p a 1≤a≤p−1 1 (mod 1 (mod 34p−1= 81 = 1 (mod a = 1 (mod p) 44 = 256 = 1 (mod 5) 5) 5) 5) 19 p a ap−1 p p≡aa1 (mod 1a≤p−1 ap) ≤≡ p −11 (mod ap−1 ≡ p) 1 (mod p) M KM K CP(mod KSKK ≤ a ≤ p −M1 C ap−1 =K 1C p)P KKPS KS K KP KS b1 ̸= b2 a1 = b1 (mod p) a2 = b2 (mod p) mod p) a2 = b2 (mod p) b1 p) (mod p) a×1 a×1 = b1 = (mod a×2 = b2 p)p) (mod p) a×2 = (mod a1 ̸= aa21 ̸=b1a2̸= bb21 ̸=a1b2= ba11 (mod p) a p) = b1 (mod = bb22 (mod 2p)= ba22 (mod ... ... 4 1==5bp12 = (mod 5) mod1p)= pb1= 5 1 = b(mod (mod p) a×p −a×p 1 =− bp−1 p−1 p) 24 5) = 16 = 1 (mod 5) (mod ap)1 −aa22 == bb21 − b2 =p)0 (mod p) b1 = b2 b1 (mod (mod (1) 4 3 5) = 81 = 1 (mod 45) 4 (mod 1 = 11= =p−1 11 = (mod 5) 5) 1 p)(mod p−1 4 a = ̸ a b = ̸ b a = b (mod a2 =· b·×(p−1)) p)= 1×2×· a (1×2×· · ·×(p−1) (mod 1 2 1 2 1 1 2 (mod = 1×2×· · ·×(p−1) (mod p) 4 5) = 256 = 1 (mod4 5) 4 a (1×2×· · ·×(p−1)) (mod 2 = 216== 116 = (mod 5) 5) 1 (mod 20 φ(n) a =(p1=−− (mod n)−−1)1) pq =1)(q p, qn = = pq (p1)(q − p, q np,=q pq φn = (p φ−φ(n) 1)1)(q p−1 pp, qa na= p) pq≡ φ1 =(mod (pp, − 1)(q − 1) q n = pq φ(n) = (p − 1)(q − 1) n = 1 φ(n) = bn) 1 (mod p) a =a×1 1 (mod M C K a×1 KP a×1 K b1 p) (mod p) =a×2 b1S = (mod = b2 (mod p) p, q a×2 n= φ(n) a×1 = bb... 12 pq= (mod p)= (pp)− 1)(q − 1) b (mod 2 a×2 = (mod p) φ(15) = 2 · 4 = 8 − 1)(q − 1) n = 15 = 3 · 5 ... b2 − 1(mod a×2... =a×p = bp−1 p)(mod p) 18 =1 = 1.. (mod 15) a×1 = (mod b1 (mod p) (1) . a×p − 1 = b p) p−1 15) 1 =+ b1p−1 p) 28 =256a×p = 15 − × 17 = 1 (mod (mod a×1 = b (mod p) a×2 = b (mod p) p−1 1 2 = bp−1 a a×p (1×2×· · ·×(p−1)) = (mod 1×2×· ·×(p−1) p) (1) (mod p) 48 =65536 =− 15 1× 4369 + 1..× 1 = 1 ·p) (mod 15) (mod (1) . a×2 == bb22 (mod p)(1) 8 a − a = b − b = 0 (mod p) b 1 2 1 2 1 7p−1 =5764801 = 15 × 384320 + 1 = 1 (mod 15) (mod p) a×p − 1... = b·p−1 (mod p) p−1 a (1×2×· · ·×(p−1)) = 1×2×· ·×(p−1) (mod p) . a (1×2×· · ·×(p−1)) = 1×2×· · ·×(p−1) (mod p) . . a1 ̸= a2 b1 ̸= b2 a1 = b1 (mod p) a2 = b2 (mod p) p−1 a (1×2×· · ·×(p−1)) = 1×2×· · ·×(p−1) (mod p) (mod b2 (mod p) a×p bp−1 2 = 0 p) 1= a −aaφ(n)a=1=−b1 a(mod −2 =b bn) =1 −0 b(mod b p)=−b1b= 21 pq =1)(q (p=−− p, qn = = pq (p1)(q − p, q np,=q pq φn = (p φ−φ(n) 1)1)(q−−1)1) p−1 pp, qa na= pq≡ φ1 =(mod (p − p) 1)(q n − 1) M C φ(n) = bn) 1 (mod p) a =a×1 1 (mod K a×1 KP a×1 K B = , b2, · · p) · , bφ(n)} b1{b1p) (mod = bS = (mod 1 = b (mod p) a×2 2 n p, q a×2 n= = (p ·−· ·1)(q − }1) a×1 = bb... 12 pqA= (mod p) (mod =bφ(n) , abφ(n) 2{ab a×2 = (mod p) n 1 , ab2 ,p) n B = {b , b , · · · , b .} 1 a×2 2 ... φ(n) =a×p p)(mod p) .. b2 − 1(mod = b p−1 C = b1 × b2 × · · · × bφ(n) B = {b1, b2, · · · ,. bφ(n)} B =A{b=1,{ab b2, ·,·ab · ,.. b, φ(n) }, ab }a×1 = (mod b1 (mod p) (1) · · · 1 2 a×p − 1 = b p) φ(n) p−1 p) n n a×p − 1 = b φ(n)(mod p−1 a C ==Cb2(mod n) p) A = {ab1, abp−1 2 , · · · , abφ(n) } a×2 (mod 1φ(n) = a a×p · ·×(p−1)) 1×2×· ·p) ·×(p−1) (mod p) (1) A =C {ab · · ·,− ab } bp−1 = (mod 2b, ·(1×2×· = b11, ab × × · · × b 2 φ(n) ... = {b , b , · · · , b (1)} B = {b , b , · · · , b } 1 2 φ(n) B φ(n) C = b1 × b2 ×a1· − · ·a× b b1 − b2 = 0 (mod p)1 b12 = b2 (1) 2 =φ(n) 8 φ(n) p−1 C = b × b × · · · × b 2 C (mod φ(n) 1= =1 ==1 b·p−1 (mod(mod 15) p) n) a×p − 1 p−1 a 1a C = (1×2×· · ·×(p−1)) 1×2×· ·×(p−1) (mod p) A = {ab , ab , · · · , ab } φ(n) a (1×2×· · ·×(p−1)) = 1×2×· · ·×(p−1) (mod p) 1 2 φ(n) A {ab , ab , · · · , ab } n) 8= 1 2 p−1aφ(n) C = C (mod φ(n) a = ̸ a b = ̸ b a = b (mod p) a = b (mod p) 1 2 1 2 1 1 2 2 2 =256 = 15 × 17 +(mod 1 = 1 p)(mod 15 a a(1×2×· ·×(p−1)) = 1×2×· · ·×(p−1) C =aC· − (mod n) (mod p) b1 = b2 2· ·=×0bp) 8 b12− × a1 − 8a2 =1Cb=1a−2b1=b×2 b= 0 b·(mod b = b φ(n) 4 =65536 =2 15 × 4369 + 1 × 1 = 1 1 22 pq =1)(q (p=−− p, qn = = pq (p1)(q − p, q np,=q pq φn = (p φ−φ(n) 1)1)(q−−1)1) nn nee e dd e× d× 1 φ(n)) (mod d ee× d =d11 = (mod (mod φ(n)) φ(n)) a×1 φ = = (p b1 −(mod p)− 1) p, q n = pq 1)(q d e × d = 1 (mod φ(n)) B = {b b , b } a×1 = b (mod p) 1b,n 2 ,· ··e···a×1 φ(n) = b (mod p) 1 B = {b , , , b } 1 B = {b1 1 ,2b2 , · · ·φ(n) , bφ(n) } a×2 = b2 (mod p) n , ·a×2 e· , ab d ee×× dbd == 1 (mod φ(n)) n e 1 (mod φ(n)) . a×2 = (mod p) . 2 = b (mod p) A = {abB , ab · } 1 =2 {b1 , b2 , φ(n) · · · },. 2bφ(n)} A = {ab , ab , · · · , ab 1 1 , ab 2 2 , · · · φ(n) A = {ab , a×p ab } ... φ(n) ... −· ·1 = bp−1 (mod p) p) = b (mod 1 {b ,, bba×1 , · , b } C = b1 ×B b2B ×= ·= · ·{b × b1φ(n) 2 , · · · ,φ(n) b } 1 2 A = {ab , ab , · · · , ab } φ(n) 1 2 φ(n) (1) e e− 1 = b C = b × b × · · · × b 1 2 φ(n) a×p (mod p) M C C = M (mod n) a×2 = b C a=φ(n)bC1 × b × · · · × b p−1 M C C = M (mod a×p − 1 = b (mod p) 2 2 φ(n) p−1 = CA (mod n)e 1 , ab2 , · · · , ab p−1= {ab } φ(n) d a (1×2×· · ·×(p−1)) = 1×2×· · ·×(p−1) (mod p) n) . M C C = M (mod n) C = b × b × · · · × b φ(n) M = C (mod M (1) . 1 2 φ(n) A = {ab , ab , · · · , ab } aφ(n)C = C n(mod (1) e dn) e 1× d .= 2 1 (mod φ(n)) φ(n) n e d e × d = 1 (m a C = C a(mod n) 1 − a2 = b1 − b2 = 0 (mod p) b1 = b2 C = b × b · · · × b φ(n) d e × d = 1 (mod φ(n)) 115) 2d × φ(n) a×p − 1 = b (mod p) d e ed kφ(n)+1 18 n=1aep−1 = 1 (mod a C = C (mod n) p−1 p−1 (1×2×· · ·×(p−1)) = 1×2×· · ·×(p−1) (mod p) B = {b , b , · · · , b } C = (M ) = M = M = M (mod n) B = {b , b , · · · , b }( 1 2 φ(n) 1 2 φ(n) a 8(1×2×· · ·×(p−1)) = 1×2×· · ·×(p−1) (mod p) n e d e × d = 1 C = b × b × · · · × b a1 × ̸= 17 a12 +b11 ̸==b212 a(mod (mod p)φ(n) a2 = b2 (mod p) 1 = b1 15) 8 2 =256 = 15 φ(n) (1) B= ,−b(mod ,M · ·C ·=,b15) b= } 1 8 =1 = {b 1A dC 1a 2a φ(n) (mod n) a = − b = 0 (mod p) b = b C ·2· , abn) } 1 = {ab 2 1 , ab 1 2 , ·(mod 1A = {ab 2 , ab , · · · , ab 8 23 aφ(n) = 1 (mod n) e e M C C =p,M (mod n) φ(n) = M C C = M (mod q n = pq (p − 1)(q − 1) n = 15 = = 177147 = 11809 × 15 + 5 (mod 15) d 1 n) M Cn Ce = dM eM (mod M = C (mod n) M = C 1 = 177147 = 11809 × 15 + 5 (mod 15) e × d = 1 (mod φ(n)) n e d e × d = 1 (m = M 3 = 343 = 22 × 15 + 3 = 3 (mod 15) n= 1e(mod d= 11) e ×, bd ,=· ·1· ,(mod φ(n)) = 4 × 11 + 1 B {b b } = 2 ·M4 3==8343 = 22Bn×=15e{b+1,3db=2, 3·e·(mod 1)(q − 1) n = 15 = 3 · 51 2Mφ(15) · ,dbφ(n) = 7 φ(n) C= × =15)1} (m x (mod p) eB== 15d1 ,= b32768 ,{ab · · · =,, ab b2184 }× e × d = 45 = 4 × 11 + 1 = 1 (mod 11) e ==3C{b 215 φ(n) 15 + 8 = 8 (mod 15) 1 (mod p) M A== , · · · , ab } AB=={ab , · · · , ab } 1 2 φ(n) {b11,,bab 2 , 2· · · , bφ(n)φ(n 3, · ·3 · , ab = {ab , ab }8 x× (mod ggxxrr == yyrr (mod p) MAM = 8 C = M = 512 = 34 × 15 ++ 2 5=p) 2 5(mod 15) 1 2 φ(n) 15 15 a×1 = b (mod p) M = 5 C = M = 125 = 5 = (mod 15) M = C /C (mod e = 3 d = 15 C = b × b × · · · × b 1= 470184984576 31345665638×15+6 6 M ==C C ==470184984576 =2=31345665638×15+6 = 6 C = b × b ×2,· ·· ·· ·×, ab bφ(n 1 2 φ(n) 1 1 2ab A = {ab , 1 φ( mod p) (mod 15+ 1 = 1 (mod 11) e ×e15) d×15) =d45 = 4 × 11 M = C = 32768 = 2184 × 15 + 8 = 8 (mod 15) (mod =×33b =×3y·×= 8g× +xx b1(mod = 1 (mod 11) =rr b(mod · · a×2 = b (mod p) od p) p) C C22 = =C My p) od My p) (mod p) 1aφ(n) 2 φ(n) 2 φ(n) r x rx x r n) aC =Cb1=×Cb2(mod n) x C = 3CC (mod mod p) = g = g = y (mod p) 3 × · · · × b 3 M = C /C (mod p) e = 3 d = 15 1 15 φ( 26 C C x=M8== M C = M = 512 = 34 × 15 + 2 = 2 (mod 15) . 1 = = 216 = 14 × 15 + 6 = 6 (mod 15) MM = 6 = M 216 = 14 × 15 + 6 = 6 (mod 15) M = C = . M = C /C (mod p) e = 3 d = 11 φ(n) 2 . 1 15 a C =M =n) 470184984576 = 6(mod 15) eCx×r=(mod dC=r45 = 4 × 11 + 1 ==131345665638×15+6 (mod 11) φ(n) x rx 15 ra x 15 = = C =xry=C (mod C = C (mod n) p) 32768 =2184 × 15 8 =8 8C (mod 15) M1M= =x=gC C = ×rp) 15 ++ 8 p) = (mod 15) = g (mod = My (mod p) y = g (mod rx8g32768 r2184 (mod 15) 1 2 8 C1 = g 1 ==1 g ==1y x (mod (mod p)15) a×p − 1 = bp−1 x 1 =1(mod = 1 p)(mod 15) 24 pq =1)(q (p=−− p, qn = = pq (p1)(q − p, q np,=q pq φn = (p φ−φ(n) 1)1)(q−−1)1) nn nee e dd e× d× 1 φ(n)) (mod d ee× d =d11 = (mod (mod φ(n)) φ(n)) a×1 φ = = q(p b1p,−q (mod p) n = pq φ = (p − 1)(q p, n = pq φ = (p − 1)(q − 1) p, q n = pq 1)(q − 1) n e d e × d = 1 (mod φ(n)) B = {b , b , · · · , b } a×1 = b (mod p) 1 2 φ(n) =a×2 b}1 (mod p) p) = {b BB = {b1,1b,2b, 2· ,· ·· a×1 ·, b·φ(n) , b}φ(n) = b12 (mod p, q= (p n= pq φ−=1)(p − p, q n = pq φ − 1)(q n , ·a×2 e· , ab d ee×× dbd == 1 (mod φ(n)) n e 1 (mod φ(n)) . a×2 = (mod p) . 2 = b (mod p) A = {abB , ab · } 1 =2 {b1 , b2 , φ(n) · · · },. 2bφ(n)} A = {ab , ab , · · · , ab 1 1 , ab 2 2 , · · · φ(n) A = {ab , a×p ab } ... φ(n) ... a×1= b1 =(mod b1 (m − 1 = b (mod p) a×1 p) p−1 a×1 = b (mod p) 1 {b ,, bb2 ,,··· ·· ·, b,φ(n) } C = b1 ×B b2B ×= ·= · ·{b × b1φ(n) b } 1 2 A = {ab , ab , · · · , ab } φ(n) 1 2 φ(n) (1) a×1 = b a×1 = b (mod p) e− 1 = b C = b × b × · · · × b 1 a×2 = b (m 1 e 1 2 φ(n) 2 a×p (mod p) M C C = M (mod n) a×2 = b (mod p) a×2 = b C a=φ(n)bC1 × b × · · · × b p−1 M C C = M (mod 2 a×pn)− 1 = bφ(n) 2 p) 2(mod p−1 (mod = CA ...= p−1= {ab , ab , · · · , ab } e ·1·×(p−1)) 2 φ(n) p, q n pq φ = (p − n e d e × d = 1 (m a×2 = b a×2 = b (mod p) . φ(n) a (1×2×· = 1×2×· · ·×(p−1) (mod p) . 2 2 n e d C C = M (mod n) = b × b × · · · × b φ(n) M C . (1) . = ·φ(n) · · φ(n)) , abnφ(n) }d e(1) . .= 21 ,(mod aφ(n)C = CA n(mod e1 {ab dn)2e 1×,dab e × d = 1 (m . . a C = C a(mod n) n ed 1.. =db e de 1 − a2 = b1 − b2 = 0 (mod p) ..b1 = b2 a×p − p−1 C = b × b × · · · × b 8 n ep−1 φ(n) d e × d = 1 (mod φ(n)) 1 2 φ(n) C = (M ) b2= a×p − 1 = b (mod B = {b , b , · · · , b } a×p − 1 = b (mod p) B = {b , , p−1 1 =1a= 1(1×2×· (mod 15) 1 2 φ(n) a C = C (mod n) p−1 p−1 1 · ·×(p−1)) = 1×2×· · ·×(p−1) (mod p) B = {b , b , · · · , b } B = {b , b , · · · , b } 1 2 φ(n) 1 2 p) φ(n) a 8(1×2×· ·= ·×(p−1)) = 1×2×· · ·×(p−1) (mod d = C b × b × · · · × b a×p − 1 b (mod p 1 2 M = C (mod n) M C C φ(n) a×p − 1 = b p−1 a1 × ̸= 17 a2 +b11 ̸==b12 a(mod (mod p) a2 =B b2 = (mod p) 1 = b1 15) 8 2 =256 = 15 {b , b , · a×1 = b 1 d 2 (1) φ(n) B= b(mod , · ·C ·= ,b15) b= } 1 8 =1 = {b 1aA1a,−= 2a φ(n) (mod n)= p) {ab b =, bab M , · ·=· C, ab(mo {ab , ab−,C ·b· · = , ab0 (mod }A 8 1 2 1 12 2 2 , ab A, = A1 = {ab · · ·{ab , ab , a 25 pq =1)(q (p=−− p, qn = = pq (p1)(q − p, q np,=q pq φn = (p φ−φ(n) 1)1)(q−−1)1) nn nee e dd e× d× 1 φ(n)) (mod d ee× d =d11 = (mod (mod φ(n)) φ(n)) a×1 φ = = q(p b1p,−q (mod p) n = pq φ = (p − 1)(q p, n = pq φ = (p − 1)(q − 1) p, q n = pq 1)(q − 1) n e d e × d = 1 (mod φ(n)) B = {b , b , · · · , b } a×1 = b (mod p) 1 2 φ(n) =a×2 b}1 (mod p) p) = {b BB = {b1,1b,2b, 2· ,· ·· a×1 ·, b·φ(n) , b}φ(n) = b12 (mod p, q= (p n= pq φ−=1)(p − p, q n = pq φ − 1)(q n , ·a×2 e· , ab d ee×× dbd == 1 (mod φ(n)) n e 1 (mod φ(n)) . a×2 = (mod p) . 2 = b (mod p) A = {abB , ab · } 1 =2 {b1 , b2 , φ(n) · · · },. 2bφ(n)} A = {ab , ab , · · · , ab 1 1 , ab 2 2 , · · · φ(n) A = {ab , a×p ab } ... φ(n) ... a×1= b1 =(mod b1 (m − 1 = b (mod p) a×1 p) p−1 a×1 = b (mod p) 1 {b ,, bb2 ,,··· ·· ·, b,φ(n) } C = b1 ×B b2B ×= ·= · ·{b × b1φ(n) b } e 1 , ab d, e·2· · ,e ab ed φ(n) 1 A = {ab d}φ(n) ekπ(n)+1 ed = bkπ(n)+1 2 (1) a×1 = b a×1 (mod p) C = (M ) = M = M = M (mod n) e C = b × b × · · · × b C = (M ) = M = M = M (m 1 a×2 = b (m 1 e 1 2 φ(n) 2 a×p − 1 = b (mod p) M C C = M (mod n) a×2 = b (mod p) a×2 = b C a=φ(n)bC1 × b × · · · × b p−1 M C C = M (mod 2 a×pn)− 1 = bφ(n) 2 p) 2(mod p−1 (mod = CA ...2(mod p−1= {ab , ab , · · · , ab } 1 2 φ(n) d e = b a×2 = b (mod p) . d e a×2 a (1×2×· · ·×(p−1)) = 1×2×· · ·×(p−1) p) (1) . 2 C = b × b × · · · × b φ(n) C = M (mod n) M = M (mod n) . . C = M (mod n) M = C (mod n) 1 2 φ(n) A = {ab , ab , · · · , ab } . . aφ(n)C = C n(mod n) (1) 1 2 e d e × d = 1 (mod φ(n)) φ(n) n e d e × d = 1 (m . . a C = C a(mod n) . b1 = b2 a×p − 1.. = bp−1 . 1 − a2 = br1 − b2 = 0 (mod p) N C = b × b × · · · × φ(n) r bφ(n) N = bp−1 1215) 2(C a×p − 1 (mod M = C /y , C ) Z a×p − 1 = b (mod p) 18 =1ap−1 = 1 (mod 1 2 e d e ed kφ(n)+1 M = C /y (C , C ) Z a C = C (mod n) p−1 p−1 (1×2×· · ·×(p−1)) = 1×2×· · ·×(p−1) (mod p) 2 1 2 B = {b , b , · · · , b } B=M {b ,p) · · · , n) bφ(n)} 1 (M 2 = )b =φ(n) M ·= M 1 , b2(mod a 8(1×2×· ·C ·×(p−1)) = 1×2×· · ·×(p−1) (mod C = b × × · · × b a×p − 1 = b (mod a×p p−1 a1 × ̸= 17 a12 +b11 ̸==b212 a(mod (mod p)φ(n) a2 = b2 (mod p)− 1 = pb 1 = b1 15) 8 2 =256 = 15 φ(n) (1) 1 8 =1 = a1Aa− (mod e k= kC −,db15) lab =−H(S) C (mod n) a{ab = b = 0 (mod p) b = b k − l } H(S) , · ·k· , ab 8 1 C =2 M1 1(mod 2 n) 2 1A = n) 2 M = C (mod {ab , ab , · · · , ab 26 p = 13 g = 2 p a φ(n) ap−1 ≡g 1 (mod p) p)n) g g x = 1 x d 2 = 2 = 2 (mod 13) e y d 1 ≤edx, y ≤ kφ(n)+1 y (mod p) x, p − 1 y = g (mod p) C = (M ) = M = M = M (mod n) mod p) M C K K K P S 22 = 4 = 4 (mod 13) e d p) edx kφ(n)+1 x =d = y (M (mod y ≤ ≤x,pn) ) =φ(n) M M = = x, M (mod g M g (mod p) y− 11≤ x,23y=≤8 p=− 8 1(mod 13) = C=d 1y(mod n)y 4 x≤ p − 1 odxp) x y 1 ≤ x, y 2 = 16 = 3 (mod 13) y = g (mod p) x = log y g d d p = 13 e gd = 2 ed kφ(n)+1 ed kφ(n)+1 e n) = (mod C n)= (M M = n) M M (mod M )= C=M C= MM (mod n)= M (mod ed C = kφ(n)+1 25 = 32 = 6 (mod 13) x kφ(n)+1 φ(n) g g = y (mod p) 2x6 = 64 y = 112≤ x, y ≤13)p − 1 p = 13 g = 2 =e M = M (mod n) e d (mod dC C = edM kφ(n)+1 M =(mod n) d n)e × d = 1 (mod φ(n)) Cn (mod e d n) 27 = 128 = 11 (mod 13) 2d1 = 2 = 2e d (mod 13) ed kφ(n)+1 C 2 =e (M ) = M = M = M (mod n) 8 e d e× φ(n)) Md =C1B (mod C {b = 12M n) 2 = 256 = 9 (mod 13) =2 ,4·(mod = 4, bφ(n) (mod 13) = , b · · } e M (mod n) 3 21 = d 28 =(mod 2 n) (mod = 8C= 13) 13) 29 = 512 = 5 (mod 13) M2 = (mod = {bn) ×41d,2ab = 21, ·4(mod 1 , b2 , · ·n· , beφ(n) eod A}d= e{ab · ,4(mod abφ(n)) } 13) 210 = 1024 = 10 (mod 13) (mod 2 = 216= = ·3= 13) φ(n) e × d = 1 e(mod φ(n)) M25 =2C332==C = M (mod n) 211 = 2048 = 7 (mod 13) 6 (mod 13) 8 = 8 (mod 13) = {ab1, ab2B , · ·=· {b , ab b2,b}·1·× · ,bb2φ(n) }· · · × b 1 ,φ(n) C = × φ(n) (mod φ(n)) 212 = 4096 = 1 (mod 13) 26 = 464 = 12 (mod 13) (mod p) x y 1 ≤ x, y ≤ p − 1 g = y (mod p) x y 1 ≤ x, y ≤ p − 1 M =M = M (mod n) ) =M =M = M (mod n) n) (mod n) (mod n) C = M (mod n) 13) φ(n)) n e2 =d16 e=×3 d (mod = 1 (mod 27 x y = g (mod p) p a φ(n) ap−1 ≡g 1 (mod p) x y = g (mod p) p) x y = g x (mod x d p) p) e y d φ(n) edx,gy ≤gkφ(n)+1 (n) g g = y (mod x, 1 ≤ p) n)x C = (M ) = M M (mod mod p) M C K K K = M p −=1y=(mod P S y 1≤ p−1 x φ(n) g p a a φ(n) g g = y (mod p) x y 1 = (mod ≤yx, y ≤ p − 1 y =y(mod x xM x, ≤ p − 1 gy =y1C ≤1(mod p) x, y 1 ≤ x, y ≤ p − 1 (M )p)=p) M = (mod n) n) d e d ed kφ(n)+1 xp) x y 1 ≤ x, y ≤ C = (M ) = M = M = ( od p − 1 d e M d g = y (mod p) x y 1 ≤ x, y ≤ p − 1 d e d ed kφ(n)+1 C = (M ) = M d d e d ed kφ(n)+1 ed (mod kφ(n)+1 M = C MK e= n) C = (M ) = M = M = M (mod n) MM = C n) C (M ) = M = M = = M = M (mod M C C = M (mod n) M ed =kφ(n)+1 M kφ(n)+1 = M (mod n) d d = M = M d (mod n) M = C (mod n e e d ed kφ(n)+1 = C (mod n) M ) C= M C =M M (mod n) d M = C (mod n) = Mn e d =eM (mod n) × d= =C 1 (mod φ(n)) (mod n) d n) C = g r (mod p) C d e d φ(n)ed =d y (mod Mg xkφ(n)+1 =M e M C C = M (mod n) =n)gex (mod p) x = log y r e gφ(n)) Md =C1 (mod C=M (mod n) d e× 1 M C C = M2 B = {b1, b2, · · · , bφ(n) }= g r (modeep) C = M y r (mod p) y e C M C C2 = =my Mr (mod (mod n) 1 C M C C M (mod n) x = 2log y= grx (mod p) (mod p) = p) y (mod(mod n)x n) n Ce 1 =dgr eM g × d = 1 φ(n)) (modCφ(n)) d ep) ×d x rx x r n er n e d e × d = 1 (mod = {b , b , · · · , b } = g = g = y (mod 1 2gr = yφ(n) n)e C(mod gn) (mod p) x 1 ≤ x, y 1 ≤ p−1 A = {ab , ab · , ab } mod r2 , · ·xy x 1 φ(n) = log y r (mod p)x = C2log =M ynr (mod p)dgy =e g× (mod p) x 1 = g n) x φ(n) g g = y (mo y e d = 1 (mod φ(n)) × d = 1 e(mod φ(n)) g M = C /C (mod p) 2 B, = {b · · ·},ebφ(n)}d e C B =φ(n)) {b1=, bM 1 r 1 (mod 1·, b 2b, n 2 , ·y·r · (, × d = B = {b b , · · , AC== {ab , · · · , ab } = g (mod p) C M1e, ab (mod n) 1 2 φ(n) 2 1 2 φ(n) b2 × · · · × bφ(n) x d edC = b1 × kφ(n)+1 y = g x (mod x p) 28 φ(n) g g = y (mod p) x y 1 ≤ φ(n)px ga y ap−1 ≡ φ(n) g g x = y (mod p) 1≤ C dd = (M ee)dd = M eded= M kφ(n)+1 = (m d e M d Ckφ(n)+1 = (M ) = M r M C K e (M ) = M C gC (mod n) g x (mod p) xM= log y =CrM= = g (mod = p) MC2 =C1M r r d d C = g (mod p) C = M y (mod p) y M = C (mod n 1 2 r 13) r x C2 = 8 = 32 =C61(mod d x = log y r M = C (mod n) = g (mod p) C = my (mod p) y = g (mod p) g 2 (mod n e d eM × d==C1 (mod φ(n)) x n) rx xr r x C = g = g = y (mod p) e ) C g= ggr (mod = y p) (mod p) x 1 ≤ x, y 1 ≤ p−1 r xy = log x Mg Cg x = C y=(mo M C2log =M y r (mod p) gy y= gr (mod p) 1 x 5 9 x φ(n) x = y C1 =M6 ==810077696 r= C151,= 32, b=φ(n) 6 }(mod 13) g b22, ·= MM =eeCr2(mod /C1 (mod p) B 5= = {b · · r M C C = n) C = g (mod p) C = M y (m M C C = M (mod n) 1 2 x e d ed kφ(n)+1 g gxn) = yrx(mod n(Mexer)d d=y M e1× d x rp) ed≤dx x==(M log y r ) = M = M M (mod x= φ(n) 5 g C = 913) φ(n) g6aby(mod g= = yab (mod p) x g13)y= g1 ≤ =x,yy ≤(mod p − 1p) = C2 p=p=9=× 9= 3125 = 6= (mod 13) = 32== =19,28125 C = 13135 Cg= 282= 2g = x{ab 2 512 = 5 (mod A× , · · · , } 2 φ(n)x = 1log y r x 9 n ey6 C=1d d10077696 eye× 1 =(mod φ(n)) d=dg5= ed kφ(n)+1 x C = = (M ) = M M B = {b , · ·r(m · ,b 1 d φ(n) g g = y (mod p) x ≤ x, ≤ p − 1 5 1 ,=b2M d 2 = 32 e=d 6e(mod ed kφ(n)+1 d =9 r= n d e × d = 1 (mod φ(n)) 5 r M = C (mod n) M 5 C = 13) C = (M ) = M = M = M (mod n) 1 r = 5 C1 = 2 = 32 = 6 C M =C8 = (mod = C (mod n) p) C2 = M y (m 1 = g13)(mod b1 × b2 × · · · × bφ(n) φ(n) x g 28125 g == y6 (mod p) x 5 d d e d ed kφ(n)+1 C = 9 × 5 = 9 × 3125 = (mod 13) 1 = M dB {b ,(mod b39C · (mod ·n)+13) · 1, = bn) } 13) M = A =C{ab , abe 2(mo ,·· 92 = 1= 2×, 13 C p==(M =2M2xφ(n) = φ(n) 1M = 2 = 2 (mod 13) 5 × 8 = 40 1 (mod 13 )g = = 9 y = 2 = 512 = 5 (mod M C = 1 (mod n)= 2 = pe= a132 M gC2===2C2Cx (mod = 512dlog =g5y (mod x = r}d 13) x 9 13) 9yn) = (mod e ed kφ(n)+1 C 6 = 10077696 = 5 (mod 13) B = {b , b , · · · , b 2 C C d= M (mod n) 5 C = (M ) = M = M 1 1 2 φ(n) 4 = 4 M(mod = 9 13) r =C 5 CC1 = 2M=e 32 = 6C (mod 13)× b × · · M = (mod n) = b M = C (mod n)222 = 1e × d 2 =1 e −1 A =6×5 {ab5(mod abφ(n) ,=· ·48· g=, ab } x n e d = 4 =C4 M (mod 13) 1=, 6×8 2n) φ(n) C = M = 13×3+9 = 9 (mod 13) 3 M g = y (mod p) x d 2 = 8 = 8 C(mod 13) = 9 × 5 = 9 × 3125 = 28125 = 6 (mod 13) 2 9 M = Cy = (mod n) 38 p = 13 g = 2 x = 9 2 = 512 =φ(n)) 5 (mod 13) φ(n) 1 1 e (5 × 8 = 40 = 3 × 13 + 1 = 1 (mod 13)) e M d C e C×=d2M ==212421(mod (mod φ(n)) =1 = 1 (mod 15) n e d e × d = 1 (mod = 8 = 8 (mod 13) a C = C (mod n) 2 e2= (mod 13) =3dA 2x(mod = 2×9{ab (mod 13) = , ab , · · · , ab } 1 2 φ(n) = 13) d e d ed kφ(n)+1 B = {b , b , · · · , b n 16 e d = 1 (mod φ(n)) 2 M φ(n) } C =b ×b × C ·=· ·(M ) = M1 = 5× b y = g x (mod x p) 29 φ(n) g g = y (mod p) x y 1 ≤ φ(n)px ga y ap−1 ≡ φ(n) g g x = y (mod p) 1≤ C dd = (M ee)dd = M eded= M kφ(n)+1 = (m d e M d Ckφ(n)+1 = (M ) = M r M C K e (M ) = M C gC (mod n) g x (mod p) xM= log y =CrM= = g (mod = p) MC2 =C1M r r d k k − l H (S) d C = g (mod p) C = M y p) yn M = (mod 1 2 r M = C d (mod n) r xC(mod x = log y r C (mod p) C(mod myn)(mod p) yg = g (mod p) 1 =dg eM 2 = φ(n)) = C n e × d = 1 (mod x rx xr r x C = g = g = y (mod p) e ) C g= ggr (mod = y p) (mod p) x 1 ≤ x, y 1 ≤ p−1 r xy = log x Mg=Cg1 =(mo M x C(mod C =× M y8r = (mod p) = gr × (mod p) gy y= 3 1 2log (5 40 13 + 1 x φ(n) = y x = y MM =eeCr2(mod /C1 (mod p) B = {b1,g b2, M · · · , bC }C = r φ(n) n) C = g (mod p) C = M y (m M C C = M (mod n) 1 2 x e d ed kφ(n)+1 g gxn) = yrx(mod n(Mexer)d d=y M e1× d x rp) ed≤dx x==(M logg )y = r M =φ(n) M M (mod x= φ(n) −1 C = g, ·× = yab(mod p)6 = x g 8y= 1≤ x,y= y ≤(mod p −× 1p) = 5 = × = 48 13 3 C g = A =M {ab1= ,gab6 · · , } 2 φ(n)x = 1log y r n ey C1d d= eye× 1 =(mod φ(n)) d dg = ed kφ(n)+1 x (M ) = M M B = {b , · ·r(m · ,b d φ(n) g g = y (mod p) x ≤ x, ≤ p − 1 1 ,=b2M d e d e ed kφ(n)+1 d n d e × d = 1 (mod φ(n)) r M = C (mod n) C = (M ) = M = M = M (mod n) rb x× be × ·9· · × b =C M (mod C1 = g (mod C2 = M13) y (m x 5p) (mod M= /y=C (C C ) 1M 21 ,6 Cn)C2CC = (mod n) φ(n) = = 10077696 = 2 φ(n) g g = y (mod p) x 1 kφ(n)+1 d d e d ed {b ,(mod bC2 , · (mod ·n)· , bn) } A M1= =C{ab , abe 2(mo ,·· C = (M ) = M φ(n) = M = φ(n) 1M dB = M C = (mod n) n) x = logg y r e a MC ==CC B(mod d ,b e}d ed kφ(n)+1 5 = {b , b , · · · C Cnkd= eM (mod n) C = (M ) = M = M 1 2 φ(n) d e × d = 1 (mod φ(n)) C = 9 × 5 = 9 × 3125 = 28125 = k − l H(S) e 2 Me 1C, abC2 ,= M (mod n) C = b1e× bd2 × ·1· M = C (mod n) M C A =M {ab } x n e d × = φ(n) C= (mod φ(n) n) · · · g, ab d g = y (mod p) x M = C g x(mod r e 8 r 5rn) φ(n) C = g (mod p) C = my (mod p) y = (mod p)φ(n)) M = C /y B = {b , b , · · · , b } M = 9 r = 5 C = 2 = 32 = 6 e M d C (5 e C× = (mod φ(n)) 1× 2 13 1(mod =1 = 1× (mod 15) n1 e1= d2 ,(mod e × d = 1 (mod a C = C (mod 40 = 3 + 1 13)) 2 1=12 1 φ(n) =d8M n) A = {ab , ab · · · , ab } d = {b1ed · ·kφ(n)+1 , bφ(n)} n e dC e=×bd = φ(n)) 2 , ·M ×1b(mod × · ·(M ×eb)Bφ(n) C d ·= = M , b= 30 1 1 k n k n 1 k n 1 k H(S k |Z n ) K I(S ; Z ) Z ) k H(S |Z ) K I(S ; K R≡N K R≡N NK 1 K M = C2/y r (C , C ) Z 1 2 P ≡ ED (S , Ŝ ) H K 1 Ke K , Ŝ ) X N YPNe ≡ K EDH (SP (yz|x) XN Y N k k K − lK H(S) K P (yz|x) Pe ≡ Pr{Ŝ ̸= S } P ≡ Pr{ Ŝ K e S Ws K Rk ≥ h Rs ≥ H(S) Rs ≥ H(S) ̸= S K Rk ≥ S × 8 = 40 = X Bob N 1 =N1 (mod K Alice (5 3 SN× 13 + 13)) Y Z Ŝ K (Z) P < ε P >1−ε log MN Nlog Ms N K e K loge M s s K X Y Z Ŝ Rs = K S K Rk = −1 RŜs = ̸= S Pe ≡ Pr{ } Rk = K K M = 6 × 5 = 6 × 8 = 48 = 13 × 3 + 9 = 9 (mod Rs ≥ H(S) Rk ≥ h Ws ∈ {0, 1, · · · , Ms − 1} Wk ∈ {0, 1, · · · , Mk −W 1}s ∈ {0, CZ 1, · · · , M log Ms log Ms C1x = 69 = 10077696 = 5 (mod 13) R = R = N N s k 1 1 K K K1 K 1 X Y N N K H(S |W ) H(S |W ) ≥ h 0 ≤ h ≤ H(S) Ys K H(S |Ws) K H s K X K K K CSZ ≡}max I(X; Z) 5K r N P ≡ Pr{ Ŝ = ̸ K e =(CŜ91× 9 × 3125 =W28125 =1, 6· · ·(mod X, Ms −13) M = 1C2/y , ̸=C5S2) = PeC≡2 Pr{ }Z 1} W s ∈ {0, 1 ; W2 ) = r Bob R ≥ H(S) Rn! ≥! h1; W2) = r 1Alice s kI(W Eve n I(W Rs−nr ≥ H(S) Rk ≥ h 1 K K P( −nr 5 1 P ≈2 1 k n 1 k n |Z ) I(S 1 k n k1H(S k n 1 k )Kn 1 ; Z )k n ; Z 1 H(S |Z ) I(S ; Z ) k n 1k H(S k|Z )nK I(S k K K H(S |Z ) I(S ; Z ) K k K K R≡ R ≡ N R ≡ N K 1 k n 1 k Nn R≡N H(S |Z ) I(S 1 ;KZ1 ) K KK k K 1 K ≡e,KŜ≡ED) HED (S H,(S Ŝ ) , Ŝ K ) Pe ≡KK EDHP(S eP K R ≡ 1 KN K Pe ≡ EDH (S , Ŝ ) K Alice P (yz|x) SK XSNK YN 31 P (y|x) P (z|x) P (yz|x) P (yz|x) P (yz|x) K K PSe K≡ K1 EDH (S , Ŝ ) KS K S Bob P (yz|x) N N N N K max[I(X; K Y ) − I(X; PX(yz|x) NN NK K Y Z Ŝ N N K S XSX Y Y Z ZŜ Ŝ ≥ K SK S ∈ {0, 1, 2, · · · , M − 1} K S N H K N Z Ŝn n n X Y Z N NS N K Ŝ XS K Y Z Ŝ K min[I(X; Z P (y|x) P (z|x) ≤ N H K max[I(X; Y )−−H(X|Y I(X; Z), I(X; YY )− I(R H(X) ) = I(X; ) ≥ N H(S) log M R Z), ≥ H(X|Y ) KR =min[I(X; I(X; Y |Z)] N R≡N R N≡k N n K 1 1 k n R≡N 1 ;KZ1 ) K KK k H(S 1|Z ) P K I(S K ≡e,KŜ≡ED) HED (S H,(S Ŝ ) , Ŝ K ) Pe ≡KK EDH (S eP C≡ZKN K K R 1 Pe ≡ K EDH P (S(yz|x) , Ŝ )P (yz|x) P (yz|x) 1 P (y|x)K P (z|x) K P ≡ ED (S , Ŝ ) H K K P (yz|x) Se K K S 32 CZ C S Z C ≡ max I(X; Z) Z Bob P (yz|x) Alice X(yz|x) N N N N max[I(X; K N P K YNK) −ŜI(X; Z), I(X; Y ) K K X Y Z Ŝ N N N K S X Y Z S XS K ≥ Z Ŝ C ≡ max I(X S KY S ∈ {0, 1,(x, 2, y) · · · , M − 1} Z H(S) K ! ! N P S ! N N N K X XYS K) = Y Z Ŝlog I(X; P (x, y) n n n K min[I(X; Z), I(X; Y |Z) X Y Z I(X; Y ) = N NS P (x)P N K Ŝ (y) K K X(z|x) Y Z Ŝ x yP ≤Pe ≡! Pr{Ŝ! ̸= S } P (y|x) SK N H(S) x ! R ≥ H(S) R ≥ h s kP (x, y) I(X; Y ) = H(S) ≡ −P (s) log P (s) (Z) H(X) − H(X|Y ) = I(X; Y ) R ≥ H(X) Kε P max[I(X; Y ) − I(X; Z), I(X; Y ) − I(Y ; Z)] Pe < > 1 − ε ≥s e log Ms y log Ms x H(S) Rs = K Rk = K ≡ RN= K/N log M H(S) R < CY R > CZ R = N R ≥ H(X|Y ) C! P (y|x) C > K min[I(X; Z), I(X; Y Y|Z)] Z R = K/N CH(S) Z ≤ s Ws ∈ {0, 1, · · · ,−P Ms −(s) 1} H(S) ≡ N H(S) CY CZ CY ≡ max I(X; Y ) P·se·max[I(X; < ε− 1}Pe R < R > W ∈ {0, 1, · , M K N H(S) H(S) X 1 1 K H(X) − H(X|Y ) = I(X; Y ) R ≥ H(X) ZK |W≥ (Z) H(S ) H(S |W s s N K K C ≡ max I(X; Z) P < ε P > 1 − ε ! Z e CZ e X XCY (Z) N " # W Ŵ S (Z) P < ε P >1−ε R < R > 1 1 1 P < ε log e e 1 − ε H(S) H(S) e R = PeM > 1 R ≥ H(X|Y ) I(W1; W2) = r N CCZ
© Copyright 2024 ExpyDoc