ﻣﻨﻄﻖ ﻓﺎﺯﯼ ﺍﻋﺪﺍﺩﻓﺎﺯﯼ ﺗﻮﺍﺑﻊ ﻋﻀﻮﻳﺖ ﺩﮐﺘﺮ ﻣﺤﻤﺪ ﻋﻠﯽ ﺍﻓﺸﺎﺭ ﮐﺎﻇﻤﯽ ۱ ¢ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﯼ ۲ ¢ ﺗﺎﺑﻊ ﻭ ﺩﺭﺟﻪ ﻋﻀﻮﻳﺖ ۳ ¢ ﻋﻀﻮ ﭘﺸﺘﻴﺒﺎﻥ ۴ ¢ ﺑﺮﺵ ﺁﻟﻔﺎ ۵ ¢ ﮐﺎﻧﻮﻥ ۶ ¢ ﺑﻠﻨﺪﯼ ۷ ¢ ﻣﺠﻤﻮﻋﻪ ﻣﺴﺎﻭﯼ ﻳﺎ ﺗﺮﺍﺯ ۸ ¢ ﺯﻳﺮﻣﺠﻤﻮﻋﻪ ۹ ¢ ﻣﺠﻤﻮﻋﻪ ﺗﻬﯽ ﻓﺎﺯﯼ ۱۰ ¢ ﺍﻋﻤﺎﻝ ﺍﺳﺎﺳﯽ ﻣﺠﻤﻮﻋﻪ ﻫﺎ ۱۱ ¢ ﺧﻮﺍﺹ ﺍﻋﻤﺎﻝ ﻣﺠﻤﻮﻋﻪ ﺍﯼ ۱۲ ¢ ﺗﻔﺎﻭﺕ ﻣﺠﻤﻮﻋﻪ ﮐﻼﺳﻴﮏ ﻭ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﯼ ۱۳ ¢ ﻣﺜﺎﻝ ﻫﺎ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﯼ ¢ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﯼ ﺑﺮﺍﺳﺎﺱ ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﺗﻌﺮﻳﻒ ﻣﯽ ﺷﻮﺩ ﮐﻪ ﺗﺼﻮﻳﺮ ﻣﺠﻤﻮﻋﻪ ﻓﺮﺍﮔﻴﺮ ﺩﺭ ﺑﺎﺯﻩ ] ﺻﻔﺮ ﻭ ﻳﮏ [ ﺍﺳﺖ. ¢ ﻫﺮ ﻳﮏ ﺍﺯ ﺍﻋﻀﺎ ﺩﺭﺟﻪ ﻋﻀﻮﻳﺖ ﺩﺍﺭﻧﺪ . ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﯼ ﺍﺯ ﺗﻌﻤﻴﻢ ﻭ ﻋﻤﻮﻣﻴﺖ ﺩﺍﺩﻥ ﺗﺌﻮﺭﯼ ﻣﺠﻤﻮﻋﻪ ﻫﺎﯼ ﮐﻼﺳﻴﮏ ﺍﻳﺠﺎﺩ ﺷﺪ . ﺩﺭ ﺗﺌﻮﺭﯼ ﻣﺠﻤﻮﻋﻪ ﻫﺎﯼ ﮐﻼﺳﻴﮏ ٬ﻋﻀﻮﻳﺖ ﺍﻋﻀﺎ ﺩﺭ ﻳﮏ ﻣﺠﻤﻮﻋﻪ ﺑﻪ ﺻﻮﺭﺕ ﺟﻤﻼﺕ ﺑﺎﻳﻨﺮﯼ ﺑﺮ ﺍﺳﺎﺱ ﺷﺮﻁ ﺩﻭﺩﻭﺋﯽ ﺗﻌﻴﻴﻦ ﻣﯽ ﺷﻮﻧﺪ ﮐﻪ ﻳﮏ ﻋﻀﻮ ﻳﺎ ﺑﻪ ﻣﺠﻤﻮﻋﻪ ﺗﻌﻠﻖ ﺩﺍﺭﺩ ﻳﺎ ﻧﺪﺍﺭﺩ . ﺩﺭ ﺣﺎﻟﯽ ﮐﻪ ﺩﺭ ﺗﺌﻮﺭﯼ ﻓﺎﺯﯼ ﺩﺭﺟﺎﺕ ﻧﺴﺒﯽ ﻋﻀﻮﻳﺖ ﺍﻋﻀﺎ ﺩﺭ ﻣﺠﻤﻮﻋﻪ ﻣﺠﺎﺯ ﺍﺳﺖ. ﺗﺎﺑﻊ ﻭ ﺩﺭﺟﻪ ﻋﻀﻮﻳﺖ ¢ ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﺗﺎﺑﻌﯽ ﺍﺳﺖ ﺍﺯ ﺗﺼﻮﻳﺮﻣﺠﻤﻮﻋﻪ ﮐﻠﯽ ﺑﻪ Ù ﻧﺴﺒﺖ ﺑﻪ ﺑﺎﺯﻩ ﺑﺴﺘﻪ .[ 0٬1 ] ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﯼ A ﺑﺎ ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ μ A ﺩﺭ U ﺗﻌﺮﻳﻒ ﺷﺪﻩ ﺍﺳﺖ. ¢ ﻋﺪﺩﯼ ﮐﻪ ﺗﺎﺑﻊ ﺑﻪ ﻫﺮ ﻋﻀﻮ ﺍﺭﺯﺵ ﺩﻫﯽ ﻣﯽ ﻧﻤﺎﻳﺪ ﺩﺭﺟﻪ ﻋﻀﻮﻳﺖ ﺁﻥ ﻋﻀﻮ ﺩﺭ ﺁﻥ ﻣﺠﻤﻮﻋﻪ ﺭﺍ ﻣﺸﺨﺺ ﻣﯽ ﺳﺎﺯﺩ . ﺍﮔﺮ ﺩﺭﺟﻪ ﻋﻀﻮﻳﺖ ﻳﮏ ﻋﻨﺼﺮ ﺍﺯ ﻣﺠﻤﻮﻋﻪ ﺑﺮﺍﺑﺮ ﺑﺎ ﺻﻔﺮ ﺑﺎﺷﺪ ﺁﻥ ﻋﻀﻮ ﮐﺎﻣﻼ ﺍﺯ ﻣﺠﻤﻮﻋﻪ ﺧﺎﺭﺝ ﺍﺳﺖ ﻭﺍﮔﺮ ﺩﺭﺟﻪ ﻋﻀﻮﻳﺖ ﻳﮏ ﻋﻀﻮ ﺑﺮﺍﺑﺮ ﺑﺎ ﻳﮏ ﺑﺎﺷﺪﺁﻥ ﻋﻀﻮ ﮐﺎﻣﻼ ﺩﺭ ﻣﺠﻤﻮﻋﻪ ﻗﺮﺍﺭ ﺩﺍﺭﺩ ﻣﯽ ﺗﻮﺍﻥ ﻧﺘﻴﺠﻪ ﮔﺮﻓﺖ ﻣﺠﻤﻮﻋﻪ ﮐﻼﺳﻴﮏ ﻳﮏ ﺣﺎﻟﺖ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﯼ ﻳﻌﻨﯽ ﺯﻳﺮﻣﺠﻤﻮﻋﻪ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﯼ ﺍﺳﺖ . ﻭ ﺣﺎﻝ ﺍﮔﺮ ﺩﺭﺟﻪ ﻋﻀﻮﻳﺖ ﻳﮏ ﻋﻀﻮ ﻣﺎﺑﻴﻦ ﺻﻔﺮ ﻭﻳﮏ ﺑﺎﺷﺪ ﺍﻳﻦ ﻋﺪﺩ ﺑﻴﺎﻧﮕﺮ ﺩﺭﺟﻪ ﻋﻀﻮﻳﺖ ﺗﺪﺭﻳﺠﯽ ﻣﯽ ﺑﺎﺷﺪ. ¢ ﺍﺯﻟﺤﺎﻅ ﻣﻔﻬﻮﻣﯽ ﺩﺭ ﺿﻤﻦ ﻣﯽ ﺗﻮﺍﻧﺪ ﻫﺮ ﻣﺠﻤﻮﻋﻪ ﺑﺼﻮﺭﺕ ﺗﺪﺍﺧﻠﯽ ﺑﺎ ﺩﺭﺟﻪ ﺍﯼ ﺩﺭ ﻣﺠﻤﻮﻋﻪ ﺩﻳﮕﺮ ﻗﺮﺍﺭ ﮔﻴﺮﺩ . ﻣﺜﻼ ﺩﺭ ﻣﺘﻐﻴﺮ ﺯﺑﺎﻧﯽ ﺳﻦ ﺻﻔﺖ ﺟﻮﺍﻧﯽ ﺭﺍ ﻣﺪ ﻧﻈﺮ ﺑﮕﻴﺮﻳﻢ ﺣﺎﻝ ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ ﺍﻧﺘﺨﺎﺏ ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﻣﺎﻧﻨﺪ ﮔﺎﻭﺳﻴﺎﻥ ﺻﻔﺖ ﻣﻴﺎﻥ ﺳﺎﻟﯽ ﺑﺎ ﺩﺭﺟﻪ ﻋﻀﻮﻳﺖ ﮐﻢ ﻣﯽ ﺗﻮﺍﻧﺪ ﺩﺭ ﻣﺠﻤﻮﻋﻪ ﺻﻔﺖ ﺟﻮﺍﻧﯽ ﻗﺮﺍﺭ ﮔﻴﺮﺩ ﻭ ﺻﻔﺖ ﭘﻴﺮﯼ ﻧﻴﺰ ﺑﺎ ﺩﺭﺟﻪ ﻋﻀﻮﻳﺖ ﮐﻤﺘﺮﯼ ﺩﺭﻣﺠﻤﻮﻋﻪ ﺻﻔﺖ ﺟﻮﺍﻧﯽ ﻇﺎﻫﺮ ﻣﯽ ﺷﻮﺩ. MEMBERSHIP FUNCTIONS ¢A ﻋﻀﻮﻳﺖ ﺗﺎﺑﻊ membership function (MF) is a curve that defines how each point in the input space is mapped to a membership value (or degree of membership) between 0 and 1. The input space is sometimes referred to as the universe of discourse. ¢ One of the most commonly used examples of a fuzzy set is the set of tall people. In this case, the universe of discourse is all potential heights, say from 3 feet to 9 feet, and the word tall would correspond to a curve that defines the degree to which any person is tall. If the set of tall people is given the welldefined (crisp) boundary of a classical set, you might say all people taller than 6 feet are officially considered tall. ﻧﻤﺎﺩﯼ ﺍﺯ ﻓﺎﺯﯼ ﻭ ﮐﻼﺳﻴﮏ ﻣﻘﺎﺩﻳﺮ ﻓﺎﺯﯼ ﻣﻘﺎﺩﻳﺮ ﻓﺎﺯﯼ ﻋﻀﻮ ﭘﺸﺘﻴﺒﺎﻥ ﺍﻋﻀﺎﯼ ﺍﺯﻣﺠﻤﻮﻋﻪ ﺍﺻﻠﯽ ﺍﻧﺪ ﺑﺮﺍﯼ ﺁﻧﻬﺎ ﺩﺭﺟﻪ ﻋﻀﻮﻳﺖ ﻏﻴﺮ ﺻﻔﺮ ﺑﺮﺍﺳﺎﺱ ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﺗﻌﻴﻴﻦ ﻣﯽ ﮔﺮﺩﺩ ﺩﺭﻭﺍﻗﻊ ﺣﺎﻣﯽ ﻭﭘﺸﺘﻴﺒﺎﻥ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﯼ ﺍﻧﺪ. ﺑﺮﺵ ﺁﻟﻔﺎ: ﻣﺠﻤﻮﻋﻪ ﺍﯼ ﺍﺯ ﺗﻤﺎﻡ ﻋﻨﺎﺻﺮ ﻣﺮﺑﻮﻁ ﺑﻪ ﺩﺍﻣﻨﻪ ﺍﯼ ﺍﺯ ﻣﺠﻤﻮﻋﻪ ﺍﺻﻠﯽ ﺑﺎ ﺩﺭﺟﻪٴ ﻋﻀﻮﻳﺖ ﺑﻴﺸﺘﺮ ﻳﺎ ﻣﺴﺎﻭﯼ ﺁﻟﻔﺎ CORE ﮐﺎﻧﻮﻥ ﺍﻋﻀﺎﯼ ﮐﺎﻧﻮﻥ ﺍﻋﻀﺎﻳﯽ ﺍﺯ ﻣﺠﻤﻮﻋﻪ ﺍﺻﻠﯽ ﺍﻧﺪ ﮐﻪ ﺑﺮﺍﯼ ﺁﻥ ﻫﺎ ﺩﺭﺟﻪ ﻋﻀﻮﻳﺖ ٬ﺑﺮﺍﺳﺎﺱ ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﺑﺮﺍﺑﺮ » ﻳﮏ « ﺍﺭﺯﺵ ﺩﻫﯽ ﻣﯽ ﺷﻮﺩ. ﺍﺭﺗﻔﺎﻉ HEIGHT ﺩﺍﻣﻨﻪ ﻓﻮﻗﺎﻧﯽ ﺩﺭﺟﺎﺕ ﻋﻀﻮﻳﺖ ﺭﺍ ﮔﻮﻳﻨﺪ ﺩﺭﺣﺎﻟﺖ ﺍﺳﺘﺎﻧﺪﺍﺭﺩ ﺑﺮﺍﺑﺮ " ﻳﮏ" ﺍﺳﺖ. ¢ TRIMF TRIANGULARSHAPED MEMBERSHIP FUNCTION ¢ The triangular curve is a function of a vector, x, and depends on three scalar parameters a, b, and c, as given by ¢ Example x=0:0.1:10; y=trimf(x,[3 6 8]); plot(x,y) xlabel('trimf, P=[3 6 8]') TRAPMF TRAPEZOIDALSHAPED MEMBERSHIP FUNCTION ¢ Description The trapezoidal curve is a function of a vector, x, and depends on four scalar parameters a, b, c, and d, as given by y = trapmf(x,[a b c d]) ¢ Examples x=0:0.1:10; y=trapmf(x,[1 5 7 8]); plot(x,y) xlabel('trapmf, P=[1 5 7 8]') GAUSSMF GAUSSIAN CURVE MEMBERSHIP FUNCTION ¢ Description The symmetric Gaussian function depends on two parameters σ and c as given by y = gaussmf(x,[sig c]) Examples x=0:0.1:10; ¢ y=gaussmf(x,[2 5]); plot(x,y) xlabel('gaussmf, P=[2 5]') GAUSS2MF GAUSSIAN COMBINATION MEMBERSHIP FUNCTION ¢ Description The Gaussian function depends on two parameters sig and c as given by The function gauss2mf is a combination of two of these two parameters. The first function, specified by sig1 and c1, determines the shape of the leftmost curve. The second function specified by sig2 and c2 determines the shape of the rightmost curve. Whenever c1 < c2, the gauss2mf function reaches a maximum value of 1. Otherwise, the maximum value is less than one. The parameters are listed in the order: [sig1, c1, sig2, c2] GAUSS2MF GAUSSIAN COMBINATION MEMBERSHIP FUNCTION ¢ Example x = (0:0.1:10)'; y1 = gauss2mf(x, [2 4 1 8]); y2 = gauss2mf(x, [2 5 1 7]); y3 = gauss2mf(x, [2 6 1 6]); y4 = gauss2mf(x, [2 7 1 5]); y5 = gauss2mf(x, [2 8 1 4]); plot(x, [y1 y2 y3 y4 y5]); set(gcf, 'name', 'gauss2mf', 'numbertitle', 'off'); GBELLMF GENERALIZED BELLSHAPED MEMBERSHIP FUNCTION ¢ Description The generalized bell function depends on three parameters a, b, and c as given by x=0:0.1:10; y=gbellmf(x,[2 4 6]); plot(x,y) xlabel('gbellmf, P=[2 4 6]') where the parameter b is usually positive. The parameter c locates the center of the curve. Enter the parameter vector params, the second argument for gbellmf, as the vector whose entries are a, b, and c, respectively SIGMF SIGMOID SHAPED MEMBERSHIP FUNCTION ¢ Syntax ¢ y = sigmf(x,[a c]) ¢ Description The sigmoidal function, sigmf(x,[a c]), as given in the following equation by f(x,a,c) is a mapping on a vector x, and depends on two parameters a and c. Examples x=0:0.1:10; y=sigmf(x,[-2 4]); plot(x,y) xlabel('sigmf, P=[2 4]') Depending on the sign of the parameter a, the sigmoidal membership function is inherently open to the right or to the left, and thus is appropriate for representing concepts such as "very large" or "very negative." PSIGMF BUILTIN MEMBERSHIP FUNCTION COMPOSED OF PRODUCT OF TWO SIGMOIDALLY SHAPED MEMBERSHIP FUNCTIONS Syntax y = psigmf(x,[a1 c1 a2 c2]) Description The sigmoid curve plotted for the vector x depends on two parameters a and c as given by psigmf is simply the product of two such curves plotted for the values of the vector x f1(x; a1, c1) × f2(x; a2, c2) The parameters are listed in the order [a1 c1 a2 c2]. ¢ Examples ¢ x=0:0.1:10; ¢ y=psigmf(x,[2 3 5 8]); ¢ plot(x,y) xlabel('psigmf, P=[2 3 5 8]') DSIGMF BUILTIN MEMBERSHIP FUNCTION COMPOSED OF DIFFERENCE BETWEEN TWO SIGMOIDAL MEMBERSHIP FUNCTIONS Syntax y = dsigmf(x,[a1 c1 a2 c2]) Description The sigmoidal membership function used depends on the two parameters a and c and is given by ¢ ¢ The membership function dsigmf depends on four parameters, a1, c1, a2, and c2, and is the difference between two of these sigmoidal functions. f1(x; a1, c1) f2(x; a2, c2) ¢ The parameters are listed in the order: [a1 c1 a2 c2]. ¢ Examples ¢ x=0:0.1:10; ¢ y=dsigmf(x,[5 2 5 7]); ¢ plot(x,y) ¢ xlabel('dsigmf, P=[5 2 5 7]') PIMF ΠSHAPED BUILTIN MEMBERSHIP FUNCTION Syntax y = pimf(x,[a b c d]) Description The membership function is evaluated at the points determined by the vector x. The parameters a and d locate the "feet" of the curve, while b and c locate its "shoulders." The membership function is a product of smf and zmf membership functions, and is given by: PIMF ΠSHAPED BUILTIN MEMBERSHIP FUNCTION ¢ Examples ¢ x=0:0.1:10; ¢ y=pimf(x,[1 4 5 10]); ¢ plot(x,y) xlabel('pimf, P=[1 4 5 10]') SMF SSHAPED BUILTIN MEMBERSHIP FUNCTION Syntax y = smf(x,[a b]) Description This splinebased curve is a mapping on the vector x, and is named because of its Sshape. The parameters a and b locate the extremes of the sloped portion of the curve, as given by: SMF SSHAPED BUILTIN MEMBERSHIP FUNCTION ¢ Examples ¢ x=0:0.1:10; ¢ y=smf(x,[1 8]); ¢ plot(x,y) ¢ xlabel('smf, P=[1 8]') ZMF ZSHAPED BUILTIN MEMBERSHIP FUNCTION Syntax y = zmf(x,[a b]) Description This splinebased function of x is so named because of its Z shape. The parameters a and b locate the extremes of the sloped portion of the curve as given by. ZMF ZSHAPED BUILTIN MEMBERSHIP FUNCTION Examples x=0:0.1:10; y=zmf(x,[3 7]); plot(x,y) xlabel('zmf, P=[3 7]') Logical Operations ﻣﺠﻤﻮﻋﻪ ﻣﺴﺎﻭﯼ ﻳﺎ ﺗﺮﺍﺯ ﻣﺠﻤﻮﻋﻪ ﺍﯼ ﮐﻪ ﺩﺭﺟﺎﺕ ﻋﻀﻮﻳﺖ ﺁﻥ ﺑﺎ ﺩﺭﺟﺎﺕ ﻋﻀﻮﻳﺖ ﻣﺠﻤﻮﻋﻪ ﻣﻮﺭﺩ ﻧﻈﺮ ǚ ﺍﺳﺖ. ﺯﻳﺮﻣﺠﻤﻮﻋﻪ: ﻣﺠﻤﻮﻋﻪ ﺍﯼ ﮐﻪ ﺗﻤﺎﻣﯽ ﺩﺭﺟﺎﺕ ﻋﻀﻮﻳﺖ ﺁﻥ ﺍﺯﺩﺭﺟﺎﺕ ﻋﻀﻮﻳﺖ ﻣﺠﻤﻮﻋﻪ ﻣﻮﺭﺩﻧﻈﺮ ﮐﻤﺘﺮﺍﺳﺖ. ﻣﺠﻤﻮﻋﻪ ﺗﻬﯽ ﻓﺎﺯﯼ: ﺍﺳﺖ ﮐﻪ ﺑﺮﺍﯼ ﺗﻤﺎﻣﯽ ﻋﻨﺎﺻﺮ ﺁﻥ ٬ﺍﺭﺯﺵ ﺗﺎﺑﻊΦ ﻣﺠﻤﻮﻋﻪ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﯼ ﻋﻀﻮﻳﺖ ﺻﻔﺮ ﺑﺎﺷﺪ ﺍﻋﻤﺎﻝ ﺍﺳﺎﺳﯽ ﻣﺠﻤﻮﻋﻪ ﻫﺎ ( 1 ﺍﺟﺘﻤﺎﻉ ( 2 ﺍﺷﺘﺮﺍﮎ ( 3 ﻣﺘﻤﻢ ﺍﺟﺘﻤﺎﻉ: ﺍﺷﺘﺮﺍﮎ ﻣﺘﻤﻢ ﻳﺎ ﻣﮑﻤﻞ ﺗﻔﺎﻭﺕ ﻣﺠﻤﻮﻋﻪ ﮐﻼﺳﻴﮏ ﻭ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﯼ ¢ ﺩﻟﻴﻞ ﺍﺻﻠﯽ ﺗﻘﺴﻴﻢ ﺑﻨﺪﯼ ﻣﺠﻤﻮﻋﻪ ﮐﻼﺳﻴﮏ ﻭ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﯼ ﺑﺎ ﻭﺟﻮﺩ ﺗﺸﺎﺑﻬﺎﺕ ﺧﺎﺹ ٬ﻋﺪﻡ ﺗﺒﻌﻴﺖ ﺑﻌﻀﯽ ﺍﺯ ﻗﻮﺍﻧﻴﻦ ﺍﺳﺖ: ( 1 ﺩﺭ ﺗﺌﻮﺭﯼ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﯼ ﺗﻮﺍﺑﻊ ﻋﻀﻮﻳﺖ ﺑﮑﺎﺭ ﻣﯽ ﺭﻭﺩ. . Җ Ắ Ǜһ Қ Ǜ Ұ ấ ǚ Қ ǚ ( 2 ( 3 ﺍﺟﺘﻤﺎﻉ ﻣﺠﻤﻮﻋﻪ ﺑﺎ ﻣﺘﻤﻤﺶ ﺑﺮﺍﺑﺮﺑﺎﻳﮏ ﻣﺠﻤﻮﻋﻪ ﮐﻞ ﻧﻴﺴﺖ. ﺧﻮﺍﺹ ﺍﻋﻤﺎﻝ ﻣﺠﻤﻮﻋﻪ ﺍﯼ ﺗﻮﺍﺑﻊ ﻋﻀﻮﻳﺖ ﺯﻧﮕﻮﻟﻪ ﺍﯼ ﺷﮑﻞ ﻓﺎﺯﯼ ﺳﺎﺯﯼ ﻣﺘﻐﻴﺮﻫﺎ FUZZYFICATION ¢ ﺷﻨﺎﺳﺎﻳﯽ ﺻﻔﺖ ﻣﻮﺭﺩ ﻧﻈﺮ ﺑﺮﺍﯼ ﺍﻓﺮﺍﺯ ﻣﺠﻤﻮﻋﻪ ¢ ﻣﺸﺨﺺ ﮐﺮﺩﻥ MIN ﻭ MAX ﺻﻔﺖ ¢ ﺗﻘﺴﻴﻢ ﺑﻨﺪﯼ ﻣﺠﻤﻮﻋﻪ ﻣﺮﺟﻊ ﺑﻪ ﺯﻳﺮﻣﺠﻤﻮﻋﻪ ﻫﺎﯼ ﻣﻨﺎﺳﺐ ) ﺧﻄﯽ – ﻏﻴﺮ ﺧﻄﯽ( ¢ ﺍﻧﺘﺨﺎﺏ ﻳﮏ ﻧﺎﻡ ﻣﻨﺎﺳﺐ ﺑﺮﺍﯼ ﻫﺮ ﻣﺠﻤﻮﻋﻪ ¢ ﺗﺨﺼﻴﺺ ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﻣﻨﺎﺳﺐ ﻣﺜﺎﻝ ﻫﺎ ﺧﻮﺩ ﻟﻄﻔﯽ ﺯﺍﺩﻩ ﻣﺜﺎﻝ ﺧﻮﺑﯽ ﺍﺯ ﺗﻌﺮﻳﻒ ﺗﺎﺑﻊ ﻋﻀﻮﻳﺖ ﺩﺭ ﻣﺠﻤﻮﻋﻪ ﻓﺎﺯﯼ ﺍﺳﺖ . ﺗﻌﻴﻴﻦ ﻗﻮﻣﻴﺖ ﻟﻄﻔﯽ ﺯﺍﺩﻩ ﺗﺎ ﺣﺪﯼ ﺳﺨﺖ ﺍﺳﺖ . ﭘﺪﺭ ﺍﻭ ﻳﮏ ﺗﺮﮎ ﺍﻳﺮﺍﻧﯽ ) ﺁﺫﺭﺑﺎﻳﺠﺎﻧﯽ ( ﻭ ﻣﺎﺩﺭﺵ ﺭﻭﺳﯽ ﻳﻬﻮﺩﯼ ﺑﻮﺩ . ﭘﺪﺭ ﺍﻭ ﻳﮏ ﺭﻭﺯﻧﺎﻣﻪ ﻧﮕﺎﺭ ﻣﺸﻐﻮﻝ ﺑﻪ ﮐﺎﺭ ﺩﺭ ﺑﺎﮐﻮ ٬ﺟﻤﻬﻮﺭﯼ ﺁﺫﺭﺑﺎﻳﺠﺎﻥ ﺩﺭ ﺍﺗﺤﺎﺩ ﺟﻤﺎﻫﻴﺮ ﺷﻮﺭﻭﯼ ﺳﺎﺑﻖ ﺑﻮﺩ . ﺍﻭ ﺑﻪ ﻋﻨﻮﺍﻥ ﻳﮏ ﺧﺒﺮﻧﮕﺎﺭ ﺑﺮﺍﯼ ﺭﻭﺯﻧﺎﻣﻪ ﻫﺎﯼ ﺍﻳﺮﺍﻥ ﺧﺪﻣﺖ ﮐﺮﺩﻩ ﺍﺳﺖ ﺩﺭ ﺣﺎﻟﯽ ﮐﻪ ﺧﺮﻳﺪ ﻭ ﻓﺮﻭﺵ ﺗﺠﺎﺭﺕ ﺻﺎﺩﺭﺍﺕ ﻭ ﻭﺍﺭﺩﺍﺕ ﻧﻴﺰﻣﯽ ﮐﺮﺩ . ﻣﺎﺩﺭ ﺍﻭ ﭘﺰﺷﮏ ﻣﺘﺨﺼﺺ ﺍﻃﻔﺎﻝ ﺑﻮﺩ . ﻟﻄﻔﯽ ﺯﺍﺩﻩ ﺩﺭ ﺑﺎﮐﻮ ﺩﺭ ﺳﺎﻝ ۱۹۲۱ ﻣﺘﻮﻟﺪ ﺷﺪ ﻭ ﺩﺭ ﺁﻧﺠﺎ ﺯﻧﺪﮔﯽ ﻣﯽ ﮐﺮﺩﻧﺪ ﺗﺎ ﺧﺎﻧﻮﺍﺩﻩ ﺩﺭ ﺳﺎﻝ ۱۹۳۱ ﺑﻪ ﺗﻬﺮﺍﻥ ﻣﻨﺘﻘﻞ ﺷﺪ ﺩﺑﻴﺮﺳﺘﺎﻥ ﻭﺩﺍﻧﺸﮕﺎﻩ ﺩﺭ ﺍﻳﺮﺍﻥ ﺗﻤﺎﻡ ﮐﺮﺩ ﻭﻟﯽ ﻓﻮﻕ ﻟﻴﺴﺎﻧﺲ ﻭ ﺩﮐﺘﺮﯼ ﺭﺍ ﺩﺭ ﺍﻳﺎﻻﺕ ﻣﺘﺤﺪﻩ ﺧﻮﺍﻧﺪ. RELATION ﺭﺍﺑﻄﻪ FUZZY CRISP ﺩﮐﺘﺮ ﺍﻓﺸﺎﺭ ﮐﺎﻇﻤﯽ ﺍﻧﻮﺍﻉ ﺭﺍﺑﻄﻪ ( 1 ﮐﻼﺳﻴﮏ ( 2 ﻓﺎﺯﯼ CLASSICAL RELATIONS Cartesian Product ﮐﻼﺳﻴﮏ ﺭﻭﺍﺑﻂ CLASSICAL RELATIONS ﮐﻼﺳﻴﮏ ﺭﻭﺍﺑﻂ ﮐﻼﺳﻴﮏ ﺭﺍﺑﻄﻪ X={x1,x2,x3,x4} Y={y1,y2,y3,y4,y5} A={(x1,0),(x2,1),(x3,1),(x4,0)} B={(y1,1),(y2,0),(y3,1),(y4,1),(y5,0)} ﻣﺎﺗﺮﻳﺲ ﺭﺍﺑﻄﻪ Y1 Y2 Y3 Y4 Y5 X1 0 0 0 0 0 X2 1 0 1 1 0 X3 1 0 1 1 0 X4 0 0 0 0 0 MIN{0,1}=0 MIN{1,1}=1 NULLRELATION 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ﮐﺎﻣﻞ ﺭﺍﺑﻄﻪ COMPLEMENT RELATION 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 OPERATIONS ON CRISP RELATION R1 ﻣﺘﻤﻢ R1 Y1 Y2 Y3 Y4 Y5 X1 0 1 1 0 1 X2 0 0 0 1 1 X3 1 1 0 0 0 R2 Y1 Y2 Y3 Y4 Y5 X1 1 1 0 0 1 X2 1 0 0 1 0 X3 1 0 0 0 0 ﻣﺘﻤﻢ R1 Y1 Y2 Y3 Y4 Y5 X1 1 0 0 1 0 X2 1 1 1 0 0 X3 0 0 1 1 1 R 1 U R 2 x 1 y1 1 y2 1 y3 1 y4 0 y 5 1 x 2 1 0 0 1 1 x 3 1 1 0 0 0 R1 I R 2 y1 y2 y3 y4 y 5 x 1 x 2 0 0 1 0 0 0 0 1 1 0 x 3 1 0 0 0 0 COMPOSITION ﺗﺮﮐﻴﺐ XRY & YSZ ﺭﻭﺍﺑﻂ ﺗﺮﮐﻴﺐ R Y1 Y2 Y3 Y4 X1 1 0 1 0 X2 1 0 1 1 X3 1 0 1 1 S Z1 Z2 Y1 0 0 Y2 1 0 Y3 0 1 Y4 1 0 T=ROS MAXMIN Z1 Z2 X1 0 1 X2 1 1 X3 1 0 MAXPRODUCT Z1 Z2 X1 0 1 X2 1 1 X3 1 1 FUZZY RELATIONS ì 0.4 0.7 0.1 ü ° A = í , , ý î x1 x 2 x 3 þ ì 0.5 0.8 ü ° B = í , ý î y1 y 2 þ ﻓﺎﺯﯼ ﺭﻭﺍﺑﻂ ﻓﺎﺯﯼ ﺭﻭﺍﺑﻂ X={X1,X2,X3,X4} Y={Y1,Y2,Y3,Y4,Y5} A={(X1,0.2),(X2,0.8),(X3,1),(X4,0.4)} B={(Y1,0),(Y2,0.3),(Y3,0.6),(Y4,0.8),(Y5,0.5)} Y1 Y2 Y3 Y4 Y5 X1 0 0.2 0.2 0.2 0.2 X2 0 0.3 0.6 0.8 0.5 X3 0 0.3 0.6 0.8 0.5 Min(0.2,0.6)=0. 2 Min(0.2,0.8)=0.2 X4 0 0.3 0.4 0.4 0.4 Min(0.2,0.5)=0.2 Min(0.2,0)= 0 Min(0.2,0.3)=0.2 ﻋﻤﻠﻴﺎﺕ ﺑﺮ ﺭﻭﯼ ﺭﺍﺑﻄﻪ ﻫﺎﯼ ﻓﺎﺯﯼ ﺍﺟﺘﻤﺎﻉ: ﺍﺷﺘﺮﺍﮎ: ﻣﺘﻤﻢ: OPERATIONS ON FUZZY RELATIONS COMPOSITION OF FUZZY RELATION ﺗﺮﮐﻴﺐ ﻓﺎﺯﯼ ﻓﺎﺯﯼR Y4 Y3 Y2 Y1 0 0.8 0 0.4 X1 0.8 0.4 0 0.5 X2 0.5 0 0.2 0.3 X3 Z2 Z1 ﻓﺎﺯﯼ S 0 0 Y1 0 0.3 Y2 0.5 0 Y3 0 0.7 Y4 T=ROS= T = ROS= MAXMIN Z1 Z2 X1 0 0.5 X2 0.7 0.4 X3 0.5 0 MAX PRODUCT Z1 Z2 X1 0 0.4 X2 0.56 0.2 X3 0.35 0 ﺩﮐﺘﺮ ﻣﺤﻤﺪ ﻋﻠﯽ ﺍﻓﺸﺎﺭ ﮐﺎﻇﻤﯽ ﺍﺳﺘﻨﺘﺎﺝ ﻓﺎﺯﯼ FIS FUZZY INFERENCE SYSTEM Knowledge Base Data base Non fuzzy FUZZIFY Rule base Inference Engine FIS DEFUZZY Non fuzzy – a rule base containing a number of fuzzy IF– THEN rules; – a database which defines the membership functions of the fuzzy sets used in the fuzzy rules; – a decisionmaking unit which performs the inference operations on the rules; – a fuzzification interface which transforms the crisp inputs into degrees of match with linguistic values; – a defuzzification interface which transforms the fuzzy results of the inference into a crisp output. The steps of fuzzy reasoning (inference operations upon fuzzy IF–THEN rules) performed by FISs are: 1. Compare the input variables with the membership functions on the antecedent part to obtain the membership values of each linguistic label. (this step is often called fuzzification.) 2. Combine (through a specific tnorm operator, usually multiplication or min) the membership values on the premise part to get firing strength (weight) of each rule. 3. Generate the qualified consequents (either fuzzy or crisp) or each rule depending on the firing strength. 4. Aggregate the qualified consequents to produce a crisp output. (This stepis called defuzzification.) FORMATION OF RULES (1) Assignment statements ¢ (2) Conditional statements ¢ (3) Unconditional statements ¢ ASSIGNMENT STATEMENTS These statements are those in which the variable is assignment with the value. The variable and the value assigned are combined by the assignment operator “=.” The assignment statements are necessary in forming fuzzy rules. The value to be assigned may be a linguistic term. ¢ y = low, ¢ Sky color = blue, ¢ Climate = hot ¢a=5 ¢p=q+r ¢ Temperature = high CONDITIONAL STATEMENTS In this statements, some specific conditions are mentioned, if the conditions are satisfied then it enters the following statements, called as restrictions. If x = y Then both are equal, ¢ If Mark > 50 Then pass, ¢ If Speed > 1, 500 Then stop. ¢ These statements can be said as fuzzy conditional statements, such as If condition C Then restriction F UNCONDITIONAL STATEMENTS There is no specific condition that has to be satisfied in this form of statements. Some of the unconditional statements are: ¢ ¢ ¢ Go to F/o Push the value Stop The control may be transferred without any appropriate conditions. The unconditional restrictions in the fuzzy form can be: ¢ ¢ ¢ ¢ ¢ R1 : Output is B1 AND R2 : Output is B2 AND . . . , etc. DECOMPOSITION OF RULES IF x = y THEN both are equal ELSE ¢ IF x = y THEN ¢ IF x > y THEN X is highest ELSE ¢ IF y > x THEN Y is highest ELSE ¢ IF x and y are equal to zero THEN no output is obtained ¢ MULTIPLE CONJUNCTION ANTECEDENTS ¢ There are various methods for decomposition of rules. They are : Since it involves linguistic “AND” connective ¢ IF x is P1 AND P2 · · · AND Pn THEN y is Qr, where ¢ Pr = P1 AND P2 · · · OR Pn . The membership for this can be ¢ μPr(x) = min [μP1(x) , μP2(x) , . . . , μPn(x)] Hence the rule can be ¢ IF x is Pr THEN Qr MULTIPLE DISJUNCTIVE ANTECEDENTS This uses fuzzy union operations. It involves linguistic “OR” connections ¢ IF x is P1 OR P2 · · · OR Pn THEN y is Qr, where ¢ Pr = P1 OR P2· · · OR Pn The membership for this can be ¢ μPr (x) = max[μP1(x) , μP2(x) , . . . , μPn(x)]. Hence the rule can be ¢ IF x is Pr THEN y is Qr ¢ CONDITIONAL STATEMENTS WITH ELSE (a) IF P1 THEN (Q1 ELSE Q2). Considering this as one compound statement, splitting this into two canonical form rules, we get IF P1 THEN Q1 OR IF NOT P1 THEN Q2. ¢ (b) IF P1 THEN (Q1 ELSE P2 THEN (Q2)). The decomposition for this can be of the form ¢ IF P1 THEN Q1 OR IF NOT P1 AND P2 THEN Q2. NESTED IF–THEN RULES IF P1 THEN (IF P2 THEN (Q2). This can be decomposed into ¢ IF P1 AND P2 THEN Q1. ¢ AGGREGATION OF FUZZY RULES IF–THEN RULES “IF X is A THEN Y is B,” where A and B are fuzzy sets If A1 then B1 ¢ If A2 then B2 ¢ If A3 then B3 ¢. ¢. ¢ If An then Bn ¢ ZADHE MAX – MIN ¢ : IF X is A THEN Y is B R = ( A% * B% ) U ( A% * Y ) m R ( x , y ) = M AX [m in{ m A ( x ), m B ( y )}, m in{1 - m A ( x ),1}] m R ( x , y ) = MAX [min{ m A ( x ), m B ( y )},{1 - m A ( x )}] X_: UNIVERSE SET OF PRICE Y_: UNIVERSE SET OF DEMAND X = {100, 200, 300, 400) Y = {1, 2 , 3 , 4 , 5 , 6} 1 1 1 1 X = { , , , ) 100 200 300 400 1 1 1 1 1 1 Y = { , , , , , } 1 2 3 4 5 6 Very cheap=A1 ¢ cheap=A2 ¢ Medium price=A3 ¢ expensive =A4 ¢ Very expensive=A5 ¢ Very low demand=B1 ¢ Low demand=B2 ¢ Medium demand=B3 ¢ High demand=B4 ¢ Very high demand=B5 ¢ X = {100, 200, 300, 400) 1 1 1 1 X = { , , , ) 100 200 300 400 Y = {1, 2 , 3 , 4 , 5 , 6} 1 1 1 1 1 1 Y = { , , , , , } 1 2 3 4 5 6 IF X is Medium price of CPU THEN Y is Medium demand of CPU In market R3: IF A3 then B3 R 3 = ( A% 3 * B% 3 ) U ( A% 3 * Y ) m R 3 ( x, y ) = MAX [min{m A ( x), m B ( y )},{1 - m A 3 ( x)}] A* B = min{mA ( x), mB ( y)} A3=MEDIUM PRICE OF CPU ={(1,0),(2,0.6),(3,1),(4,0.2)} B3=MEDIUM DEMAND IN MARKET={(2,0.4),(3,1),(4,0.8),(5,0.3)} Or A3 ={(1 ,0),(2,0.6),(3,1),(4,0.2)} B3 ={(1,0),(2,0.4),(3,1),(4,0.8),(5,0.3),(6,0)} A3*B3 1 2 3 4 5 6 100 0 0 0 0 0 0 200 0 0.4 0.6 0.6 0.3 0 300 0 0.4 1 0.8 0.3 0 400 0 0.2 0.2 0.2 0.2 0 A*Y=min{1- mA (x),1} Y={(1,1),(2,1),(3,1),(4,1),(5,1),(6,1)} A3={(1,0),(2,0.6),(3,1),(4,0.2)} A 3 ={(1,1),(2,0.4),(3,0),(4,0.8)} A 3 *Y 1 2 3 4 5 6 100 1 1 1 1 1 1 200 0.4 0.4 0.4 0.4 0.4 0.4 300 0 0 0 0 0 0 400 0.8 0.8 0.8 0.8 0.8 0.8 R = ( A% * B% ) U ( A% * Y ) m R 3 ( x, y ) = MAX [min{m A3 ( x), m B 3 ( y )},{1 - m A 3 ( x)}] A*B 1 2 3 4 5 6 A 3 *Y 1 2 3 4 5 6 1 1 1 1 1 1 1 2 0.4 0.4 0.4 0.4 0.4 0.4 100 0 0 0 0 0 0 200 0 0.4 0.6 0.6 0.3 0 300 0 0.4 1 0.8 0.3 0 3 0 0 0 0 0 0 400 0 0.2 0.2 0.2 0.2 0 4 0.8 0.8 0.8 0.8 0.8 0.8 Rule 1 2 3 4 5 6 1 1 1 1 1 1 1 2 0.4 0.4 0.6 0.6 0.4 0.4 3 0 0.4 1 0.8 0.3 0 4 0.8 0.8 0.8 0.8 0.8 0.8 INFERENCE IF X IS A THEN Y IS ? ¢ IF A THEN B :RULEà expert ¢ IF A` THEN ?: Artificial Intelligence (Inference Engine) ? = MAX [min{ m A ' ( x ), m RULE ( x , y )} IF X is cheapprice of CPU THEN Y is ? R: IF A2 then ? ¢ A2={(1,0.5),(2,1),(3,0.3),(4,0)} A` Rule 1 2 3 4 5 6 0.5 1 1 1 1 1 1 1 1 2 0.4 0.4 0.6 0.6 0.4 0.4 0.3 3 0 0.4 1 0.8 0.3 0 0 4 0.8 0.8 0.8 0.8 0.8 0.8 MAX{MIN[(0.5,1),(1,0.4),(0.3,0),(0,0.8)} ¢ MAX{0.5,0.4,0,0}=0.5 ¢ B?={(1,0.5),(2,0.5),(3,0.6),(4,0.6),(5,0.5),(6,0.5)} ¢ MAMDANI TAKAGI–SUGENO FUZZY METHOD (TKS METHOD) ¢ A typical fuzzy rule in a Sugeno fuzzy model has the format IF x is A and y is B THEN z = f(x, y), where A&B are fuzzy sets in the antecedent; Z = f(x, y) is a crisp function in the consequent The main difference between Mamdani and Sugeno is that the sugeno output membership functions are either linear or constant. IF Input 1 = x AND Input 2 = y, THEN Output is z = ax + by + c. ¢ The output level zi of each rule is weighted by the firing strength wi of the rule. for an AND rule with Input x and Input y, thefiring strength is: wi = AndMethod(F1(x), F2(y)) ¢ where F1,2(·) are the membership functions for Inputs. The final output of the system is the weighted average of all rule outputs TAKAGI–SUGENO FUZZY METHOD (TKS METHOD) TAKAGI–SUGENO FUZZY METHOD (TKS METHOD) DEFUZZY ¢ The output of an entire fuzzy process can be union of two or more fuzzy membership functions. To explain this in detail, consider a fuzzy output, which is formed by two parts, one part being triangular shape (Fig. 5.1a) and other part being trapezoidal (Fig. 5.1b). The union of these two forms (Fig. 5.1c) the outer envelop of the two shapes. DEFUZZY there are various defuzzification methods employed to convert the fuzzy quantities into crisp quantities. ¢ There are seven methods used for defuzzifying the fuzzy output functions. ¢ (1) Maxmembership principle, ¢ (2) Centroid method, ¢ (3) Weighted average method, ¢ (4) Mean–max membership, ¢ (5) Centre of sums, ¢ (6) Centre of largest area, and ¢ (7) First of maxima or last of maxima ¢ MAXMEMBERSHIPPRINCIPLE This method is given by the expression, μ (z∗) ≥ μ (z) for all z ∈ z. ¢ This method is also referred as height method. ¢ DEFUZZY CENTER OF GRAVITY : m ( z ). zdz Z = ò m ( z ) dz * ﺛﻘﻞ ﻣﺮﮐﺰ INFERENCE If A1 then B1 R1=A1àB1 ¢ If A2 then B2 R2=A2àB2 ¢ If A3 then B3 A1 then R3=A3àB3 ¢. ¢. ¢ If An then Bn R4=AnàBn ¢ RULE BASE · If A1 & A2 & A3 & A3 &…. At then Bs As ¢ ¢ ¢ ¢ ¢ If A1 then If A2 then If A3 then . . . . ¢ If At then Bs ¢ If As: A1 & A2 & A3 & A3 &…. At= As è If As then Bs ﻧﮑﺘﻪ: ﺍﮔﺮ ﺑﻴﻦ ﻗﻮﺍﻋﺪ ) ﺭﺍﺑﻄﻪ ﻫﺎ ( ﻋﺒﺎﺭﺕ “ ﻳﺎ ” ﺭﺍ ﺑﻪ ﮐﺎﺭ ﺑﺒﺮﻳﻢ ﺩﺭ ﻓﺮﻣﻮﻝ ﻓﻮﻕ ﺑﻪ ﺟﺎﯼ ﻣﺎﮐﺰﻳﻤﻢ ﺍﺯ ﻣﻴﻨﻴﻤﻢ ﺍﺳﺘﻔﺎﺩﻩ ﻣﯽ ﮐﻨﻴﻢ. ﺩﻳﮕﺮ ﺷﺮﻃﯽ ﺟﻤﻠﻪ ﭼﻨﺪ 1) 2) If A1 then (B1 else B2) If not A1 then B . ﻫﺴﺘﻨﺪ ﻣﻌﺎﺩﻝ 2 ﻭ 1 ﺟﻤﻼﺕ 1) 2) If A1 then B1 unless A2 If A1 then B1 If A2 then not B1 .ﻫﺴﺘﻨﺪ ﻣﻌﺎﺩﻝ 2 ﻭ 1 ﺟﻤﻼﺕ
© Copyright 2025 ExpyDoc