MALDI-TOF/TOF MALDI-TOF/TOF Mass massSpectrometry spectrometry An Introduction An Introduction 1 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TOF(/TOF) Mass Spectrometry ion source 2 Time-of-Flight (TOF) mass analyzer Introduction MALDI-TOF/TOF; version12/04/2012 detector MALDI MALDI 3 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI stands for ... Matrix Assisted Laser Desorption / Ionization invented by Tanaka (Nobel prize awarded 2002), Hillenkamp and Karas in the mid ´80s 4 Introduction MALDI-TOF/TOF; version12/04/2012 How does MALDI work? Required items: - a sample to be analyzed - a matrix substance - a laser MALDI preparation / MS analysis: 1.) 2.) 3.) 4.) Mix sample and matrix solutions in suitable ratio. Put a sub µl aliquot of this mixture on the target plate. Let the mixture co-crystallize. Insert the target plate in the MALDI mass spec (running under high vacuum). 5.) Shoot with the laser on the MALDI preparation to generate ions (singly charged predominantly). 6.) Collect, analyze and detect the resulting ions. & De-protonizing 5 Introduction MALDI-TOF/TOF; version12/04/2012 What role does the MALDI matrix play? The matrix transfers the energy needed for ionization from the laser light to the sample molecules. Positive ionization mode: Sample embedded in light-absorbing matrix Sample molecule Excitation of matrix molecules by laser light Laser Matrix molecule M 6 Laser energy Matrix Desorption/protonation of sample molecules MH+ [M+H]+ Introduction MALDI-TOF/TOF; version12/04/2012 Formation of alternative adducts depends on the presence of respective cations (either being ubiquitary present or actively added – depending on type of sample): [M+Na]+; [M+K]+; [M+Cu]+; [M+Li]+; [M+Ag]+ What role does the MALDI matrix play? The matrix transfers the energy needed for ionization from the laser light to the sample molecules. Negative ionization mode: Sample embedded in light-absorbing matrix Sample molecule Excitation of matrix molecules by laser light Laser Matrix molecule M 7 Laser energy Matrix Desorption/deprotonation of sample molecules M-H- [M-H]- Introduction MALDI-TOF/TOF; version12/04/2012 Commonly used MALDI matrix substances: Peptides: 4-Hydroxy-α-cyanocinnamic acid (HCCA) Proteins: 2,5-Dihydroxyacetophenone (DHAP) Sinapinic acid (SA) 2,5-Dihydroxybenzoic acid (DHB) Glycans: 2,5-Dihydroxybenzoic acid (DHB) Nucleic acids: 3-Hydroxypicolinic acid (HPA) 2,4,6-Trihydroxyacetophenone (THAP) Why different matrices for different types of sample? It´s all about - the amount of energy needed to ionize a particular sample compound (individual matrices show specific „energy threshold“) - the stability of a particular sample compound (too „hot“ matrix may lead to non-desired fragmentation of sample compounds) 8 Introduction MALDI-TOF/TOF; version12/04/2012 How does MALDI work? Fundamental papers on the principle of MALDI: M. Karas, D. Bachmann, F. Hillenkamp Analytical Chemistry, 57, 2935-2939 (1985) K. Tanaka, H. Waiki, Y. Ido, S. Akita, Y. Yoshida, T. Yoshida Rapid Communications in Mass Spectrometry, 2, 151-153 (1988) R. C. Beavis, B. Chait, K.G. Standing Rapid Communications in Mass Spectrometry, 3, 233-237 (1989) M. Karas, M. Glückmann, J. Schäfer Journal of Mass Spectrometry, 35, 1-12, (2000) R. Zenobi and R. Knochenmuss Mass Spectrometry Reviews, 17, 337-366 (1998) 9 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TOF (Time of Flight) 10 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TOF Basic principle of MALDI-Time-of-Flight based mass analysis: High vacuum 10-7mbar High vacuum 10-7mbar Intensity m/z + ++ + + + + + Acceleration MALDI Ion Source Field free TOF analyzer region (drift tube) Time Of Flight (depending on m/z) 11 Introduction MALDI-TOF/TOF; version12/04/2012 Detector + + + + + + + + MALDI-TOF Epot = zeU 2 1/2mv Ekin = 2 zeU = 1/2mv This defines the potential energy at which all ions start from the MALDI target. This equation defines the kinetic energy of ions after acceleration into the flight tube. In the process of ion acceleration, energy is preserved but turns from potential into kinetic energy. v = 2zeU/m Transforming this equation shows the dependency of velocity of moving ions on their m/z value. t = L m/2zeU With the linear velocity v being defined as Ldrift tube/tflight, the dependency of the ions´ flight time tflight from m/z becomes obvious. To put the basic MALDI-TOF separation principle into simple words: The larger its m/z, the slower an ion will fly, the longer the measured flight time will be. 12 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TOF: Linear mode Intensity m/z + ++ + + + + + Acceleration IS1 MALDI 0kV Ion Source Field free TOF analyzer region (drift tube) Time Of Flight (depending on m/z) 13 Introduction MALDI-TOF/TOF; version12/04/2012 Linear detector + + + + + + + + MALDI-TOF: Linear mode Observation: Ions of identical mass arrive at the detector at slightly different time points, causing peak broadening (i.e. limiting the resolution) +++ ++ ++ + Uaccel 0kV MALDI Ion Source 14 Δt 1040 1045 1050 m/z Field free TOF analyzer region (drift tube) Introduction MALDI-TOF/TOF; version12/04/2012 ++ Linear detector Peak broadening effect, limiting the resolution in resulting mass spectrum. MALDI-TOF: Linear mode Limited in resolution due to spatial spread and energy spread Spatial spread: Initial energy (=speed) spread: - initial movement of ions towards different directions - heterogeneous secondary reactions (ion-ion; ionneutral) - ions are desorbed from different zcoordinates due to heterogeneity in size of matrix crystals Int. For all m/z! 500 1000 Reference: W. Ens, Y. Mao, F. Mayer, K.G. Standing, Rapid Communications In Mass Spectrometry, 5, 117-123 (1991) 15 Introduction MALDI-TOF/TOF; version12/04/2012 v[m/s] MALDI-TOF: Resolution Example spectrum containing 3 singly charged [M+H]+ signals at m/z 922Da, 923Da and 924Da: 100% 922.009 FWHM=0.073 50% 923.013 924.016 921.0 922.0 Resolution 16 Introduction MALDI-TOF/TOF; version12/04/2012 923.0 924.0 = m/Δm = 922.009/0.073 = 12630 m/z MALDI-TOF How to improve resolution??? Optimized matrix preparation homogeneity (minimizing spatial spread) Pulsed ion extraction for efficient ion focusing (minimizing initial energy spread) Further ion focusing by means of a reflector TOF setup (minimizing remaining energy spread) 17 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TOF How to improve resolution??? Optimized matrix preparation homogeneity Spatial spread 18 Introduction MALDI-TOF/TOF; version12/04/2012 Resolution MALDI-TOF: How to improve resolution??? Pulsed ion extraction for efficient ion focusing in the MALDI ion source Ion source + Epot + + + IS1 Field-free drift region IS2 Detector Pulsed Ion Extraction (PIE) t>tdelay + + t<tdelay 1040 1045 1050 m/z x[cm] 19 Introduction MALDI-TOF/TOF; version12/04/2012 1041 1046 1051 m/z MALDI-TOF: How to improve resolution??? Pulsed ion extraction for efficient ion focusing in the MALDI ion source 20 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TOF How to improve resolution??? Further ion focusing by means of a reflector TOF setup Ion source + + + + IS1 21 Field-free drift region IS2 + Reflector detector Introduction MALDI-TOF/TOF; version12/04/2012 + + + + + Reflector (ion mirror) Linear detector MALDI-TOF How to improve resolution??? IS1 1040 1045 1050 m/z + + Reflectron detector IS2 1041 + + 1046 Introduction MALDI-TOF/TOF; version12/04/2012 + Linear detector + Reflectron (ion mirror) 1051 m/z PIE compensates - initial energy spread - initial spatial spread 22 MALDI-TOF, reflector + PIE Field-free drift region MALDI-TOF, linear + PIE + + Ion source MALDI-TOF, linear M1 + + 1046 1050 m/z Reflector compensates - remaining energy spread MALDI-TOF Linear vs. reflector mode FAQ: If MALDI-TOF performed in reflector mode gives so much better resolution - why then use linear mode at all??? Answer: Linear mode is used whenever analytes are not stable enough to survive the energetic stress inside the reflector (ions are decelerated/ re-accelerated in the reflector by a high kV electric field within nanoseconds!). This effects especially larger molecules, e.g. intact proteins. They may undergo serious fragmentation, which results in either badly resolved spectra (peak fronting due to non-resolved fragments) and/or drastic loss in sensitivity (low mass fragments will miss the reflector detector). 23 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TOF Linear vs. reflector mode: Cytochrome C (MWavg=12360Da) 12361.0 1250 12355.9 1000 12368.1 1000 750 12366.0 12356.9 1500 12364.0 2000 12358.0 1500 Reflector mode: High resolution R=30,000 Intens. [a.u.] 12360.9 Intens. [a.u.] Linear mode: Low resolution R=1,500 500 500 250 0 12340 12350 12360 12370 12380 m/z Spectrum shows one broad peak representing the envelope of the non-resolved isotope peaks. 24 Introduction MALDI-TOF/TOF; version12/04/2012 12340 12350 12360 12370 12380 m/z Spectrum shows all the isotope peaks well separated from each other. MALDI-TOF Where do these isotope peaks originate from? Most elements are found in nature in form of different so called isotopes. Isotopes of an element have nuclei with the same number of protons (the same atomic number) but different numbers of neutrons. However, both, protons and neutrons contribute to the weight of an atom, which explains the difference in weight of isotopes. 25 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TOF Where do these isotope peaks originate from? Isotope 1-H 2-H (Deuterium) 12-C 13-C 14-N 15-N 16-O 18-O 19-F 23-Na 31-P 32-S 34-S 35-Cl 37-Cl 39-K 79-Br 81-Br Mass 1.007825 2.014000 12.00000 13.00336 14.00307 15.00011 15.99491 17.99916 18.99840 22.98977 30.97376 31.97207 33.96787 34.96885 36.96590 38.96371 78.91834 80.91629 [%] Abundance 99.985 0.015 98.90 1.10 99.63 0.37 99.76 0.20 100 100 100 95.03 4.22 76.77 31.98 93.26 50.69 49.31 Elements that are found in nature in form of only one single isotope, are called monoisotopic elements. 26 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TOF Where do these isotope peaks originate from? For a given molecule, the individual isotopes of all the elements contained in it finally yield a characteristic intensity distribution of isotopic masses. This is shown below by means of the isotopically resolved mass spectra of 3 compounds being different in size: Element composition: C112H164N29O34S2 Monoisotopic mass [M+H]+: 2524.1510 Average mass [M+H]+: 2525.8196 2525.2 2526.2 5405.6 2524.2 5409.6 1000.5 Element composition: C253H363N55O75S Monoisotopic mass [M+H]+: 5404.6075 Average mass [M+H]+: 5407.9984 5406.6 5407.6 5408.6 Element composition: C41H69N13O14S Monoisotopic mass [M+H]+: 1000.4880 Average mass [M+H]+: 1001.1409 5410.6 5411.6 5412.6 1001.5 1002.5 2528.2 2529.2 1003.5 998 1000 1002 5404.6 2527.2 1004 1006 m/z 2522 2524 2526 2528 2530 2532 m/z 5400 5404 5408 5412 5416 m/z The monoisotopic mass is the sum of the masses of all the atoms present in a molecule using the mass of the most abundant isotope for each element. The average mass of a molecule is the sum of elemental masses using the average weighted over all stable isotopes of each element contained in the molecule. 27 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TOF: Calibration strategies x104 Step 2) Internal re-calibration (optionally) Sample spectrum 870.530 Intens. [a.u.] Step 1) External calibration Step 1.2 3 x104 Sample spectrum 870.530 4 Intens. [a.u.] 5 2211.066 4 - apply calibration fit to sample spectra obtained from near neighbour spots 3 2 1 Step 1.1 * 3208.436 m/z x10 4 Calibrant spectrum 1672.921 757.397 0 1500 2000 2500 3000 3500 m /z - calibrants of known mass cover mass range of interest - m/z vs. flight time is fitted using a polynom of varying order (depending on size of mass range to be calibrated and number of available calibrant signals, resp.) 28 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 842.509 Da (trypsin artefact) 2211.104 Da (trypsin artefact) 3657.937 2932.578 2093.079 2 1000 750 * denotes compounds of known identity/mass 1758.941 4 0 m/z 1296.685 1046.542 6 2465.196 Intens. [a.u.] * 3250 2363.150 3000 2097.090 2750 1959.958 2500 1797.888 2250 1565.869 2000 1517.871 1750 1645.805 1500 1291.708 1373.788 1250 1419.807 1000 944.562 750 2211.066 0 1181.557 3208.436 2363.150 2097.090 1959.958 1565.869 1797.888 1517.871 1419.807 1181.557 944.562 1 1645.805 1291.708 1373.788 5 2 Introduction MALDI-TOF/TOF; version12/04/2012 Internal re-calibration allows for - optimum mass accuracy due to compensation of spot-to-spot heterogeneities that typically cause mass errors after external calibration MALDI-TOF: Calibration strategies When to use which calibration polynom? Compass for Flex series 1.1 and 1.2: Min. number of calibrant peaks Calibration polynom to be used external calibration: 2 4 linear quadratic internal re-calibration: (external pre-calibration: quadratic) 1 quadratic Compass for Flex series 1.3 or higher: Min. number of calibrant peaks Calibration polynom to be used external calibration: 3 4 6 linear quadratic cubic enhanced internal re-calibration: (external pre-calibration: quadratic) 1 4 6 linear correction quadratic cubic enhanced internal re-calibration: (external pre-calibration: cubic enhanced) 1 4 linear correction cubic enhanced Note: For optimum mass accuracy, calibrants in general have to cover the entire mass range that is to be calibrated. Extrapolation of calibration functions will always have a negative effect on the resulting mass accuracy. 29 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TOF: Typical applications Gel-based proteomics: Protein ID by peptide mass fingerprinting (PMF) - reflectron MALDI-TOF - mass range: 700 ... 4000Da 1) 2D gel separation of proteins 2) Comparative image analysis 3) 4) 5) 6) Biological state A Excision of regulated spots Enzymatic digestion MALDI-TOF-PMF Protein ID by database search (MASCOT, Phenyx etc.) Database 1 2 4 x104 870.530 Intens. [a.u.] 3 5 4 Biological state B 30 Introduction MALDI-TOF/TOF; version12/04/2012 2211.066 3208.436 2363.150 2097.090 1959.958 1565.869 1797.888 1645.805 1419.807 1517.871 1 1181.557 944.562 2 1291.708 1373.788 3 0 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 3250 m/z MALDI-TOF: Typical applications Gel-based proteomics: Protein ID by peptide mass fingerprinting (PMF) 31 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TOF: Typical applications TLC-MALDI Coupling • Product: • TLC-MALDI adapter target for autoflex/ultraflex (# 255595) • dedicated wizard driven software for Compass 1.2 or better • ImagePrep (option) for matrix application TLC-MALDI is a BRUKER patent • Simple to use, even MALDI novices can just do it! 32 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TOF: Typical applications TLC-MALDI Coupling TLC-MALDI setup dialog: •Wizard driven software interface for simple analysis setup •Multiple chromatographic lanes •Defined step raster along with or orthogonal to the chromatographic axis 33 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TOF: Typical applications MALDI Tissue Imaging 80µm Tubuli 160 µm Scale bar: 1mm 34 Introduction MALDI-TOF/TOF; version12/04/2012 240 µm Rat Testis MALDI-TOF: Typical applications MALDI Tissue Imaging: MALDI Imaging and H&E Staining from the Same Section Rat Testis Blood vessel Tubuli 3457 Da 5455 Da 10261 Da 200 µm 6263 Da 2396 Da Image Resolution: 20 µm due to smartbeam-II laser 35 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TOF: Typical applications Profiling of microorganisms: Workflow Fast and easy operation from single colony to result MALDI Biotyper software identifies species Smear colony on MALDI target Unknown microorganism microflex LT to generate MALDI-TOF mass spectrum: The proteomics fingerprint For Research Use Only. Not for Use in Any Diagnostic Procedures. 36 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TOF: Typical applications Intens. [a.u.] Profiling of microorganisms: Aspergillus fumigatus 3000 2000 Intens. [a.u.] 1000 0 Bacillus subtilis 8000 6000 4000 2000 0 Candida albicans ATCC 10231 1.0 0.8 0.6 0.4 0.2 0.0 Escherichia coli DH5alpha 2500 2000 1500 1000 500 0 3000 4000 5000 6000 7000 8000 9000 10000 m/z Fungi, yeast, gram+ and gram- bacteria 37 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TOF: Typical applications 2638.547 2550.494 2462.441 2374.390 2198.285 2110.233 2022.178 1934.126 2286.337 1758.022 1581.918 2000 1493.864 4000 1669.970 6000 1846.074 8000 1405.811 Intens. [a.u.] Polymer characterization: Polyethylene glycol distribuion 0 1200 1400 1600 1800 Introduction MALDI-TOF/TOF; version12/04/2012 2000 2200 2400 2600 2800 m/z MALDI-TOF: Typical applications Polymer characterization: Polyethylene glycol distribuion Data evaluation for Reflector Mode Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TOF: Typical applications Polymer characterization: Separated PEO/PPO Copolymer Fraction 10 Fraction 8 50 50 (8) (10) 30 20 30 20 10 10 0 10 20 30 40 50 30 20 10 0 0 (12) 40 No of EO units 40 No of EO units No EO units 40 Fraction 12 50 0 0 10 No of PO units 20 30 No of PO units 40 50 0 10 20 30 No of PO units Weidner S.M., Falkenhagen J., Maltsev S., Sauerland V., Rinken M. Rapid Commun. Mass Spectrom. 2007; 21: 2750-2758 40 Introduction MALDI-TOF/TOF; version12/04/2012 40 50 MALDI-TOF/TOF 41 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TOF/TOF: Location of the various MS/MS Processes Timed Sample Target Ion Selector (TIS) CID LID ISD Gridless DE MALDI Source Collision Cell Ion Source 42 Introduction MALDI-TOF/TOF; version12/04/2012 Source 2 (Lift) MALDI-TOF/TOF: Principal scheme: Reflector LIFT Ion source 1 PCIS Ion source 2 CID cell Reflector detector Ion path in TOF1 region (linear TOF) Ion path in TOF2 region (reflector TOF) Ion source 1 = MALDI ion source Ion source 2 = LIFT re-acceleration cell PCIS = PreCursor Ion Selector PLMS = Post LIFT Metastable Suppressor 43 Introduction MALDI-TOF/TOF; version12/04/2012 PLMS MALDI-TOF/TOF: Analysis of a mixture containing 3 compounds (green,red, blue) being different in mass: TOF1 region Source 1 CID cell PCIS v1 < v2 < v3 Molecular ions are separated in TOF1 according to their mass. Part of the ions undergo fragmentation in TOF1 region induced by: - metastable laser induced decay (LID) - collision induced decay (CID) Most important: Fragments and their precursor ions travel at the same velocity. 44 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TOF/TOF tandem MS: LID vs. CID LID: Laser-Induced Dissociation Most straight forward way to peptide backbone fragmentation (b,y-type ions). Used for protein identification by means of peptide sequencing. CID: Collision-Induced Dissociation (high energy) Additional side chain cleavages. Higher relative intensity of internal fragments. Overall shift of average fragment size towards lower mass. Used as an option in special applications, e.g.: - denovo sequencing (enhanced immonium ions) - differentiation of isobaric aminoacids L of I by respective side chain cleavages - detailed glycan analysis (monomer linkage positions determined by products of specific crossring cleavages) 45 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TOF/TOF tandem MS: Analysis of a mixture containing 3 compounds (green,red, blue) being different in mass: Selecting the red precursor ion for fragment analysis by MS/MS: Source 1 PCIS Rejected PCIS = PreCursor Ion Selector (calibrated for time/mass correlation) 46 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TOF/TOF tandem MS: PCIS = PreCursor Ion Selector Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TOF/TOF tandem MS: Analysis of a mixture containing 3 compounds (green,red, blue) being different in mass: Red precursor ion selected for fragment analysis by MS/MS: LIFT Source 1 Ion Source 2 Ion gate Rejected Ion Source 2 (LIFT): Re-acceleration of fragments and remaining molecular ions. Re-focusing (resolution!!!) of the ions. 48 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TOF/TOF tandem MS: FAQ: Why re-acceleration of ions in Ion Source 2 (LIFT)? Answer: To minimize the energy spread of the metastable fragments and, thus, to capture on the detector the complete fragment ion spectrum at one fixed reflector voltage. +19 keV 19-27 keV 0 - 8 keV LIFT Source 1 Source 2 A simple calculation example considering a precursor ion of [M+H]+ = 1000Da: Initial acceleration in source 1 Precursor [M+H]+ Fragment f1 [M+H]+ Fragment f2 [M+H]+ = = = = 8kV 1000Da 500Da 100Da Ekin precursor Ekin f1 Ekin f2 = 8keV (100%) = 4keV (50%) = 0.8kV (10%) Reacceleration by 19kV narrows down this energy spread: After reacceleration, even the smallest fragment ions have more than 70% of the energy of the precursor and, thus, will be captured on the detector. 49 Introduction MALDI-TOF/TOF; version12/04/2012 Ekin precursor Ekin f1 Ekin f2 = (8+19)keV = 27keV (100%) = (4+19)keV = 23keV (85%) = (0.8+19)kV = 19.8keV(73%) MALDI-TOF/TOF tandem MS: FAQ: Why do we need any re-acceleration of ions in Ion Source 2 (LIFT)? Post Source Decay (PSD) high reflector voltage N2 laser trigger diode + + + + + + + + + + + + + + + + + + + + + + + + + ++ + + ++ + + + + + + + + + + Only parent and high m/z fragments are focused onto detector 50 Introduction MALDI-TOF/TOF; version12/04/2012 neutral fragments pass through reflector while fragment ions of differing energies penetrate to differing depths of the reflectron hit spacebar to reduce reflector voltage MALDI-TOF/TOF tandem MS: Post Source Decay (PSD) medium reflector voltage N2 laser trigger diode + + + + + + + + + + + + + + + + + + + + + ++ + + ++ + + + + + + + + + + + + Only medium m/z fragments are focused onto detector. Lower m/z fragments are still focused away from the detector 51 Introduction MALDI-TOF/TOF; version12/04/2012 neutral fragments and higher m/z fragments pass through reflector while lower m/z fragment ions penetrate more deeply into the reflectron hit spacebar to reduce reflector voltage MALDI-TOF/TOF tandem MS: Post Source Decay (PSD) low reflector voltage N2 laser trigger diode + + + + + + + + + + + + + + + + + + + + ++ + + + + + + + + + + + Lowest m/z fragments are focused onto detector. Higher m/z fragments all pass through the reflector 52 Introduction MALDI-TOF/TOF; version12/04/2012 neutral fragments and higher m/z fragments pass through reflector while only the lowest m/z fragment ions will be reflected hit spacebar to continue MALDI-TOF/TOF tandem MS: Reacceleration and focusing potentials applied in the Ion Source 2 (LIFT): Lift 1 19 kV 17 kV Ground 53 Introduction MALDI-TOF/TOF; version12/04/2012 Lift 2 Ground MALDI-TOF/TOF tandem MS: Reacceleration and focusing potentials applied in the Ion Source 2 (LIFT): Lift 1 19 kV 17 kV Ground 54 Introduction MALDI-TOF/TOF; version12/04/2012 Lift 2 Ground MALDI-TOF/TOF tandem MS: Reacceleration and focusing potentials applied in the Ion Source 2 (LIFT): Lift 1 19 kV 17 kV Ground 55 Introduction MALDI-TOF/TOF; version12/04/2012 Lift 2 Ground MALDI-TOF/TOF tandem MS: Reacceleration and focusing potentials applied in the Ion Source 2 (LIFT): Lift 1 19 kV 17 kV Ground 56 Introduction MALDI-TOF/TOF; version12/04/2012 Lift 2 Ground MALDI-TOF/TOF tandem MS: Reacceleration and focusing potentials applied in the Ion Source 2 (LIFT): Lift 1 19 kV 17 kV Ground 57 Introduction MALDI-TOF/TOF; version12/04/2012 Lift 2 Ground MALDI-TOF/TOF tandem MS: 58 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TOF/TOF tandem MS: Analysis of a mixture containing 3 compounds (green,red, blue) of different mass: Source 1 PCIS LIFT Source 2 Rejected PLMS: Post LIFT Metastable Suppressor deflects remaining non-fragmented precursor ions to avoid undesired metastable decay in TOF2 region, which would yield broad fragment peaks detected at wrong mass. 59 Reflector detector Introduction MALDI-TOF/TOF; version12/04/2012 PLMS Reflector MALDI-TOF/TOF tandem MS: Analysis of a mixture containing 3 compounds (green,red, blue) being different in mass: Source 1 PCIS LIFT Source 2 Rejected Reflector detector 60 Introduction MALDI-TOF/TOF; version12/04/2012 Rejected PLMS Reflector MALDI-TOF/TOF tandem MS: [Abs . Int. *10^ 3] 2.4 PLMS OFF 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0 740 760 780 800 820 840 860 880 900 920 940 m/z [Abs . Int. *10^ 3] 20 y 7 18 b 6 16 PLMS ON 14 12 10 8 a 6 6 b-17 6 4 2 a-17 6 b 7 y 6 a 7 0 740 760 780 800 820 840 m/z 61 Introduction MALDI-TOF/TOF; version12/04/2012 860 880 900 920 940 MALDI-TOF/TOF tandem MS: Example MS/MS spectrum obtained from a peptide: y12 y11 y10 y8 y9 y7 y6 y5 y4 y3 y2 y1 Asp-Ala-Phe-Leu-Gly-Ser-Phe-Leu-Tyr-Glu-Tyr-Ser-Arg H+ 62 b1 b2 b3 b4 b5 b6 Introduction MALDI-TOF/TOF; version12/04/2012 b7 b8 b9 b10 b11 b12 H+ MALDI-TOF/TOF: Typical applications Analysis of posttranslational modifications: Phosphorylation -98Da ? ? FQSEEQQQTEDELQDK 63 Introduction MALDI-TOF/TOF; version12/04/2012 Neutral loss of H3PO4 MALDI-TOF/TOF: Typical applications Analysis of posttranslational modifications: Phosphorylation FQSEEQQQTEDELQDK 64 Introduction MALDI-TOF/TOF; version12/04/2012 -98Da Neutral loss of H3PO4 Modified threonin is obviously a wrong guess, as all the aminoacid residues following the threonin do not match the detected fragment signal pattern!!! MALDI-TOF/TOF: Typical applications Analysis of posttranslational modifications: Phosphorylation -98Da ? ? FQSEEQQQTEDELQDK 65 Introduction MALDI-TOF/TOF; version12/04/2012 Neutral loss of H3PO4 MALDI-TOF/TOF: Typical applications #2 3079.242 2905.286 2570.243 2492.274 2649.235 2344.307 2113.902 2247.949 1927.827 1805.168 1639.950 1249.633 1138.503 803.902 1006.994 927.501 0.50 0.25 #4 1740.855 0.75 1439.821 #1 1.00 1399.701 1) Acquire PMF. 2) Run PMF database search. 3) Data dependent MS/MS acquisition #3 1880.946 1.25 2045.061 1.50 1479.811 x105 1567.762 Intens. [a.u.] Gel-based proteomics: Protein ID based on PMF + datadependent MS/MS 0.00 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 m/z Successful protein ID by PMF Protein ID by PMF failed - acquire MS/MS of matching peptides for confirmation of protein ID - acquire MS/MS of most abundant peptides - acquire MS/MS of non-matching peptides (identify further proteins, unexpected modifications etc.) PFF database search (combined MS/MS data) 66 #1 #2 #3 #4 DeNovo sequencing with subsequent MS BLAST homology search (in case of non- or partially sequenced taxa) Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TOF/TOF: Typical applications Gel-based proteomics: Protein ID based on PMF + datadependent MS/MS Advantages of MALDI-TOF/TOF in gel-based proteomics: + speed (PMF + PFF analysis typically < 2min measuring time per gel spot) + amol sensitivity + automated, data dependent MS/MS workflow + improved significance of combined (PMF+PFF) data sets compared to PMF only data 67 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TOF/TOF: Typical applications 1880.946 1.25 1439.821 1.00 3079.242 2570.243 2905.286 2492.274 2649.235 2247.949 2344.307 1927.827 2113.902 1639.950 1399.701 1805.168 803.902 927.501 0.50 1249.633 1740.855 0.75 0.25 2045.061 1479.811 1.50 1567.762 x105 1138.503 Optional pre-fractionation on protein level (gel; LC; IP etc.) Enzymatic digestion nanoLC of resulting peptide mixture LC fraction collection on MALDI plate off-line MALDI-TOF/TOF analysis 1006.994 1) 2) 3) 4) 5) Intens. [a.u.] LC-based proteomics: LC-MALDI analysis of complex samples 0.00 750 1000 1250 1500 1750 2000 2250 2500 2750 3000 m/z 68 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TOF/TOF: Typical applications LC-based proteomics: LC-MALDI analysis of complex samples + reduced ion suppression due to separation upfront to the mass spectrometer + no time constraints during data acquisition (no time pressure caused by LC speed) + increased depth of analysis (more protein IDs from complex mixtures; increased sequence coverage for individual proteins) + data dependent, non-redundant MS/MS precursor selection (esp. useful for non-isobaric SILE experiments) + LC separation is „frozen“ on the MALDI plate and, thus, allows archiving of LC separated samples for later re-analysis - a single LC-MS/MS experiment, when compared to online-ESI, is rather time consuming 69 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TDS: Top-down sequencing of intact proteins by MALDI-TOF/TOF 70 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TDS: Top-Down Sequencing of intact proteins N T E R M S E Q U E N C E C T E R M + MALDI matrix (1,5-DAN, sDHB, SA) 3004.160 2874.129 2764.341 2807.335 2651.262 2589.216 2504.188 2376.140 2532.212 2134.974 2263.060 2291.041 500 2162.955 2034.870 1878.804 750 1933.827 1000 1804.798 1250 2433.158 2006.893 1500 1777.766 Intens. [a.u.] In Source Decay (ISD) 250 0 1800 Bruker MALDI-TOF 71 Introduction MALDI-TOF/TOF; version12/04/2012 2000 2200 2400 2600 2800 3000 m/z MALDI-TDS: Top-down sequencing of intact proteins Intact protein N T E R M S E Q U E N C E C T E R M N N T 72 N N N N N T T T T T E E E E E MALDI-ISD R R M R M S R M S E Introduction MALDI-TOF/TOF; version12/04/2012 ..► .. ► ISD fragments M R M E T E C T E E C T E C E C T E R R R R R M M M M M MALDI-TDS: Top-down sequencing of intact proteins N T E R M S E Q U E N C E C T N M E E R T M C S E E C Q N U E E U N N-terminal fragments (c-type ions) fragments (z- and/or y-type ions) N C-terminal T M R M N N N N N R R R R R T T T T T E E E E E R R M R M S R M S E MALDI-ISD ..► Introduction MALDI-TOF/TOF; version12/04/2012 .. ► 73 T R E R M E T E C T E E C T E C E C T E M M M M M N Q MALDI-TDS: MALDI-ISD-TOF spectrum of Cytochrome C (horse) Heme Acetyl 49 N-term AA (N-terminus modified) 44 C-term AA Spectrum acquired on Bruker Ultraflex III TOF/TOF 74 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TDS applications: Monoclonal antibodies IgG heavy chain: Aim of analysis: - N-terminal pyroGlu??? - C-terminal lysine deleted??? PyroGlu K??? Matching N-terminal fragments confirm N-terminal pyroGlu modification. Matching C-terminal fragments confirm absence of C-terminal K. Spectrum acquired onMALDI-TOF/TOF; Bruker Ultraflex III TOF/TOF 75 Introduction version12/04/2012 MALDI-TDS applications: PEGylated therapeutic peptides Aim of analysis: Determination of PEGylation site Peptide sequence: Acetyl-WVTHR*LAGLLSR*SGGVVK*KNFVPTDVGPXAF PEG polymer: ~500mer (approx. 22kDa) Linear MALDI-TOF spectrum showing MW distribution of the PEGylated peptide: C. Yoo, D. Suckau, V. Sauerland, M. Ronk and M. Ma,, J. Am. Soc. Mass Spectrom., 20 (2), 2009, 326-333. 76 Introduction MALDI-TOF/TOF; version12/04/2012 MALDI-TDS applications: PEGylated therapeutic peptides Aim of analysis: Determination of PEGylation site Peptide sequence: Acetyl-WVTHR*LAGLLSR*SGGVVK*KNFVPTDVGPXAF PEG polymer: ~500mer (approx. 22kDa) MALDI-ISD-TOF spectrum of the PEGylated peptide: Ac-WVTHR*LAGLLSR*SG GVVK*KNFVPTDVGPXAF PEG ~500mer Breakdown of N-terminal fragment series clearly identifies PEGylation site Yoo et al., 2008 JASMS 77 Introduction MALDI-TOF/TOF; version12/04/2012 Top-Down Protein Analysis PMF „Bottom-Up“ ISD „TOP-Down“ ABCDEFGHIKLMNOPQ Digest FGHIK OPQ DE LMN ABC Peptides can not be localized unreliable PTM detection 78 Introduction MALDI-TOF/TOF; version12/04/2012 MS/MS(/MS) ABCDEFGHIKLMNOPQ Sequence and relationship to intact protein mass, termini, PTMs maintained Advanced MALDI-TDS: T3 sequencing: Further fragmentation (MS3) of ISD fragments by LID ISD Source 1 LID LIFT PCIS Source 2 ISD fragments undergo further metastable decay in TOF1 region Rejected 79 Introduction MALDI-TOF/TOF; version12/04/2012 Reflector detector Rejected PLMS Reflector MALDI-T3-TOF/TOF spectrum of ISD fragment c13 (m/z=1516.9Da) from Cytochrome C (horse) Spectrum acquired on Bruker ultrafleXtreme Abs. Int. * 1000 a G b y K 4.5 E K 146.1239 y1 G K K K I F 628.2450 b6 946.5142 y8 72.0549 a1 443.1678 b4 3.0 314.1500 b3 2.5 2.0 761.4441 y6 633.3813 y5 286.1074 a3 571.2834 b5 1.5 G Q 1116.5572 a 10 4.0 3.5 V K K 997.4887 b9 884.3361 b8 1243.7509 b 11 1144.6240 b 10 1074.6167 y9 756.3251 b7 1371.8814 b 12 1343.7556 a 12 543.2209 a5 1.0 V 0.5 0.0 200 400 600 800 1000 1200 1400 m/z T3 sequencing provides access to the very terminal aminoacid sequence, which is commonly not accessible by ISD (due to occurence of matrix clusters and other components occupying the low mass region in MS mode). 80 Introduction MALDI-TOF/TOF; version12/04/2012 www.bruker.com 81 Introduction MALDI-TOF/TOF; version12/04/2012
© Copyright 2024 ExpyDoc