The existence problem for unduloids in H2 × R

Fachbereich Mathematik und Statistik
Prof. Dr. R. Denk, Prof. Dr. R. Racke, Prof. Dr. O. Schnürer
Im
Oberseminar Partielle Differentialgleichungen
gibt es am
Donnerstag, den 14. Juli 2016,
einen Vortrag von
Dr. Miroslav Vrzina
(Technische Universität Darmstadt)
”The existence problem for unduloids in H2 × R“
Beginn: 15.15 Uhr
Raum: F426
Interessenten sind herzlich willkommen!
R. Denk, R. Racke, O. Schnürer
Abstract: An unduloid in R3 is an embedded rotationally invariant surface of constant mean curvature, which is
singly periodic with respect to translations along the axis of rotation. In the product H2 × R, one of the eight
Thurston geometries, unduloids are conjectured to exist as embedded singly periodic annuli of constant mean
curvature.
In this talk we present our progress towards a solution of this conjecture: the existence problem follows from a
uniqueness problem for minimal surfaces bounded by closed and linked curves in S3 .
(invited by Prof. Dr. Oliver Schnürer)