Time-Resolved Thermoreflectance Imaging for Thermal Testing and Analysis Dr. Mo Shakouri Chairman Microsanj, LLC., Silicon Valley USA [email protected] Applications APPLICATIONS FOR MICROSANJ NANOTHERM-SERIES THERMOREFLECTANCE THERMAL IMAGING SYSTEMS Thermal Characterization & Thermal Profiling Time-Dependent Thermal Analysis 0.5ms 0.7ms 0.9ms 0.95ms 1.0ms 3.0ms Flip Chip Thermal Analysis Hot Spot Detection & Failure Analysis 500 nm HotSpot · · · · Key Benefits 2D and 3D images Spatial resolution to 300 nm Time resolution to 800 ps Temperature resolution to 0.5 °C · · Key Benefits Characterize high speed logic circuits Transient analysis in ns to ps range · · · · Key Benefits In SITU thru-the-substrate imaging Heat sinking integrity Thermal time delay pinpoints thermal source link emission & thermal images SEMICON JAPAN 2013 - MICROSANJ Key Benefits Find & analyze: · Short circuits · Oxide defects · Junction defects · High resistance vias · Processing defects · etc Outline 1. 2. 3. 4. 5. 6. Motivation Instrumentation Lock-in mechanism Imaging through silicon (near IR) Diffusion length Examples Small hotspot / Logic circuitry / Emission / Depth in metal layers 7. Summary SEMICON JAPAN 2013 - MICROSANJ Challenges on thermal characterization General challenges for electronics devices • Small features: 10s nm – 100s microns – difficult to contact • High speed response due to the small thermal mass • Highly non-uniform Additional challenges for photonics and power devices • Light emission (photonics) • High heat density • Heat sinks requirement (power devices) SEMICON JAPAN 2013 - MICROSANJ Thermoreflectance imaging setup Console box Microscope setup CCD Sig. gen. Temp. contl. LED Control box. Objective lens DUT SEMICON JAPAN 2013 - MICROSANJ How it works - thermoreflectance LED driver Power LED GP-IB GP-IB PC Computer Detector Detector CCD, InGaAs InGaAs CCD, Light I R1 Beam splitter Pulse generator & power amp Microscope Objective Device Device Pulse generator & power amp R 1 R T T R R T Thermal bed bed Thermal System diagram Thermoreflectance coefficient SEMICON JAPAN 2013 - MICROSANJ Lock-in signals Timing chart 4ms @ 25% Duty Cycle Device Excitation 1ms CCD exposure 33ms @ 30Hz LED pulse t0 100ms t0 delay t1 t1 Temperature Acquisition timing (shifting by cycle) Temperature data point along the bias cycle SEMICON JAPAN 2013 - MICROSANJ Through silicon and emission InGaAs CCD Top view 1300 nm LED Objective Substrate Flip Chip DUT % Transmittance Transmittance vs Wavelength, Si (Image from http://www.janis.com) Bottom view resolution 1.0 10.0 Wavelength, mm SEMICON JAPAN 2013 - MICROSANJ Defects and signature of potential failure Emission – sign of high density of electron collisions Thermal hotspot – location of potential long-term reliability Thermal foot print irregular local energy spot k AT / Tref e Ea / RT n Arrhenius's law Transient irregular timing - potential of logic/operation failure Near Infrared (NIR) wavelength provide a capability of both thermal signal and emission simultaneously. LED options: 1050, 1200, 1300, and 1500 nm SEMICON JAPAN 2013 - MICROSANJ Resolution and sensitivity Temperature SNR n Spatial resolution d 2n sin n : number of averaging due to the weak signal (Cth ~ 10-4 order) Visible wavelengths, d ≈ 250-300 nm NIR d ≈ 500 nm d ≈ /2 Time resolution t 0.02 x2 As scaling smaller, time resolution must be smaller due to thermal diffusion. t : 100ns for our setup. (for 1% error in temperature) Emission InGaAs uncooled camera effective sensitivity of one pixel for emission ~ 30 mW/mm2 SEMICON JAPAN 2013 - MICROSANJ Examples - Small hotspot a) 1.4 onMOSFET MOSFET 1.4mm mm gate gate on b) Temperature (a.u.) (a.u.) Temperature 70 60 60 50 50 40 40 40 30 30 20 20 10 10 00 00 22 66 88 Distance(mm) (μm) Distance 44 SEMICON JAPAN 2013 - MICROSANJ 10 10 12 12 Transient Behavior of IC Latch-Up Movie1 - Potential timing failure 0.5 ms 75 0.7 ms 0.9 ms 1.0 ms 3.0 ms 37.5 0 Y X The latch-up location is circled in yellow SEMICON JAPAN 2013 - MICROSANJ Thermal and emission overlay images 5x Thermal signals Through silicon substrate, 450 mm thick. LED = 1300nm and InGaAs camera (640 x 512) 50x Emission signals 44 mW 25µm SEMICON JAPAN 2013 - MICROSANJ Diffusion time/depth estimations m: depth of heat source : thermal diffusivity [m2/s] m 2 t t: time to reach observing surface m2 t 3125 m 2 (for Si) 4 Diffusion time estimations SiO2 Si Cu Al Ag Au Thermal diffusivity: α (m²/s) 8.30E-07 8.80E-05 1.11E-04 8.42E-05 1.55E-04 1.27E-04 thickness (µm) diffusion time (µs) 1 0.301 0.003 0.002 0.003 0.002 0.002 5 7.53 0.07 0.06 0.07 0.040 0.05 10 30.1 0.3 0.2 0.3 0.162 0.2 25 188 1.8 1.4 1.9 1.011 1.2 50 753 7.1 5.6 7.4 4.045 4.9 100 3,012 28.4 22.5 29.7 16.181 19.7 SEMICON JAPAN 2013 - MICROSANJ Examples - Through silicon, deep under the 6th metal layer Thermal imaging Flip chip side view M1 M7 2.0 msec 0.97V, ~12mA, ~12mW 20% duty cycle 10 minutes of averaging (repeating) SEMICON JAPAN 2013 - MICROSANJ Movie2 Time delay to reach to the surface Normalized Temperature Precise time resolution is a key to find the response. 1.2 1 0.8 0.6 ~75 µs delay 0.4 PolyResistor resistor (top layer) Poly Short (under 6 layers) 140 Ohm Short 0.2 0 0 200 Time (µs) 400 SEMICON JAPAN 2013 - MICROSANJ 600 Microsanj, a technology leader in thermal imaging field Founded by a team of PhDs from CalTech, Stanford, and UCSC in 2007 More than 30 papers published to date Major Customers Collaborative Research Activities Chip Test Solutions Design Engineering Inc. (DEI) Infinera Instituto de Microelectronica de Barcelona (CSIC) Intel Corporation Nanyang Technological University Purdue University Raytheon Silicon Image University of California Santa Barbara A*Star Singapore Altera Corporation Birck Nanotechnology Center at Purdue University Nvidia Philips Electronics Qualcomm Silicon Frontline Si-Ware Systems ST Microelectronics Texas Instruments (National Semiconductor) University of California at Santa Cruz SEMICON JAPAN 2013 - MICROSANJ Summary High speed time-resolved thermoreflectance imaging is introduced. NIR illumination provides a through Si and electron emission Lock-in thermography and EMMI are compared. Examples demonstrated: Hotspots ~ 1mm, emission and thermal overlay, and a hotspot underneath 6 metal layers SEMICON JAPAN 2013 - MICROSANJ Microsanj社の 開発した熱画像解析装置、Nanothermシリーズは、これまでのIRによるサーモグラ フィー装置とは 全く異なった温度測定技術を用いたシステムです。測定物のIR放射を測定するのでは なく、 測定物に非常に短時間の光を照射し、その反射光を計測することにより温度分布を測定するた め、 測定物に全く影響を与えること無く、IRでは難しかった広い温度範囲を非接触にて測定することが 可能となりました。測定は金属を含むあらゆるものが可能で、測定物を熱したり、表面に特別な処理を 行う必要が有りません。また、薄いシリコン基板は光を透過することから、flip-chip等の、シリコン基板 上の 半導体の熱画像を裏面から観測することが可能です。また、Nanothermシステムの最大の特徴 として、 オプションにてバイアス電源と信号源を追加することにより、熱画像の過渡特性を、最速では 0.8nsec間隔で 測定することができます。Nanothermシステムにより、温度上昇、熱集中の状況をリア ルタイムに観察することで、 半導体そのものや半導体回路の最適な熱設計を行うこと、また故障解析、 不良解析を行うことが可能です。 測定物の大きさは最小300nm、温度分解能は最小0.2℃、測定温度 範囲-265~500℃に対応します。 ATN Japan 1-35-16 Nakagawa-Chuo Tsuzuki, Yokohama, Kanagawa, 224-0003 JAPAN Website: www.atnjapan.com E-mail: [email protected] SEMICON JAPAN 2013 - MICROSANJ Transient thermal/emission imaging Resolution x(mm) T (K) Imagt (sec) ing? m Thermocouple 50 0.01 0.1-10 No Contact method IR Thermography 3-10 0.02-1 1m Yes Emissivity dependent Lock-in Thermog. 3-10 1m NA Yes Need cycling Method Notes Liquid Crystal Thermography 2-5 0.5 100 Yes Only near phase transition (aging issues) Thermoreflectance 0.30.5 0.08 800p0.1m Yes Need cycling Optical scanning Interferometry 0.5 100m 6n0.1m Scan Indirect measurement (expansion) Micro Raman 0.5 1 10n Scan 3D T-distribution Scanning thermal microscopy (SThM) 0.05 0.1 10100m Scan Contact method surface morphology Emission Microscopy (EMMI) 0.25 - Op lock-in Yes Emitted Photon density s.im.lens SEMICON JAPAN 2013 - MICROSANJ
© Copyright 2024 ExpyDoc