The Global Satellite Mapping of Precipitation (GSMaP) project: Integration of microwave and infrared radiometers for a global precipitation map Tomoo Ushio*, K. Okamoto, F. Isoda, Y. Iida (Osaka Prefecture Univ.) K. Aonashi, T. Inoue (MRI) N. Takahashi, T. Iguchi, H. Hanado (NICT) K. Iwanami (NIED) Outline GSMaP Project in Japan – Objectives – Outline Modification of Aonashi’s algorithm – Comparison with 2A12 Integration of IR into MWR data – Initial results Global Satellite Mapping of Precipitation Project (GSMaP) More than 20 scientists from 8 institutions in Japan. (NICT, MRI, JAXA, Osaka Pref. Univ., Tokyo Univ., Shimane Univ., Hokkaido-Tokai Univ., NIED) (PI: Ken’ichi Okamoto, Osaka Prefecture University) ・To produce highly accurate and high spatial resolution maps of global precipitation by mainly using satelliteborne microwave radiometer. - Everyday, 0.25×0.25 degree/ 1 day resolution. - Microwave Radiometer (TRMM, DMSP×3, Aqua, ADEOS-II),PR(TRMM) - Integration to Geostationary satellite IR data ・To develop reliable microwave radiometer algorithm - Consistent algorithm with PR algorithm based on the common physical model of precipitation ・To establish technique to produce rainfall map by using satellite-borne microwave radiometer data for the future mission(GPM) Outlines of the GSMaP project Consistent Algorithm Based on Common Physical Model of Precipitation *Microwave Radiometer *Rain Radar *Combined *Vertical Profile *Melting Layer Model *Z-R Relation and Rain Type *Non uniformity *Snow (Dry, Wet) *Attenuation by Cloud CRL(Precipitation Radar: 5 GHz, 13.8 GHz, 95 GHz, Wind Profiler: 400MHz) National Research Institute for Earth Science and Disaster Prevention(Precipitation Radar:10 GHz, 35 GHz, 95GHz ) Improvement of Algorithm Improvement of Physical Model of Precipitation Global Rainfall Map Satellite Data (TRMM, DMSP, Aqua, ADEOS-II) Geostationary Satellite IR Data Ground-based Radar •0.25 deg/ 1day precipitation map only from the microwave radiometers •0.1 deg/ 1hour precipitation map from combined IR and MW radiometers TRMM/TMI 1998年7月の1ヶ月平均の例 Our algorithm GPROF 2mm/h Error near Himalayan mountain 85GHz scattering data base without precipitation from TRMM/PR observation Zonal mean of precipitation Black : TRMM/PR Green: GPROF Red: our algorithm Black : TRMM/PR Green: GPROF Red: our algorithm Production of Global Precipitation Map Global precipitation map(3hours, 1 week) TRMM Aqua ADEOS2 DMSP/F13 DMSP/F14 DMSP/F15 Precipitation data Merging Coordination 1-Day covering area of 6 Satellites with microwave radiometers(TRMM, Aqua, ADEOS2, DMSP(F13, F14, F15)) •With 1 day resolution, the 6 satellites cover the whole globe. •We still have sampling error especially when we think of higher resolution such as 3 hours/0.1 degree. The area around Japan has mean rain rate 0.2mm/h with Radar-AMeDAS Composites Data. Grid box size 100km Grid box size 500km Average Sampling Error of rainfall per each period by Five SunSynchronous-Orbit Satellites’ Group plus TRMM(TMI) in 500km and 100km grid box using Radar-AMeDAS Composites Data during 36 months. (Y. Iida, 2003) Needs for the combined algorithm If we want the 0.1 deg./1 hour resolution precipitation map only from 6 currently available MWR, we would have more than 500% sampling error. In order to reduce these errors, we use the Infrared Radiometers (IR) data which do not have any sampling problems. (large algorithm errors) Moving vector approach This method was recently introduced by Joyce et al. [2004]. Advantage – MWR based approach (not Tb but cloud motion) – Fast processing time Disadvantage – Physically simple assumption (not based on dynamics and thermodynamics) What, When, Where, and How do we analyze for? Purpose: To draw the global precipitation map with 0.1 degree/1 hour resolution What: 1hour global IR data from Goddard/DAAC and TMI/2A21 data When: August 3 to 4, 2000 Where: -35 to 35 in latitude, 0 to 360 in longitude How: By interpolating precipitation between TMI overpasses using the cloud motion inferred from 1 hour IR Tb. Infrared (IR) Data 10.8 μm Geo IR Present Split Window 降水マップ作成 11.4 μm Geo IR Present 11.4 μm Geo IR 1 hour before 1 hr Moving Vector Intermediate data Microwave Radiometer (MWR) Data x1 (kT ) 0 . A 21 . 0 . 0 x5 (kT ) 0 Kalman filtering 1 hr MWR Present . 0 . 0 0 . . 0 . 0 . . . 0 A54 0 x1 (kT ) A10 v1 (kT ) . 0 . 0 . . 0 u(kT ) . . . 0 . 0 x5 (kT ) 0 v5 (kT ) x1 ((k 1)T ) . A A ‥A 0 0 x1 (kT ) 65 54 21 . 0 A A ‥ A 0 . 76 65 32 0 A109 A98‥A65 x5 (kT ) . 0 x5 ((k 1)T ) GSMap Data ^ GSMaP 1 hour before ^ ^ x((k 1)T ) A(kT ) x(kT ) B(kT )u(kT ) L( y(kT ) C x(kT )) GSMaP Summary and future directions GSMaP project in Japan was introduced. Precipitation estimates by TMI/Aonashi’s algorithm shows good correlation over land and ocean. But we still have ice/snow covering problems. Initial results of the global precipitation map with 0.1 deg./1 hr resolution from IR and TMI combined algorithm were introduced and demonstrated. We are going to examine the possibility of using the bi-spectral and Kalman filtering approach. Lightning data also will be included. Thank you ! ありがとう! 謝謝 Vielen Dank Merci Gracias Grazie x(( k 1)T ) A(kT ) x(kT ) B(kT )u (kT ) Kalman Filterによる最適解 ^ ^ ^ x(( k 1)T ) A(kT ) x(kT ) B(kT )u (kT ) L( y(kT ) C x(kT )) カルマンフィルタによる定式化 移動ベクトルによる 状態 方程式 推定雨量 x1 (kT ) 0 . A 21 . 0 . 0 x5 (kT ) 0 雨域行列 . . . 0 . . 0 0 . 0 0 . . 0 A54 x1 (( k 1)T ) A A ‥A . 65 54 21 0 . 0 . x5 (( k 1)T ) 初期値(真値) 0 x1 (kT ) A10 v1 (kT ) . 0 . 0 誤差 . . 0 u (kT ) . . . 0 . v5 (kT ) 0 x5 (kT ) 0 0 A76 A65‥A32 0 0 x1 (kT ) . 0 A109 A98‥A65 x5 (kT ) x1 (kT ) . マイクロ波放射計データと y (kT ) 0 0 0 0 I . w(kT ) レーダアメダスとの誤差 . 観測方程式 x5 (kT ) Global precipitation map only from microwave radiometers ・Improvements of Aonashi’s algorithm ・Compariton betwenn TRMM/PR・ TMI(GPROF and Aonashi’s algorithm) ・Application to AMSR-E, SSM/I data ・ Validation High quality precipitation map ・Sampling error analysis • Validation by using the Radar network in Japan ・Interpolation from cloud motion ・Split window analysis ・Combination of microwave radiometers Integration of MW and IR data Comparison between GPROF and our algorithm for the TMI data
© Copyright 2024 ExpyDoc