JPS meeting @Matsuyama, 29 Mar. 2006 液体重水素標的を用いた+バリオ ン光生成の研究 村松 憲仁 大阪大学 核物理研究センター For the LEPS Collaboration 阪大RCNP 村松憲仁,中野貴志,A,D.S.Ahn,郡英輝, 藤原守, 堀田智明, 堀江圭都, 與曽井優 甲南大 秋宗秀俊 釜山大 J.K.Ahn 東北大核理研 石川貴嗣, 清水肇 京大理 今井憲一, 新山雅之, 藤村寿子, 宮部学 JASRI 大橋裕二, 伊達伸, 依田哲彦 Academia Sinica D.S.Oshuev, W.C.Chang 東大CNS 木野幸一 阪大理 阪口篤志, 菅谷頼仁 千葉大 椎野祐樹 東北大理 住浜水季 NSCLMSU R.G.T.Zegers 宮崎大 戸井裕也, 松田達郎 Ohio Univ. K.Hicks, 三部勉 名古屋大 福井崇時 防衛大 松村徹 Univ. of Saskatchewan C.Rangacharyulu 他SPring-8/LEPS Collaboration Contents Introduction (+ Status) d+(1520) - BG estimation - Signal-like behavior - Cross section measurement Summary & Prospects Pentaquark Status @ EINN 2005 Group + X5 0c Signal Backgr. Significance s/ b+s publ. Comments ---------------------------------------------------------------------SPring8 19 17 4.6s 3.2s SPring8 90 260 4.8s G11 CLAS-p SAPHIR 55 56 4.8s 5.2s DIANA 29 44 4.4s 3.4s ? BELLE CLAS(d) 43 54 5.2s 4.4s G10 CLAS-d CLAS(p) 41 35 7.8s 4.7s 18 9 6.7s 3.5s HERMES 51 150 4.3-6.2s 3.6s ? BABAR ZEUS 230 1080 4.6s 6.4s COSY 57 95 4-6s 4.7s SVD 41 87 5.6s 3.6s SVD-2 370 2000 7.5s Improved analysis NA49 H1 38 50.6 43 51.7 SPring8 STAR 80 2,250 200 150,000 4.2s 5-6s 4.2s 5.0s 4.8s 3.5-5s HERA-B, CDF, COMPASS ZEUS, FOCUS, BABAR *(K+n) ++ candidate From Burkert @ EINN05 CLAS upper limits • p+K0 s<2 nb vs. SAPHIR 300 nb / 50 nb • d+K-p s<450 pb But acceptance coverage is very different from LEPS (forward region). ↓ + is not killed. LEPS LD2 runs • Collected Data (LH2 and LD2 runs) Dec.2000 – June 2001 LH2 50 mm ~5×1012 photons published data May 2002 – Apr 2003 LH2 150 mm ~1.4×1012 photons Oct. 2002 – June 2003 LD2 150 mm ~2×1012 photons • #neutrons × #photons in K+K- detection mode LD2 runs = 5mm-thick STC in short LH2 runs × ~5 • K-p detection mode w/o Fermi correction :γd→+K-p Laser Electron Photon (LEP) Beam -8 GeV electrons in SPring-8 + 351nm Ar laser (3.5eV) ⇒ 1.5-2.4 GeV photons (Backward Compton Scattering) -Photon Flux ~106 cps, Photon Energy Resolution ~10 MeV -Charged particle spectrometer with forward acceptance -PID from momentum and time-of-flight measurements SVTX DC1 PWO measurement TOF AC(n=1.03) tagged Target Dipole Magnet Start Counter 0.7 Tesla DC2 DC3 K-p detection mode • + is identified by pK- missing mass from deuteron. ⇒ No Fermi correction is needed. Inclusive (n / p reaction + rescattering, or other mechanism) + γ p n K- (1520) p Event selections in K-p mode K+ mass : 0.40 – 0.62 GeV/c2 π- mis-ID as K- γp→K-pKπ MMp(γ,K-p) GeV/c2 Λ(1520) : 1.50 – 1.54 GeV/c2 Non-resonant KKp + p + … M(K-p) GeV/c2 Events with Λ(1520) production were selected. E > 1.75 GeV was also applied. K-p missing mass in 1.50<M(pK-)<1.54 GeV/c2 preliminary 5 MeV bins Θ+ signal? ~1.53 GeV/c2 MMd(γ,K-p) GeV/c2 preliminary 3 MeV bins MMd(γ,K-p) GeV/c2 Fluctuation or not ? • Important to understand BG shape reliably Quasi-Free BG = K(1520) + p + Non-resonant KKp + … • MC-based & real data-based BG estimations Non-resonant KKp (1520) Fermi-corrected MMp(,p) M(pK-) GeV/c2 [LH2] (1520) M(pK-) GeV/c2 [LD2] M(KK) GeV/c2 [LH2] M(KK) GeV/c2 [LD2] MC-based BG estimation by using LH2 data - BGs were simulated by including Fermi motion. (MC ~ 20 x real data) - Kinematics at CMS were adjusted to real LH2 data. ‘Filters’ in ECMS, CMS(pK-), CMS(proton), PCMS(proton), PCMS(K-) - Non-resonant KKp ⇒ K+* ⇒ p were adjusted step by step. K* KKp p M(pK-) GeV/c2 M(KK) GeV/c2 2 test of MC to LH2 data in MMd(,pK-) distribution 1.50<M(pK-)<1.54 GeV/c2 (Signal region) (1) (2) (3) MMd(,pK-) GeV/c2 (1+2+3) 1.400 – 1.700 GeV 2 = 34.154 ndf = 30 prob. = 0.275 (1) 1.400 – 1.500 GeV 2 = 15.253 ndf = 10 prob. = 0.123 (2) 1.500 – 1.600 GeV 2 = 5.895 ndf = 10 prob. = 0.824 (3) 1.600 – 1.700 GeV 2 = 13.006 ndf = 10 prob. = 0.223 M(pK-) distribution in LD2 Fermi motion is turned on in MC. Preliminary Extra events, which are not seen in LH2 data ↓ Kinematical filters were made from LD2 data outside the signal region. KKp K* p M(pK-) GeV/c2 MMd(,pK-) in (1520) region [LD2 data] 1.50<M(pK-)<1.54 GeV/c2 + Preliminary Preliminary 1.6 GeV bump MMd(,pK-) GeV/c2 MMd(,pK-) GeV/c2 Conservative statistical significance ~ 4s Gaussian fit (temporary) ⇒ mass ~1.53 GeV/c2, width ~10 MeV MMd(,pK-) below/above (1520) region [LD2] M(pK-)<1.50 GeV/c2 Preliminary MMd(,pK-) GeV/c2 Preliminary small excess M(pK-)>1.54 GeV/c2 MMd(,pK-) GeV/c2 Real data-based BG estimation (Sideband subtraction method) * LH2 LD2 * Non-resonant BGs + p M(K-p) GeV/c2 M(K-p) GeV/c2 - Non-resonant BGs + p : Deduced by 0.4 x [1.45<M(K-p)<1.50 or 1.54<M(K-p)<1.59 GeV/c2] - K(1520) : LH2 data after sideband subtraction Linearity was checked by comparing two independent sideband regions. K-p missing mass spectrum * fitted in MM<1.52 GeV/c2 preliminary 1.6 GeV bump preliminary Counts/5 MeV Counts/5 MeV + K(1520) fit to all MMd(,pK-) region - BG level : 6.5% more. - 2/ndf=2.8 * from sidebands MMd(γ,K-p) GeV/c2 MMd(γ,K-p) GeV/c2 Comparisons of the two methods Two methods in BG estimation (Complementary) Sideband method Any BG involved realistically Affected by LH2 statistics * may be slightly under-estimated Filtering method Not affected by statistics Possibility of Model variations MMd(pK-) in different M(pK-) gates around (1520) mass 10 MeV/c2 20 MeV/c2 (Standard) The peak structure looks associated with (1520) production. MMd(γ,K-p) GeV/c2 50 MeV/c2 MMd(γ,K-p) GeV/c2 MMd(γ,K-p) GeV/c2 100 MeV/c2 MMd(γ,K-p) GeV/c2 S/N ratio gets lower by widening M(pK-) gate, but the peak height looks constant. Photon energy dependence Counts/5 MeV E > 2.1 GeV E < 2.1 GeV MMd(,pK-) GeV/c2 + is seen in both lower and higher energy regions. 1.6 GeV bump & higher M(pK) tail in LD2 ECMS<2.18 MMd(,pK-) GeV/c2 2.18<ECMS MMd(,pK-) GeV/c2 ECMS<2.10 M(pK-) GeV/c2 2.18<ECMS <2.26 M(pK-) GeV/c2 2.10<ECMS <2.18 M(pK-) GeV/c2 2.26<ECMS M(pK-) GeV/c2 1.6 GeV bump: n contribution? Hyperon-spectator nucleon interaction? pion association? Higher M(pK) tail : n contribution? Proton-neutron interaction? Summary Confirmation of + by using LD2 data with K-p mode in MMd(,pK-) spectrum - Two methods in BG shape estimation (MC-based & sideband method) are complementary. - 1.53 GeV/c2 peak (~4σ,preliminary) + 1.6 GeV/c2 bump associated with (1520) production - Signal-like behavior [different M(pK-) gates, E dependence] Prospects • Differential cross section is being measured. Luminosity(LD2) ~0.6 pb-1. • Planning to take another data sets with LD2 target and forward spectrometer this year. Tagger update is necessary. Photon beam intensity will be twice by injecting two lasers. • Time Projection Chamber is being prepared to increase acceptance coverage. CLAS region can be covered. • Started to discussing about constructing new beamline at SPring-8. Upgrades of beam intensity and energy are expected. 4π detector with good resolutions are under considerations.
© Copyright 2024 ExpyDoc