KEK原子核研究会 「現代の原子核物理-多様化する原子核の描像」 多体共鳴状態の境界条件によって解析した 3α共鳴状態の構造 C. Kurokawa1 and K. Kato2 Meme Media Laboratory, Hokkaido Univ., Japan1 Div. of Phys., Grad. Sch. of Sci., Hokkaido Univ., Japan2 KEK原子核研究会81-8/3 Theoretical studies of 12C D.M.Brink in Proceedings of the Fifteen Solvay Conference on Physics (19070) ○Microscopic 3α model (RGM・GCM・OCM) Y.Fukushima and M.Kamimura in Proceedings of the International Conference on Nuclear Structure (1977) M.Kamimura, Nucl. Phys. A351(1981),456 Y.Fujiwara, H.Horiuchi, K.Ikeda, M.Kamimura, K.Katō, Y.Suzuki and E.Uegaki, Prog Theor. Phys. Suppl. 68 (1980)60. E.Uegaki, S.Okabe, Y.Abe and H.Tanaka, Prog. Theor. Phys. 57(1977)1262; 59(1978)1031; 62(1979)1621. α H.Horiuchi, Prog. Theor. Phys. 51(1974)1266; 53(1975)447. K.Fukatsu, K.Katō and H.Tanaka, Prog. Theor. Phys.81(1988)738. α ○3α+p3./2Closed shell Γ=34keV N.Takigawa, A.Arima, Nucl. Phys. A168(1971)593. N.Itagaki Ph.D thesis of Hokkaido University (1999) 3 Γ=8.7eV α - 31 02 + Y.Kanada-En’yo, Phys. Rev. Lett. 24(1998)5291. α α α ○Deformation (Mean-Field) G.Leander and S.E.Larsson, Nucl. Phys.A239(1975)93. ○Faddeev Y.Fujiwara and R.Tamagaki Prog. Theor. Phys. 56(1976)1503. H.Kamada and S.Oryu, Prog. Theor. Phys 76(1986)1260. 01 + Excited states of cluster states? KEK原子核研究会81-8/3 Situation around Ex= 10 MeV Energy level of 12C 02 +: l=0 L=0 Alpha-condensed state 0+, 2+ A.Tohsaki et al., PRL87(2001)192501 0+ : Er=2.7+0.3 MeV, G= 2.7+0.3 MeV 2+ : Er=2.6+0.3 MeV, G= 1.0+0.3 MeV [Ref.]: M.Itoh et al., NPA 738(2004)268 Can 3αModel reproduce both of the 22+ and the 03+ states ? What kind of structure dose the 03+ state have ? Why 03+ has such a large width ? [Ref.] E.Uegaki et al.,PTP57(1979)1262 Boundary condition for three-body resonances Analysis of decay widths KEK原子核研究会81-8/3 Our strategy In order to taking into account the boundary condition for three-body resonances, we adopted the methods to 3 Model; Complex Scaling Method (CSM) [Ref.] J.Aguilar and J.M.Combes, Commun. Math. Phys., 22(1971),269 E.Balslev and J.M.Combes, Commun. Math. Phys., 22(1971),280 Analytic Continuation in the Coupling Constant [Ref.] V.I.Kukulin, V.M.Krasnopol’sky, J.Phys. A10(1977), combined with the CSM (ACCC+CSM) [Ref.] S.Aoyama PRC68(2003),034313 Both enables us to obtain not only resonance energy but also total decay width KEK原子核研究会81-8/3 Model : 3 Orthogonality Condition Model (OCM) folding for Nucleon-Nucleon interaction(Nuclear+Coulomb) [Ref.]: E. W. Schmid and K. Wildermuth, Nucl. Phys. 26 (1961) 463 , -parity ) μ=0.15 fm-2 : OCM [Ref.]: S.Saito, PTP Supple. 62(1977),11 Phase shifts and Energies of 8Be, and Ground band states of 12C 22 11 c=3 c=2 c=1 1 2 132 3 33 , [Ref.]: M.Kamimura, Phys. Rev. A38(1988),621 KEK原子核研究会81-8/3 Methods for treatment of three-body resonant states CSM It is sometimes difficult for CSM to solve states with quite large decay widths due to the limitation of the scaling angle and finite basis states. 2θ Exp. Broad state In order to search for the broad 0+ state, we employed … ACCC+CSM : Atractive potential with k Im(k) <0 δ→0 Re(k) Resonance KEK原子核研究会81-8/3 Energy levels obtained by CSM and ACCC+CSM G= 0.375+0.040 MeV Γ=0.12 MeV (2+) 0+ : Er=2.7+0.3 MeV, G= 2.7+0.3 MeV 03+: Er=1.66 MeV, Γ=1.48 MeV 2+ : Er=2.6+0.3 MeV, G= 1.0+0.3 MeV 22+: Er=2.28 MeV, Γ=1.1 MeV [Ref.]: M.Itoh et al., NPA 738(2004)268 ACCC+CSM 3α Model reproduce 22+ and 03+ in the same energy region by E.Uegaki et al.,PTP(1979) taking into account the correct boundary condition KEK原子核研究会81-8/3 Structures of 0+ states through Amplitudes Wave function of 0+ states Y (12C) Jp=0+ = l=0,L=0 j0,0 + l=2,L=2 j2,2 + l=4,L=4 j4,4 8Be l jl,L= [ 8Be (l) x L ] L l,L2 : Channel Amplitudes Channel Amplitudes of 01+, 02+ and 04+ E [MeV] 0,02 Rr.m.s. [fm] 2,22 4,42 Er G Re. Im. Re. Im. Re. Im. Re. Im. 01+ -7.29 0 2.36 0 0.364 0 0.382 0 0.254 0 02+ 0.76 2.4x10-3 4.29 0.29 0.775 0.033 0.149 -0.019 0.076 -0.014 04+ 4.58 1.1 3.26 0.97 0.499 0.170 0.307 -0.017 0.194 -0.153 KEK原子核研究会81-8/3 Feature of the broad 3rd 0+ state Channel amplitudes as a function of d 8Be l=0 2 2 2 L=0 Dominated Similar property to 02+ ( Rr.m.s= 4.29 fm) Re(Rr.m.s) (d= -140): 5.44 fm Large component of 0,02 makes such the large width. Wave function of 03+ shows similar properties to 02+. 03+ is considered as an excited state of 02+. Higher nodal state of 02+ ? KEK原子核研究会81-8/3 Summary of obtained 0+ states 04+ 03+ I=0 L=0 but higher nodal ? 02+ I=0 L=0 r.m.s.=4.29 fm KEK原子核研究会81-8/3 Structure of the 04+ state 4th 0+ state ; Large component of high angular momentum compared with 2nd 0+ 0,02 =0.499, 2,22 =0.307, 4,42 =0.194 Total decay width is sharp: Er=4.58 MeV, G=1.1 MeV 3αOCM with SU(3) base : K.Kato, H.Kazama, H.Tanaka, PTP 77(1986),185. Component of linear-chain configuration: 56% AMD: Y.Kanada-En’yo, nutl-th/0605047. FMD: T.Neff, H.Feldmeier, NPA 738(2004), 357. Linear chain like structure is found α α α KEK原子核研究会81-8/3 Probability Density of 1st 0+ and 4th 0+ states (Preliminary) Probability Density of ’s r1 12 r2 r1 = r2 = r r [fm] 01+ 04+ 12 12 KEK原子核研究会81-8/3 Summary and Future work We solve states above 3αthresold energy taking into account the boundary condition for three-body resonant states. Obtained resonance parameters of many Jp states reproduce experimental data well. We obtained broad 3rd 0+ state near the 2nd 2+ state. The state has similar structure to the 2nd 0+ state. It is thus expected to be an excited state of 2nd 0+. The 4th 0+ state has large component of high angular momentum channel, [8Be (2+) x L=2], and has a sharp decay width. These features reflect the linear-chain like structure of 3αclusters. Members of rotational band built upon the 4th 0+ state ? How do these states contribute to the real energy ? To investigate it we calculate the Continuum Level Density in the CSM and partial decay widths to 8Be(0+, 2+, 4+)+α in feature. [Ref.] A.T. Kruppa and K. Arai, PLB 431(1998)237 R. Suzuki, T. Myo, and K. Kato, PTP 113 (2005) 1273 KEK原子核研究会81-8/3 Probability Density of 0+ states 04+ 02+ 12 KEK原子核研究会81-8/3 Contributions from resonant states to real energy Continuum Level Density (CLD) Δ(E) ( E 0) = ( E ) 0 ( E ), [Ref.] S.Shomo, NPA 539 (1992) 17. ( E ) = 1 dd l p dE δl: phase shift 0 ( E ) = d ( E Ei ) ( E ) = d ( E Ei ) i i 1 = Im Tr p E H 1 = 1 Im Tr p E T 1 Discretization with a finite number N of basis functions ( E ) N ( E ) [Ref.] A.T. Kruppa and K. Arai, PLB 431(1998)237. N N i =1 i =1 = d ( E Ei ) d ( E Ei0 ) Smoothing technique is needed, but results depend on smoothing parameter. KEK原子核研究会81-8/3 CLD in the Complex Scaling Method [Ref.] R. Suzuki, T. Myo, and K. Kato, PTP 113 (2005) 1273 Bound state NB N ( E ) = d ( E EB ) B Continuum Resonance 1 p N R Im R 1 1 Im E ER p N N B N R C 1 E C ( ) ER, εc(θ) have complex eigenvalues in CSM CLD in CSM: N ( E 0) = N ( E ) 0 N ( E ) = + N R Gr / 2 p R ( E Er ) 2 + Gr2 / 4 1 1 p N N B N R c cI 2 c0 I 2 1 N R 2 I2 (E c ) + c p c ( E c0 R ) 2 + c0 I 2 Smoothing technique is not needed KEK原子核研究会81-8/3 Application to 3α system CLD of 3αsystem ( E ) = 3 B ( E ) 30B ( E ) 1 1 = ImTr p E H 3 B E H 30B 1 1 α1 α2 2 3 3 3 i =1 3 i =1 3 H 3 B = ti TG + VN+Cl +OCM ( i ) + V3 (1 , 2 , 3 ) H 30B = ti TG + VCl( point) ( i ) i =1 i =1 KEK原子核研究会81-8/3 Continuum Level Density: 0+ states 8Be(0+) +α 8Be(2+) E [MeV] +α KEK原子核研究会81-8/3 Subtraction of contribution from 8Be+α ( ' ( E ) = 3 B ( E ) 30B ( E ) 2 B ( E ) 20B ( E ) ) 1 1 1 1 = ImTr p E H 3 B E H 30B E H 2 B E H 20B 1 3 8Be α1 1 α2 ) H 2 B = ti TG + VN+Cl +OCM (1 ) + V8ClBe(point (1 ) i =1 • α1- α2: resonance + continuum • (α1α2)- α3: continuum 1 α3 3 H 0 2B ) = ti TG + VCl( point) (1 ) + V8ClBe(point (1 ) i =1 • α1- α2: continuum • (α1α2)- α3: continuum KEK原子核研究会81-8/3 Contributions from 8Be+α are subtracted ‘ 02+ 04+ 03+ KEK原子核研究会81-8/3 Subtraction of contribution from 8Be+α KEK原子核研究会81-8/3 Search for broad 0+ state with 05+ 04+ δ= -200 MeV δ= -150 MeV 03+ δ= -110 MeV δ= -50 MeV 03+ 04+ 04+ 05+ δ= -250 MeV 05+ 04+ KEK原子核研究会81-8/3 Trajectories of the broad 03+ state Complex-Energy plane Complex-Momentum plane Obtained resonance parameter Present calc. Exp. data Er (MeV) 1.66 2.73 + 0.3 Γ (MeV) 1.48 2.7 + 0.3 KEK原子核研究会81-8/3 Methods for treatment of three-body resonant states Complex Scaling Method (CSM) It is sometimes difficult for CSM to solve state with a quite large decay width due to the limitation of the scaling angle . In order to search for the broad 0+ state, we employed … Analytic Continuation in the Coupling Constant combined with the CSM (ACCC+CSM) CSM U ( ) : = exp( i ) Branch cut k Im(k) Bound state Antibound state Re(k) Resonance ACCC+CSM k Im(k) δ→0 Re(k) Resonance
© Copyright 2024 ExpyDoc