高精度分光を目指したCaH+の 生成とトラップ 富山大学・理 森脇喜紀 Motivation Spectroscopy of 40CaH+ the pure vibrational transition (v=0, J=0, F=1/2, M=±1/2) → (v=1, J=0, F=1/2, M=±1/2) can potentially be measured with an uncertainty of 10-16 by use of simultaneous trapping with Ca+ ions sympathetic cooling P.O.Schmidt et al. quantum logic measurement Science 309, 749(2005) { Application to the test of the time invariance of fundamental constants e.g. electron-proton mass ratio Shelkovnikov et al. PRL100, 150801 (2008) Vibrational transition of SF6 Dn/n~10-14 Proposal: High precision measurements of the pure vibrational transition of 40CaH+ Kajita and Moriwaki J. Phys. B 42, 154022(2009) • Simultaneous trapping of a 40CaH+ and a 40Ca+ in a linear trap Long interaction time reduces the homogeneous linewidth Ions in a crystal state inside a linear trap are free from Stark shift Some transition frequencies of molecular ions are free from Zeeman shift Estimated frequency uncertainty (order of 10-16) CaH+ (v = 0, J = 0, F = 1/2, M = ±1/2) → (v = 1, J = 0, F = 1/2, M = ±1/2) transition f = 42.24 THz (7.1 mm) (1) Natural linewidth 2.5 Hz (2) Zeeman shift (magnetic field < 1 G) < 1.3 x 10-17 (3) Stark shift induced by the trapping electric field < 10-17 (4) Electric quadrupole shift is zero because of F = 1/2 (5) Stark shift induced by probe laser light is most dominant ~ 1.2 x 10-16 with saturation power (32 mW/cm2) Production of CaH+ (1) Laser ablation of Ca containing solids (2) Ca++H2 → CaH+ +H Georgiadis et al. J. Chem. Phys. 92, 7060 (1988) endothermic reaction 2.5 eV Ca+ (4p 2P 1/2) + H2 CaH+ + H ? Laser system To Trap Pump laser (397 nm) Repump laser (866 nm) RF Trap Vdc+Vac cos Ωt Hyperboloid electrodes r0=7.5 mm Vdc=0 V Vac=350 V Ω/2π=1.65 MHz Dz=25 eV LIF dependence on He pressure and qz 4eVac qz mr02 2 Temperature and size of ion cloud Doppler width ~2 GHz T~600 K Δr~0.45 mm Δz~0.23 mm LIF decay with H2 buffer gas Photon Counts (cps) 20000 LIF signal is proportional to the number of Ca+ ions. t~11000 s He 4.5*10-6 Torr 10000 Ca+ (4p2P1/2)+H2→CaH++H ? H2 4.4*10-6 Torr t~3600 s 5000 0 500 1000 Time (s) With H2 buffer gas, LIF decay significantly. 1500 mass signal (m=41) Q-Mass spectrum Buffer gas : H2 (99.99995%) 0.5 The mass signal (m=41u) is normalized by that of m=40 u Laser on 0.4 0.3 M=41u signals appear with the laser irradiation. 0.2 0.1 Laser off 0 50 100 150 Time (s) 200 250 With D2 buffer gas, m=42 u signals are observed. Production of CaH+, CaD+ has been confirmed ! Indication of some loss mechanisms of Ca+ Without 397nm and 866nm laser, LIF decays slowly. Without 866 nm laser, LIF decays fast although the 2D3/2 state is optically pumped. 20000 Photon Counts (cps) H2 4.4*10-6 Torr 397&866 laser chopped 10000 / Ca+ (3d 2D 3/2) + H2 CaH+ + H 866nm laser chopped 5000 0 500 Time (s) 1000 Photoassociated ion loss? spectroscopy of + CaH There have been no experimental data on CaH+. Needs for reliable theoretical data ab initio calculations of Ca+-H potential curves electric energy levels, vibrational levels, Rotational constants, transition dipole moments by M. Abe (collaborator) Potential energy curves Ca+ 2P [(4p)1] + H 2S [(1s)1] Ca+ 2D [(3d)1] + H 2S [(1s)1] Ca+ 2S [(4s)1] + H 2S [(1s)1] Spectroscopic constants of the ground state of CaH+ (11S) Correlation method SA-CASSCF/ MS-CASPT2 State specific CASSCF/ single state CASPT2 Re(Å) we (cm–1) Be (cm–1) De (cmDe (eV) 1) 1.892 1484.8 4.782 2.1837 17613 1.898 1478.4 4.748 2.1634 17449 CCSD(T) 1.896 1502.7 4.805 2.2455 18111 Previous worka 1.936 1511.0 4.609 1.8355 14804 Previous workb 1.864 1468.0 --- 2.1077 17000 a 4th order MBPT: Canuto et al. Phys. Rev. A. 1993. b Two-elec. valence CI and core polarization: Boutalib et al. Chem. Phys. 1992. Vibrational TDM in atomic unit (21S) Excited state 2 1S Ground state 1 1S v=0 v=1 v=2 v=3 v=4 v=5 v=6 v=7 v=8 v=9 v=10 v=11 v=12 v=13 v=14 v=15 v=16 v=17 v=0 v=1 v=2 v=3 v=4 v=5 v=6 v=7 v=8 v=9 v=10 v=11 0.206 0.446 0.659 0.762 0.723 0.572 0.374 0.196 0.076 0.018 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.333 0.517 0.431 0.074 0.384 0.717 0.793 0.635 0.373 0.148 0.027 0.006 0.003 0.001 0.000 0.000 0.000 0.000 0.396 0.388 0.021 0.392 0.477 0.127 0.419 0.798 0.809 0.530 0.206 0.019 0.017 0.000 0.003 0.001 0.000 0.000 0.399 0.179 0.263 0.382 0.019 0.428 0.448 0.052 0.663 0.898 0.650 0.229 0.013 0.026 0.009 0.001 0.002 0.002 0.358 0.016 0.340 0.124 0.314 0.338 0.138 0.516 0.252 0.468 0.929 0.725 0.203 0.065 0.018 0.019 0.009 0.003 0.297 0.151 0.268 0.125 0.333 0.020 0.397 0.171 0.395 0.441 0.271 0.928 0.753 0.117 0.116 0.022 0.011 0.013 0.232 0.218 0.137 0.250 0.164 0.259 0.247 0.238 0.364 0.180 0.518 0.101 0.912 0.721 0.027 0.119 0.074 0.032 0.174 0.232 0.015 0.255 0.024 0.288 0.017 0.336 0.016 0.398 0.047 0.505 0.036 0.882 0.615 0.192 0.031 0.064 0.127 0.215 0.069 0.195 0.142 0.193 0.185 0.210 0.224 0.232 0.286 0.231 0.426 0.148 0.821 0.426 0.296 0.115 0.091 0.182 0.111 0.121 0.182 0.077 0.225 0.046 0.266 0.006 0.309 0.085 0.332 0.300 0.241 0.709 0.182 0.241 0.064 0.144 0.117 0.061 0.168 0.003 0.190 0.056 0.202 0.118 0.195 0.209 0.118 0.324 0.137 0.305 0.536 0.032 0.042 0.103 0.098 0.024 0.126 0.035 0.130 0.083 0.122 0.134 0.089 0.190 0.005 0.212 0.202 0.038 0.297 0.313 Candidate transitions in LIF 31S 21S Absorption Emission 21S state around 400nm more than 600nm 31S state 21P state 240 nm 240 nm 400 nm 380 nm Conclusion • We proposed high precision measurements of the pure vibrational transition of 40CaH+ • production of CaH+ , CaD+ is confirmed Future •laser spectroscopy of CaH+ Cryogenic ion trap: 99% of CaH+ ions are localized in the (v,J)=(0,0) state at T=4 K H2 vapor pressure ~ 10-7 Torr 共同研究者 • 梶田雅稔 (NICT) • 阿部穣里 (Tokyo Metropolitan Univ.) • 松島房和, 小林かおり, 榎本勝成(富山大学) 小山達也, 中口利彦, 日比野誠(学生)
© Copyright 2024 ExpyDoc