thermodynamics of colloidal particles Thomas Speck Valentin Blickle Laurent Helden Udo Seifert Clemens Bechinger contents • mesoscopic thermodynamics • TIRM experiment • energy conservation • work distribution / fluctuation theorems thermodynamics macroscopic: W ideal gas p, V, n external force heat bath Q T mesoscopic: • suspended colloidal particle W • protein pulling Q F • Brownian motion • fluctuations brownian motion Brownian particle: random walk Langevin equation d 2z dz ∂V m 2 +γ =− + ξ (t ) ∂z dt dt overdamped system stochastic force: friction coefficient external potential (Sekimoto 1998) ξ (t ) = 0 ξ (t )iξ (t ') = 2γ T δ (t − t ') energy balance: equilibrium time-independent potential: Langevin equation γ dV =0 dt V only z dependent ∂V dz =− + ξ (t ) dt ∂z ∂V dz 0 = −[−γ + ξ (t )]dz + dz ∂z dt dz dQ ≡ −[−γ + ξ (t )]dz heat dt ∂V potential difference dV ≡ dz ∂z 0 = dQ + dU energy balance energy balance: time dep. potentials V [ z , λ (t )] λ (t ) control parameter e.g.: λ (t ) = sin(ωt ) no total differential add: ∂V ( z , λ (t )) ∂λ dz ∂V ( z , λ (t )) + ξ (t )]dz + 0 = −[−γ dz ∂z dt dλ ∂V ( z , λ (t )) dz ∂V ( z , λ (t )) ∂V ( z , λ (t )) d λ = −[−γ + ξ (t )]dz + dz + dλ ∂λ dt ∂z ∂λ dW dQ dV work heat potential difference microscopic energy balance trajectory picture τ dz ∂V dQ = −[−γ + ξ (t )]dz = − dz ∂z dt z0 ; λ0 ze ; λe parametric trajectory Langevin equation integration along trajectory ze , λe e ∂V ∂V • Q = ∫ − dz = ∫ − z dτ ∂z ∂z z0 , λ0 t0 t ∂V • W =∫ λ dτ ∂λ t0 te ΔV = V (te ) − V (t0 ) γ dz ∂V =− +ξ dt ∂z trajectory determination of Q,W, and V experiment • exact measurement of the trajectory • externally controllable force to drive particle into non equilibrium TIRM Technique Z 3000 Streulicht: I streu ~I ev 2500 Scattering signal Probe particle Streuintensität Mikroskopobjektiv 2000 1500 1000 500 0 Iev 0 100 200 300 400 500 600 700 Zeit [s] 4000 r 3000 Histogram Häufigkeit Lase 2000 1000 0 0 500 1000 1500 2000 2500 3000 Streuintensität • Creation of an evanescent wave • Exponentially decaying scattering itensity Inversion of the Boltzman distribution • Determination of the particle wall distance z Potential Potential [kbT] 8 6 4 2 0 0,0 0,2 0,4 Abstand z [µm] 0,6 0,8 experiment Photomultiplier Intensität sampling rate 2 kHz polystyrene particles Interference Filter Zeit Tubus Lens IR Filter d=4 µm CCD Camera Beamsplitter Objective 50X upper tweezers 10mW d z Polarizing Beamsplitter l/2 lower tweezers 300mW lens 50 mm Monitor Diode Rotation Stage EOM Laserdiode: 652 nm Intensity modulation optical tweezers Light Pressure Gradient Force Dipole interaction energy for a particle in an electric field: W ∝ - α ∫ E2 dV α = εparticle / εoutside - 1 ⇒ Particle moves towards higher fields. lower tweezers calibration • increasing tweezers intensity (3) 140 (1) (2) 120 Force [fN] Potential Energy [kBT] 8 6 4 100 80 60 40 20 22 24 26 28 30 32 Laser Power [mW] 2 0 0.0 0.1 0.2 0.3 0.4 z [µm] 0.5 0.6 0.7 • linear dependance of light pressure • tweezers calibration Vl = c i I l i z interaction potential V [ z (τ ), λ (τ )] = A ⋅ e −κ z + B0 ⋅ z + I lt [λ (τ )] ⋅ c ⋅ z pulse protocol interaction potential 1,2 Ilt tp=700 ms 0,6 0,0 4,5 ts 120 ms 5,0 tp=700 ms 5,5 6,0 t [s] 30 tp 0.3 25 20 0.2 z [µm] • strong coupling to the bath Laser Intensity [mW] ts 15 10 0.1 5 0 0.0 493.6 493.8 494.0 time [s] 494.2 494.4 energy conservation ∂V • 1 ∂V • Q = −∫ z dτ = − ∑ z (τ ) ∂z ν τ ∂z t0 • ∂V • c W = −∫ λ (t )dτ = − ∑ I lt ⋅ z (τ ) ∂λ ν τ t0 te te δ = W − Q + ΔV = 0 energy balance: 3 (a) 10 2 5 1 δ [kBT] Energy [kBT] 15 0 -5 W -Q ΔV δ -10 -15 5950 6020 6090 Pulse Number (b) energy resolution about 0.25 kT 0 -1 -2 -3 0.00 0.05 0.10 0.15 probability work distribution particle wall potential is not harmonic harmonic potentials symmetric gaussian work distribution • demonstrated with colloidal particles in 3d traps non harmonic potentials theory predicts: asymmetric non gaussian distribution 0.20 probability 0.15 theory: •no fit parameters 0.10 0.05 0.00 -4 -2 0 2 4 6 8 W [kBT] <W>=2.4 kT 10 12 14 16 18 fluctuation theorems 0.20 ΔF = 0 0.15 probability symmetric protocol: Jarzynski relation: 0.10 0.05 0.00 <e exp. − βW -4 >= 1.03 8 ln[P(W)/P(-W)] 6 4 2 statistics! 0 -4 -6 -8 -8 -6 -4 -2 0 W 2 4 6 8 0 2 4 6 8 W [kBT] P(−W ) = e − βW detailed fluctuation theorem: P (W ) -2 -2 10 12 14 16 18
© Copyright 2024 ExpyDoc