(94 オニ テ 装) 託 6 「ツリヷ ゥ、静 エェツィラ リェ 1394 タ ヤィ 18

(94 ö‘µÆõ¥ ø Ãþ‘•) ‚û‘õ 6 ¢ÂØÜÞä ©¤Ãð
´ªÂ¨×ƒ÷ ö‘ت
1394 À€Ô¨ 18
‚µªÁð üÈûøĕ ý‘û´ƒó‘ãê ۃÞؗ ø ‚õ¢
1
‚ó‘Öõ ©ÂþÁ• °Æî ( Óó
On the Minimum Kirchhoff index of Graphs with a Fixed Number of Cut Vertices
ø ¤‘ú“ ‚û‘õ 6 ©¤Ãð ùÂÞû ‚“ Ã÷ ü󑨤 ‚ó‘Öõ ¥ ý‚¿Æ÷ ø ´¨ ùÀª ‚ÞƒÞ® ©ÂþÁ• ‚õ‘÷ .Disc. Appl. Math. ¤¢
.¢“ ‚µÈð ÝþÀ֗ °÷‘¹€þ ñ‘Æõ ö‘µÆ“‘—
‚ó‘Öõ ñ‘¨¤ ø üþ‘ú÷ ý¥‘¨ù¢‘õ ( ’
On Generalizations of Cycles and Chordality to Hypergraphs
ßþ ®‘Ÿ ñ‘Ÿ ¤¢ .üÜÜÞóßƒ“ ±µãõ –…¹õ ¤¢ ”‘ ýÂ“ ýÀ€ú÷ᤐ¥ Àƒª¤ Âµî¢ ‘“ íµÈõ –‘ÖƒÖ½— ¥ šÂ¿µÆõ
¤¢ íµÈõ –‘ÖƒÖ½— ßþ ¥ Û¬‘Ÿ ÂÚþ¢ ¸þ‘µ÷ ü¡Â“ ߃€»Þû .Àª‘“üõ ý¤ø¢ ´¨¢ ¤¢ Elec. J. Combin. ¤¢ ‚ó‘Öõ
ö€ä ´½— ü÷Â€¿¨
Linear Resolution, Chordality and Ascent of Clutters
ø ¤îÁõ ‚ó‘Öõ .Àª ‚Ž¤ (1394 ö‘“ 21 ø 20) öÂú— IPM ¤¢ ͱ—Âõ ¶Ÿ‘±õ ø üþ‘¹“‘›Â±› ¤‘€ƒÞ¨ ߃Þû¢¥ø¢ ¤¢
.´¨ ùÀª ‚ÞƒÞ® ùÀª ‚Ž¤ ü÷Â€¿¨ ¯Æ±õ ùÀƒØ
‚ó‘Öõ ñ‘¨¤ ø üþ‘ú÷ ý¥‘¨ù¢‘õ ( ”
Tame Graphs, Clutters and Their Rees Algebras
Âµî¢ ø ¢Ä÷‚ÜóÂÊ÷ §‘±ä Âµî¢ ,ýÀ€ú÷ᤐ¥ Àƒª¤ µ“ íµÈõ "¤Þû ´¨ÀØþ ý‘ûéÂð' üÈûøĕ žÂÏ ¥ šÂ¿µÆõ
ùÀª ´¨ƒ• ,Àª‘“üõ ý¤ø¢ ´¨¢ ¤¢ J Pure Appl. Algebra ¤¢ ®‘Ÿ ñ‘Ÿ ¤¢ ‚î ü󑨤 ‚ó‘Öõ .¤•ö¢Ãþ Â±î üÜä
.´¨
‚ó‘Öõ ñ‘¨¤ ø üþ‘ú÷ ý¥‘¨ ù¢‘õ ( –
Delta Operation on Modules, Prime and Radical Submodules and Primary Decomposition.
´‰¨¢ ¤¢ Proc. Edinburgh Math. Soc. ¤¢ ‚‰ó‘‰Ö‰õ ߉þ ‰®‘‰Ÿ ñ‘‰Ÿ ¤¢ .´‰¨ ùÀ‰ª ´‰¨‰ƒ‰• ,‚‰ó‘‰Ö‰õ ùÀ‰ª ñ‘‰¨¤ ‚‰¿‰Æ‰÷
.´¨ ý¤ø¢
߃õ24 ¤¢ ‚î "Dual of Codes over Finite Quotients of Polynomial Rings' ‚ó‘Öõ ۃÞؗ ´ú› –‘ÖƒÖ½— ô‘¹÷ ( ˜
ýÂ“ ‚ó‘Öõ ×þ Ûت ‚“ ²þ‘— ø üþ‘ú÷ ýÀ€“âޛ ‚ÜŸÂõ ¤¢ Çûøĕ ßþ ®‘Ÿ ñ‘Ÿ ¤¢ .¢“ ùÀª ‚Ž¤ öÂþ ±› ¤‘€ƒÞ¨
‚ÞƒÞ® ‚ܬ‘Ÿ ¸þ‘µ÷ ÂÚþ¢ ‚¬…¡ ø ùÀª ù¢‘õ ý‘û´ÞÆì .´¨ üÜÜÞóßƒ“ ±µãõ üÈûøĕ üÞÜä –…¹õ ‚“ ñ‘¨¤
.´¨ ùÀª
1
¸þ‘µ÷ Ýû ."Multilpicatively Closed Subsets of a Ring Which Split a Module' žÂÏ üÈûøĕ ‚ÜŸÂõ ßµê‘þ ö‘þ‘• ( š
‚î ,ù¦ø • üÜ±ì ©¤Ãð ý‘úµ÷ ¤¢ ÀþÀ› ¸þ‘µ÷ ,üÜ±ì ¸þ‘µ÷ ø Óþ¤‘ã— ý¤ø¢‘þ ´ú›) .´¨ ùÀª ‚ƒÞÞ® ùÀª ‚µêÂð
6 ßþ ¤¢ ùÀª ‚µêÂð ¸þ‘µ÷ ù¦ø • ©¤Ãð 4 Ç¿“ âìø ¤¢ .´¨ ùÀõ ,¢“ ùÀª ÝþÀ֗ ǃ• ‚û‘õ 6 ©¤Ã𠑓 ùÂÞû
üÜÜÞóßƒ“ Å÷ÂԀî ×þ ¤¢ ‚Ž¤ ´ú› ¸þ‘µ÷ ßþ ,üþ‘ú÷ ý¥‘¨ ù¢‘õ ø ýÀ€“âޛ ¥ ŕ ‚î ¢ø ¤üõ Àƒõ (.´¨ ‚û‘õ
.¢ª ñ‘¨¤ ñ‘Æõ ö‘µÆ“‘— ¤¢
ù¤ø¢ ßþ ¤¢ ùÀª ¥‘è üÈûøĕ ý‘û´ƒó‘ãê
2
¤‘‰±‰µ‰ä ¥ ù¢‘‰Ô‰µ‰¨ ‘‰“ "Chordality of Zero-Divisor Based Graphs of Commutative Rings' ü‰È‰ûøĉ• žÂ‰Ï ¥‘‰è ( Óó
žÂÏ ßþ ¤‘±µä Ƀʿ— ø Àƒþ‘— À÷ø ¤ À€Âû .°÷‘¹€þ ‚“ ö‘Ú±¿÷ üÜõ ¢‘ƒ€“ üþ‘Îä ü÷‘ƒµª üÞґî Âµî¢ üÈûøĕ
ö¢“ chordal ü¨¤ “ ‚“ žÂÏ ßþ .´¨ ùÀª ¥‘è ö ‚“ ¯“Âõ üÈûøĕ ý‘û´ƒó‘ãê ‘õ ´¨ ùÀÈ÷ üÏ …õ‘î ¥€û
–„‘Öõ ‘µ¨¤ ßþ ¤¢ .À÷ùÀª ‚µ¡‘¨ üþ‘¹“‘› ‚Öܟ ×þ ÂcÔ¬ ý‘û‚ƒÜäôÆÖõ ¤‘µ¡‘¨ ý‘€±õ “ ‚î ¢¥¢Â•üõ üþ‘ûéÂð
.´¨ ùÀª ‚ãó‘Îõ ,À÷ù¢Âî ‚ãó‘Îõ ¤ ‘ûéÂð ßþ ¥ ü¡Â“ «¡ ‚î ]3 ,2 ,1[
ÂÚþ¢ ý‘û´ƒó‘ãê
3
.94 ö‘µÆõ¥ ÛÊê ¤¢ (ÀŸø 3) 1 ‚µÆÆ𠖑ƒ®‘þ¤ Åþ¤À— ( Óó
,J. Algebraic Systems ,J. Applied Mathematics and Computing –…¹õ ýÂ“ üÈûøĕ üÞÜä ‚ó‘Öõ ‚¨ ý¤ø¢ ( ’
.TWMS J. Pure Appl. Math
review .ZbMath ýÂ“ ]6[ ‚ó‘Öõ “ ø .Mathematical Reviews/MathSciNet ýÂ“ ]5 ,4[ –„‘Öõ “ review ‚Ž¤ ( ”
.´¨ ùÀª ‚ÞƒÞ® ‘û
."Âîø-öø ÂÞî ý‘ûéÂð ý±› ‚ãó‘Îõ' ö€ä ´½— üÜèøßƒõõ ‚µªÂê Ý÷‘¡ Àª¤ ü¨‘€ª¤‘î ‚õ‘÷ö‘þ‘• üþ‘Þ€û¤ ¥‘è ( –
.´¨ ùÀþ¢Â𠤐Ãð“ ö‘Èþ ýÂ“ üþ‘Þ€û¤ ‚Æܛ 10 ¢øÀŸ ñ‘½“ ‘—
⛐Âõ
[1] D. F. Anderson, J. D. LaGrange, Commutative boolean monoids, reduced rings, and the
compressed zero-divisor graph, J. Pure Appl. Algebra, 216 (2012), 1626–1636.
[2] A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra, 42 (2014), 108–121.
[3] A. Badawi, On the dot product graph of a commutative ring, Comm. Algebra, 43 (2015), 43–50.
[4] W. Feifei, Z. Qingyue and C. Miaosen, Kothe radical of multiplication modules, J. Nanjing Univ.
Math. Biquarterly 31(1), 22–31, 2014.
[5] H. F. Moghimi and M. Samiei, Quasi-primaryful modules, Asian-European J. Math. 8(3), paper
no. 150051 (14 pp.), 2015.
[6] A. Abbasi, H. Roshan-Shekalgourabi and D. Hassanzadeh-Lelekaami, Associated graphs of modules
over commutative rings, Iran J. Math. Sci. Inform. 10(1), 45–58, 2015.
2