(94 öµÆõ¥ ø Ãþ) ûõ 6 ¢ÂØÜÞä ©¤Ã𠴪¨×÷ öت 1394 ÀÔ¨ 18 µªÁð üÈûøÄ ýû´óãê ÛÞØ ø õ¢ 1 óÖõ ©ÂþÁ °Æî ( Óó On the Minimum Kirchhoff index of Graphs with a Fixed Number of Cut Vertices ø ¤ú ûõ 6 ©¤Ãð ùÂÞû Ã÷ üó¨¤ óÖõ ¥ ý¿Æ÷ ø ´¨ ùÀª ÞÞ® ©ÂþÁ õ÷ .Disc. Appl. Math. ¤¢ .¢ µÈð ÝþÀÖ °÷¹þ ñÆõ öµÆ óÖõ ñ¨¤ ø üþú÷ ý¥¨ù¢õ ( On Generalizations of Cycles and Chordality to Hypergraphs ßþ ® ñ ¤¢ .üÜÜÞóß Â±µãõ ¹õ ¤¢ ý ýÀú÷ᤥ Àª¤ Âµî¢ íµÈõ ÖÖ½ ¥ ¿µÆõ ¤¢ íµÈõ ÖÖ½ ßþ ¥ Û¬ ÂÚþ¢ ¸þµ÷ ü¡Â ß»Þû .Àªüõ ý¤ø¢ ´¨¢ ¤¢ Elec. J. Combin. ¤¢ óÖõ öä ´½ ü÷¿¨ Linear Resolution, Chordality and Ascent of Clutters ø ¤îÁõ óÖõ .Àª ¤ (1394 ö 21 ø 20) öÂú IPM ¤¢ ͱÂõ ¶±õ ø üþ¹Â± ¤Þ¨ ßÞû¢¥ø¢ ¤¢ .´¨ ùÀª ÞÞ® ùÀª ¤ ü÷¿¨ ¯Æ±õ ùÀØ óÖõ ñ¨¤ ø üþú÷ ý¥¨ù¢õ ( Tame Graphs, Clutters and Their Rees Algebras Âµî¢ ø ¢Ä÷ÜóÂÊ÷ §±ä Âµî¢ ,ýÀú÷ᤥ Àª¤ Âµî¢ íµÈõ "¤Þû ´¨ÀØþ ýûéÂð' üÈûøÄ ÂÏ ¥ ¿µÆõ ùÀª ´¨ ,Àªüõ ý¤ø¢ ´¨¢ ¤¢ J Pure Appl. Algebra ¤¢ ® ñ ¤¢ î üó¨¤ óÖõ .¤ö¢Ãþ ±î üÜä .´¨ óÖõ ñ¨¤ ø üþú÷ ý¥¨ ù¢õ ( Delta Operation on Modules, Prime and Radical Submodules and Primary Decomposition. ´¨¢ ¤¢ Proc. Edinburgh Math. Soc. ¤¢ óÖõ ßþ ® ñ ¤¢ .´¨ ùÀª ´¨ ,óÖõ ùÀª ñ¨¤ ¿Æ÷ .´¨ ý¤ø¢ ßõ24 ¤¢ î "Dual of Codes over Finite Quotients of Polynomial Rings' óÖõ ÛÞØ ´ú ÖÖ½ ô¹÷ ( ý óÖõ ×þ Ûت ²þ ø üþú÷ ýÀâÞ ÜÂõ ¤¢ ÇûøÄ ßþ ® ñ ¤¢ .¢ ùÀª ¤ öÂþ ± ¤Þ¨ ÞÞ® ܬ ¸þµ÷ ÂÚþ¢ ¬ ¡ ø ùÀª ù¢õ ýû´ÞÆì .´¨ üÜÜÞóß Â±µãõ üÈûøÄ üÞÜä ¹õ ñ¨¤ .´¨ ùÀª 1 ¸þµ÷ Ýû ."Multilpicatively Closed Subsets of a Ring Which Split a Module' ÂÏ üÈûøÄ ÜÂõ ßµêþ öþ ( î ,ù¦ø  üÜ±ì ©¤Ãð ýúµ÷ ¤¢ ÀþÀ ¸þµ÷ ,üÜ±ì ¸þµ÷ ø Óþ¤ã ý¤ø¢þ ´ú) .´¨ ùÀª ÞÞ® ùÀª µêÂð 6 ßþ ¤¢ ùÀª µêÂð ¸þµ÷ ù¦ø  ©¤Ãð 4 Ç¿ âìø ¤¢ .´¨ ùÀõ ,¢ ùÀª ÝþÀÖ Ç ûõ 6 ©¤Ãð ùÂÞû üÜÜÞóß Å÷ÂÔî ×þ ¤¢ ¤ ´ú ¸þµ÷ ßþ ,üþú÷ ý¥¨ ù¢õ ø ýÀâÞ ¥ Å î ¢ø ¤üõ Àõ (.´¨ ûõ .¢ª ñ¨¤ ñÆõ öµÆ ¤¢ ù¤ø¢ ßþ ¤¢ ùÀª ¥è üÈûøÄ ýû´óãê 2 ¤±µä ¥ ù¢Ôµ¨ "Chordality of Zero-Divisor Based Graphs of Commutative Rings' üÈûøÄ ÂÏ ¥è ( Óó ÂÏ ßþ ¤±µä ÉÊ¿ ø Àþ À÷ø ¤ ÀÂû .°÷¹þ öÚ±¿÷ üÜõ ¢ üþÎä ü÷µª üÞÒî Âµî¢ üÈûøÄ ö¢ chordal ü¨¤  ÂÏ ßþ .´¨ ùÀª ¥è ö ¯Âõ üÈûøÄ ýû´óãê õ ´¨ ùÀÈ÷ üÏ õî ¥û Öõ µ¨¤ ßþ ¤¢ .À÷ùÀª µ¡¨ üþ¹ ÖÜ ×þ ÂcÔ¬ ýûÜäôÆÖõ ¤µ¡¨ ý±õ Â î ¢¥¢Âüõ üþûéÂð .´¨ ùÀª ãóÎõ ,À÷ù¢Âî ãóÎõ ¤ ûéÂð ßþ ¥ ü¡Â «¡ î ]3 ,2 ,1[ ÂÚþ¢ ýû´óãê 3 .94 öµÆõ¥ ÛÊê ¤¢ (Àø 3) 1 µÆÆð ®þ¤ Åþ¤À ( Óó ,J. Algebraic Systems ,J. Applied Mathematics and Computing ¹õ ý üÈûøÄ üÞÜä óÖõ ¨ ý¤ø¢ ( .TWMS J. Pure Appl. Math review .ZbMath ý ]6[ óÖõ  ø .Mathematical Reviews/MathSciNet ý ]5 ,4[ Öõ  review ¤ ( .´¨ ùÀª ÞÞ® û ."Âîø-öø ÂÞî ýûéÂð ý± ãóÎõ' öä ´½ üÜèøßõõ µªÂê Ý÷¡ Àª¤ ü¨ª¤î õ÷öþ üþÞû¤ ¥è ( .´¨ ùÀþ¢Âð ¤Ãð öÈþ ý üþÞû¤ ÆÜ 10 ¢øÀ ñ½ âÂõ [1] D. F. Anderson, J. D. LaGrange, Commutative boolean monoids, reduced rings, and the compressed zero-divisor graph, J. Pure Appl. Algebra, 216 (2012), 1626–1636. [2] A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra, 42 (2014), 108–121. [3] A. Badawi, On the dot product graph of a commutative ring, Comm. Algebra, 43 (2015), 43–50. [4] W. Feifei, Z. Qingyue and C. Miaosen, Kothe radical of multiplication modules, J. Nanjing Univ. Math. Biquarterly 31(1), 22–31, 2014. [5] H. F. Moghimi and M. Samiei, Quasi-primaryful modules, Asian-European J. Math. 8(3), paper no. 150051 (14 pp.), 2015. [6] A. Abbasi, H. Roshan-Shekalgourabi and D. Hassanzadeh-Lelekaami, Associated graphs of modules over commutative rings, Iran J. Math. Sci. Inform. 10(1), 45–58, 2015. 2
© Copyright 2024 ExpyDoc