Grundformen Quadratanordnungen, L T Z –Plättchen, Tetraminos und Pentaminos als unvollständige Würfelnetze, 12 Pentaminos Rechteckanordnungen (Flächeninhalt). Das gleichseitige Dreieck, ...im Quadrat, das Rechteck über dem..., Dreiecksanordnungen, Tetraeder-, Oktaedernetze, das Wurzel-3-Rechteck, die Laschen Taschen-Masche, die 12 Hexamanten Horst Steibl 1 Zwillinge Dieser Zwilling ist ein Diabolo. Wir betrachten später die entsprechenden Drillinge und Vierlinge, die 4 Triabolos und die 14 Tetrabolos. Dieser Zwilling ist ein Diamant. Wir untersuchen die Sechslinge, die 12 Hexamanten. Dieser Zwilling ist ein Domino. Wir betrachten die Tetraminos (L, T, Z - Plättchen) und die 12 Pentaminos Horst Steibl 2 Der Clan der Haquas Halbiert man ein Quadrat diagonal, so erhält man zwei gleichschenklig rechtwinklige Dreiecke, zwei Halbe Quadrate Zwei Haquas kann man passend aneinanderlegen und erhält so drei Diabolos: ein Quadrat, ein Dreieck und ein Parallelogramm Horst Steibl 3 Das waren die drei Diabolos Die Namengebung „Diabolo“ stammt von einem Kreiselspiel mit Schnur und Stock. Die drei Diabolos waren die möglichen „passenden“ Legungen zweier Haquas. Es gibt aber eine andere nicht passende Legung der Haquas, die zu einer interessanten Fragestellung führt: Sehen Sie in diese Figur ein Rechteck hinein: Was fehlt? Ein Drachen fehlt! Es ist ein Rechteck aus Quadratseite mal Diagonale: ein Ostwaldrechteck (DIN-Format) Horst Steibl 4 Das DIN- Format und die Haquas Faltet man in einem DIN-Blatt die Diagonalen des Quadrates, so passt die lange Seite genau auf diese Diagonale. a a*2 Das DIN-Blatt ist ein Rechteck aus Quadratseite mal Diagonale, ein Ostwaldrechteck Horst Steibl 5 Die Diagonale des Quadrates und die 2 Lege um zum Quadrat mit Loch. 10 cm Aus Eins mach Zwei! Was ist dabei? Wie groß ist das Loch, wie groß das neue Quadrat? Berechne die 200! Interpolation! Horst Steibl 6 Aus zwei mach eins, wer hat dann keins? 4,667 cm 200 = ? 10 cm 14 ² = 196 15² = 225 200 cm² 200 =144/29 2 * 100 cm² Horst Steibl Quadratzahlen Interpolation Bruchrechnung 7 Fortgesetztes Halbieren der Haquas (1 A N18 1 Z ½ * 2 Zwei farbige Blättchen fortlaufend halbieren. Hälften zur Quadratfolge kleben. Die Ausgangsquadrate haben die Seitenlänge 1. Wie lang ist die Linie AZ? Folgen und Reihen; Grenzwerte Horst Steibl 8 Potenzen kein mal halbiert ein mal halbiert zwei mal halbiert drei mal halbiert vier mal halbiert fünf mal halbiert 20 = 1 21 = 2 22 = 4 23 = 8 24 = 16 25 = 32 1 1/ 2 1/ 1/ 4 Beachten Sie die Entsprechung beim 1/ 8 1/ 16 DIN - A- 4 Format: 32 2 4 = 16 16 DIN-A-4 Blätter ergeben ein DIN-A-0 Blatt von 1m² DIN A 0 = 1 m² DIN A 1 = ½ m² DIN A 2 = ¼ m² DIN A 3 = 1/8 m² Horst Steibl DIN A 4 = 1/16m² DIN A 5= 1/32 m² 9 Das Achterkreuz Aus der Ebene in den Raum Zwei Diagonalen falten. Du erhältst vier Haquas. Zwei Diagonalen falten, Blatt wenden, zwei Mittellinien falten, Achterkreuz im Raum betrachten: Zwei Gebilde Oktaeder? vierseitige Pyramide? Oktaeder stecken! Horst Steibl 10 Die Würfelecke aus dem Achterkreuz Drei Quadrate, in halber Würfel; Drei Dreiecke; eine Pyramide? eine Würfelecke? 8 Haquas, zwei verbergen wir, 6 bleiben übrig 6 Haquas sind 6 Haquas, wo ist hier der Unterschied Horst Steibl 11 Zwei räumliche Gebilde aus 6 Haquas zwei Achterkreuze eines als Unterlage glätten beim zweiten aus drei Flächen eine machen (zwei Flächen einstreichen) zur Ecke aus drei mal zwei Dreiecken (dreiseitige Pyramide) knicken mit einem Dreieck (s.rote Punkte ) aufkleben, zur dreiseitigen Würfelhälfte umfalten Horst Steibl 12 Der Würfel aus vier Ecken 5 cm Wie sieht die Schnittfläche aus, wenn Sie eine Ecke abschneiden? 5 cm Was bleibt übrig wenn Sie alle vier Ecken abschneiden? Welcher Bruchteil des Würfels nimmt der Restköper ein? Einpassen eines Oktaeders in einen Würfel !!! Horst Steibl 13 Drei sich durchdringende Quadrate Wie viele Quadrate müssten Sie ineinander stecken? Wie viele Achterkreuze müssten Sie falten? Wie müssen Sie die drei Quadrate einschneiden? Wie heißt der das Oktantenmodell umhüllende Körper? Wie sehen dessen Mittelpunktspyramiden aus? Horst Steibl 14 Von 1 bis 16 2 1 5 6 4 10 9 11 12 10 13 14 8 7 11 4 3 12 15 16 1 3 5 7 1.Schuljahr 8 14 13 15 16 1 8 3 14 13 9 10 7 2. Schuljahr 1 2 14 16 4 11 12 6 Immer 17! Summe von 1 bis 16? Immer 34! 2 16 15 9 2 6 15 3 5 Zauberquadrate? Horst Steibl 15 Vom 8-er zum 32-er-Feld Falte beim Achterkreuz die Ecken zur Mitte und du erhältst den Brief: ein 16-er-Feld: 1. Schuljahr: 4 * 4 =16 (Zahlen hineinschreiben!!) Drehe den Brief und falte die Ecke noch einmal zur Mitte (Doppelbrief). Hieraus lassen sich schöne Figuren falten (Windmühle, Krone, Flunder, Katamaran) 2. Schuljahr: Horst Steibl 4*8 = 32 16 Vom 16-er-Feld zum Tangram 2,432 cm Die Tangram-Teile können als Monobolos, Diabolos und Tetrabolos gedeutet werden. Das 16-er-Feld sollte auf jeden Fall vorher erarbeitet werden. Das Falten der Tangramteile aus dem Quadrat habe ich in meinem Buch „Der Zettelkasten“ ausführlich beschrieben. Horst Steibl 17 Wechsel der Richtungen 2,432 cm Im Tangram-Quadrat sind die Hypotenusen der Dreiecke parallel zu den Seiten. Die Katheten bestimmen die Diagonalrichtung 2,432 cm Im Bezug auf das halbierte Quadrat sollte dies eigentlich umgekehrt sein. Vertauscht man die Richtungen, so kommt man zu diesem Rechteck, das dem glsch. Dreieck als halbiertem Quadrat „gerechter“ wird Horst Steibl 18 2,432 cm Das Tangramfeld als 3 x 3 Quadrat 7 Tangramteile, 16 Haquas, 8 Quadrate : 1 großes Quadrat in dem die 8 Quadrate Platz haben wäre ein 3 x 3 Feld. 2,432 cm Legt man nun die 7 Tangramteile in ein 3 x 3-Feld, so müssen zwei Dreiecke fehlen. Sie können nicht überall fehlen Man kann dieses 3 x 3 Quadrat auch zum Dreieck umlegen und so zwei Dreiecke fehlen lassen Tri Horst Steibl 19 6 der 13 konvexen Tangramfiguren Quadrat, Dreieck, Rechteck, Trapez, Parallelogramm, Haus (Fünfeck), Haus mit Walmdach (Sechseck) Horst Steibl 20 Exoten Die Drachenkurve Ziel Ziel Start Start Nimm ein 14 cm langen Streifen und halbiere ihn einmal (S M Z) 2) *10 cm; ein mal geknickt (2)²*10 cm zwei mal geknickt (2)3*10 cm drei mal geknickt Mitte (2)4*10 cm vier mal geknickt (2)15*10cm fünfzehn mal geknickt 18,...m lang , 3,27...m dick Darstellung durch Dualzahlen: (1 für Rechtsknick, 0 für Linksknick) Horst Steibl 21 Das Sierpinskidreieck Zeichne ein Haqua Schneide das Mittendreieck aus Schneide von den restlichen Dreiecken jeweils das Mittendreieck aus Schneide von den restlichen Dreiecken jeweils das Mittendreieck aus....... 1, 3, 9, 27, 81,... Zeichne die drei Punkte eines Dreiecks, Steuere von einem Punkt einen anderen Dreieckspunkt an. Fahre aber nur die halbe Strecke. Zeichne nur die Endpunkte. Trauer um den Igel! Horst Steibl 22 Der Bigalke-Knoten 12 gleichlange, lotrecht aufeinander stehende Streckenzüge der Länge k auf (in) einem Würfel sollen sich zum Knoten schließen. Welchen Gruppentyp repräsentiert das Modell? Herr Spieß sieht darin die Kleinsche Vierergruppe. Was sehen Sie? Zurück zum Fußvolk!! Horst Steibl 23 Es gibt nur vier Triabolos s Achten Sie bei der Erzeugung und dem Legen von Figuren auf eine einheitliche Richtung der Diagonale (Halbierungslinie, Hypotenuse h) bzw der Quadratseite (Kathete s) h Namengebung? Nach s oder nach h? tetras Dank! Jürgen Köller Horst Steibl 24 Figuren aus vier Triabolos Haus? Horst Steibl 25 Horst Steibl 26 Die Tetrabolos Zur Erzeugung der Tetrabolos kann man von den Tribolos ausgehen und diese durch ein weiteres Haquas ergänzen. Dann ist man sicher alle Tetrabolos zu erhalten. Hier vom Quadrat mit Dach: Hier fehlen aber noch welche Man kann auch von den Diabolos Quadrat und Dreieck ausgehen und je zwei Haquas anfügen. Horst Steibl 27 Die Namengebung der Tetrabolos Identifiziert man wie beim Tangram, den Quadratanordnungen und den Hexamanten die spiegelbildlichen Formen, so erhält man 14 Figuren. 6 davon haben eine Spiegelachse, 8 nicht. Rechteck Quadrat Dreieck Trapez breites und schmales dicker Stiefel Parallelogram dünner Stiefel Horst Steibl dicker Helm dünner Helm dicker Pfeil dünner Pfeil Windrad Socke 28 Figuren 1,65 cm 2,333 cm 1,65 cm 2,333 cm 1,65 cm 2,333 cm 1,65 cm 2,333 cm 1,65 cm 2,333 cm 1,65 cm 2,333 cm Umhüllendes Rechteck? A R = ...? UR = ...? Magnus Kleine-Tebbe Horst Steibl 29 Ein 4s x 4s - Quadrat Wie viele Quadrate zählen Sie? Wie viele Dreieck sind es also? Wie viele Tetrabolos liegen hier? Übungen zur Viererreihe! Mögliche Rechtecke über den Quadratseiten s 2 x 3; 2 x 4; 2 x 5; 2 x 6; 3 x 3; 3 x 4 ; 4 x 4; 4 x 5 Zweier-Quadrat oder Vierer-Quadrat Horst Steibl 30 Ein Rechteck 2 h x 5 h über den Hypotenusen Welche Quadrate h² können Sie hier zählen? Wie viele Dreiecke ergeben sich bei 2h x 5h? Wie viele Tetrabolos sind also beteiligt? Rechtecke über den Hypotenusen 1 x 4; 2 x 2; 2 x 3; 2 x 4; 2 x 5; 2 x 6; 3.x 3; 3 x 4, Horst Steibl Wie kommen Sie von d² zu der Anzahl der Dreiecke? 31 Gibt es ein Dreieck für alle 14 Steine? 14 Steine = 56 Dreiecke Zählen Sie die Dreiecke in einer Reihe: Folge der ungeraden Zahlen Addieren Sie diese: Es gibt kein Dreieck 49 < 14*4 < 64 Folge der Quadratzaheln Horst Steibl 32 Gibt es ein Rechteck mit allen 14 Steinen? 14 Tetrabolos (28 Quadrate) ergibt ein 4s * 7s Feld oder ein 2h * 7h Feld. 2,357 cm Anzahlen der beteiligten Hypotenusen bzgl. einer Richtung . 13 22 erste Ziffer: Anzahl der “fallenden”, zweite Ziffer: Anzahl der “steigenden” Hypotenusen Die Tetrabolos zerfallen in zwei Klassen; einmal in die mit geraden Ziffern, zum anderen in die mit ungeraden Ziffern. Horst Steibl 33 Tetrabolos mit ungeraden Kennziffern 11 31 zwei Klassen: 11 31 11 Summe einer 9 Steine Kennzahl gerade Ziffern 5 Steine ungeraden Ziffern. Richtung ungerade Beim Legen innen : immer zwei einer Richtung zusammen. Die Anzahl einer Richtung im Inneren ist also gerade. Die Anzahl der außenliegenden Seiten h einer Richtung müsste also 2,357 ungerade sein, wenn Legung mit allen Steinen möglich sein sollte. Rechtecke 4 s * 7s oder 2h * 7h nicht möglich Aber: Nicht jede Figur mit ungerader Anzahl einer Richtung ist legbar Horst Steibl 34 Ähnlichkeit zentrische Streckung Streckungsfaktor? Horst Steibl 35 Ringe aus Tetrabolos Es gibt 30 Pentabolos 107 Hexabolos 318 Septabolos 1106 Oktobolos Hier sind 74 Dreiecke eingeschlossen. Wie viele schließen Sie ein? Quellen Horst Steibl 36 Quellen http://www.piciotto.org/math-ed/puzzles/ http://www.mathematische-basteleien.de/polyabolos http://www.madin.tu-bs.de/homepage/steibl/sicher1/ Martin Gardner: Mathematische Hexereien Ullstein 1988 bild der wissenschaft 8/1979 (Halbquadrat Mehrlinge) Horst Steibl 37 Die Familie der Formen Der Clan der Quadis Der Clan der Trixis Der Clan der Haquas Der Clan der Ostwaldis Der Clan der Diarcs Horst Steibl 38 Ende der Vorstellung Horst Steibl 39 Der Kreis als Grundform: Polyarcs Welche Fläche nehmen die roten Figuren ein? Was für ein Rechteck könnte man damit legen? Horst Steibl 40 Passende Legungen Horst Steibl 41 Aufgaben zum „Super-Tangram“ Lege eine Figur und fertige eine Umrissfigur dazu. Schreibe auf, wie viele (welche) Steine du benötigt hast. Fertige Arbeitskarten für deine Mitschüler. Lege ein Feld mit möglichst geradem Außenrand Lege ein Feld mit möglichst viel leerem Innenraum (Zaun)! Lege kleine Rechtecke. Wie zählst du die Quadrate? Lege 4 Steine zu einem Tetrabolo doppelter Größe. Worauf soll sich dann das „doppelt“ beziehen? Lege eine Tetraboloform mit dreifacher Länge. Wie viele Steine brauchst du? Horst Steibl 42 Die Asymmetrischen und ihre Spiegelbilder Nehmen Sie die 8 Tetrabolos, die keine Spiegelachse haben und ihre Spiegelbilder. Damit haben Sie 16 Figuren, die sich zu einem 4h x 4h Quadrat legen lassen. Eine Lösung wurde erst 1962 von Setterington und Spinks gefunden. Schwierig! Mehrere Lösungen! Diese Figur kann gedreht werden Wo ist zweite kongruente Figur zum Tauschen? Horst Steibl 43 Von 1 bis 16 2 1 5 10 13 14 8 7 11 4 3 12 15 16 6 1 3 5 4 10 9 11 12 7 1.Schuljahr 8 14 13 15 16 1 8 3 14 13 9 10 7 2. Schuljahr 1 2 14 16 4 11 12 6 Immer 17! Summe von 1 bis 16? Immer 34! 2 16 15 9 2 6 15 3 5 Zauberquadrate? Horst Steibl 44
© Copyright 2024 ExpyDoc