Flexible flaps for separation control on a wing with low aspect ratio Dipl. Ing. G. Patone Dr. W. Müller Dr. R. Bannasch Prof. Dr. Ing. I. Rechenberg 1 bionics pilot project: Aeroflexible surface flaps as "eddy-breaks" built after the covert feathers of birds Project partners: • DLR Abt. Turbulenzforschung • Firma Stemme GmbH • Fachgebiet Bionik und Evolutionstechnik an der TU-Berlin 2 main objective: 0 1 eddy 2 3 3 Brown Skua with “eddy-flaps” 2 eddy 3 lifted covert feathers 0 1 2 3 eddy- flaps 4 aerofoil with eddy- flaps 0 1 eddy- flaps 2 3 5 goal: not like this but like this cL cL cD a cL cL a cD 6 research goal • improving the stall behavior of an aerofoil • flaps should not have any negative effects while not active • flaps should work without external controls 7 experimental setup at the wind tunnel lift-balance wind tunnel 10m/s NACA 2412 aerofoil with an aspect ratio of 3.5 Re= 130.000 drag-balance pressure sensor and scanivalve 8 porosity schematic pressure distribution px a + py px > p y px px py py b py impervious materials are lifted off by the pressure differences px c py py porous materials remain on the surface 9 aerofoil with silk flaps 700m m silk steel wire 100 a 200mm 10 silk flaps b a t NACA 2412 CL 1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 without flaps with silk flaps ( a=15%t; b=50%t) 0,2 0,1 0 0 10 20 30 a 40 11 polar diagram for ‘perforated plastic sheet’ flaps b a t NACA 2412 CL 1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 `perforated plastic sheet` flaps (a=15%t, b=35%t) fixed `perforated plastic sheet` flaps 0,2 0,1 0 0 10 20 30 a 40 12 aerofoil for pressure distribution 7 6 5 4 3 2 1 13 pressure distribution at 16 degrees a = 20°: without flaps -0.0 -0.0 -0.6 -0. 3 -0.1 -0.6 -0. 5 -0.7 -0.5 -0. 2 5 -0. -1.7 -2.1 -2.0 -2.1 -1.9 -1.5 -1.6 -0.7 -0. 6 -1.2 -0-1. 9 -0 -1. -1. . 1 . 8 4 3 -1.8 with flaps -0. 2 -0. 5 -0.7 -0.6 -0.5 .2 -0 -0.3 -0.4 -0. 5 -0. 6 .2 -0 -0.1 -0.1 -0. 2 -0.1 -0.4 -0.3 .4 -0 -0.4 -0.4 -1.9 -1.7 -1.5 . 91 -0-1. -1.6 -1.8 -0.4 -0.5 -0.6 -0.7 -0 -1.3-1.2 . 8 -1.4 incident airflow 14 pressure distribution at 19 degrees a = 23°: without flaps -0.6 -0.4 -0. 5 -0.4 -0. 7 -0.3 -0.5 6 -0. -0. 5 -0. 5 -0. 6 -0.8 -0. 7 -1. 2 -1.1 -0. 9 -0. 5 -0.7 -0 .8 -1.1 -0. 9 -1.2 -0. 6 with flaps -0.5 -0. 4 -0.3 -0. 8 -0.5 -0. 4 -0. 7 -0. 6 -0.5 -0.7 -0.3 -0. 4 6 -0. -0 .4 -0.3 -0.7 -0.6 -1.7 -1.6 -1.2 -1 -1.4 .5 -1.3 -0.9 -1. 1 -1.6-1.5 -1.7 -0.9 -1.1 -0.8 -11. 3-1. 2 .4 incident airflow 15 flow visualisation trapped vortex stationärer Wirbel trapped eddy instationäre Strömungsverhältnisse 16 pressure distribution at 36 degrees a = 40°: without flaps .4 -0 -0.4 -0.4 -0. 4 -0.4 -0 .5 with flaps -0. 6 7 -0. -0.8 -0. 8 -0.4 -0.8 incident airflow 17 polar diagram (calculated from all measuring rows) CL 1 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 without flap with flap 0,1 0 0 10 20 30 a 40 a 18 CL lift distribution without flaps at different angles of attack 1 18° 0,9 0,8 0,7 24° 19° 0,6 36° 0,5 6° 0,4 0,3 1° 0,2 0,1 0 0 100 200 300 400 500 600 mm 700 19 CL lift distribution with flaps at different angles of attack 1 18° 0,9 24° 0,8 0,7 36° 19° 0,6 0,5 6° 0,4 0,3 1° 0,2 0,1 0 0 100 200 300 400 500 600 mm 700 20 summary: • eddy flaps prevent sudden drop in lift generation during stall • pressure distribution indicates: eddy-flaps restrict eddy to hind part of aerofoil outlook: • automatic contour adapting flaps • dynamic stall behaviour 21
© Copyright 2024 ExpyDoc