Grundlagen der Technischen Informatik CMOS-Gatterschaltungen Kapitel 7.3 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design Grundlagen der Technischen Informatik CMOS: Inverter-Schaltung VDD PMOS Vin Vout V in V out CL NMOS • Der Inverter besteht aus zwei Transistoren, einem NMOS und einem PMOS • Ist Vin auf high – NMOS-Transistor öffnet und Vout wird auf GND gezogen – PMOS-Transistor sperrt Grundlagen der Technischen Informatik 2 CMOS: Inverter-Schaltung • Ist Vin auf low – NMOS-Transistor sperrt – PMOS-Transistor leitet, Vout wird daher auf VDD gezogen • Strom zwischen VDD und GND kann durch die Transistoren nur in der Umschaltphase fließen. Zu diesem Zeitpunkt sind beide Transistoren kurzzeitig gemeinsam leitfähig. Grundlagen der Technischen Informatik 3 Inverter-Layout • Das Layout stellt zwei in Serie geschaltete Inverter dar CMOS-Maskenlayout VDD PMOS • Das Polysilizium wird genutzt, um die Gates auf dem Silizium zu realisieren • Das hellrosa Gebiet ist die n-Wanne für die PMOSTransistoren In Out Metall1 Polysilizium NMOS Grundlagen der Technischen Informatik 4 GND Inverter-Layout • Die blauen Felder sind Metalleiter, wo meist Aluminium oder in moderneren Verfahren Kupfer zum Einsatz kommt • Die grünen Gebiete sind Diffusionsgebiete, und mit schwarzen Vierecken stellen diese Kontaktierungen zwischen den Source- bzw. DrainGebieten und den Metalleitern dar CMOS-Maskenlayout VDD PMOS In Out Metall1 Polysilizium NMOS Grundlagen der Technischen Informatik 5 GND CMOS – Das ideale Gatter • Kennlinie eines idealen Signalverlaufs: Ri= Vout – Idealer Verlauf von Vout in Abhängigkeit von Vin für Inverter: – Durchlasswiderstand R ist Null, Sperrwiderstand R ist R0=0 g=- Vin – Die Schaltgeschwindigkeit ist unendlich schnell, was durch die negative unendliche Steigung g angegeben wird, wodurch eine CMOS-Schaltung praktisch verlustfrei wäre Grundlagen der Technischen Informatik 6 CMOS-Transistor - Spannungskennlinien • Kennlinie eines realen Signalverlaufs: – Realer Verlauf von Vout in Abhängigkeit von Vin – Bei Schaltvorgängen entstehen Verluste, da beide Transistoren kurzzeitig gleichzeitig aktiv sind – VOL und VOH sind Schwellwerte, die von Vin erreicht werden müssen, damit ein Zustandswechsel passiert Vout VOH f Vout=Vin VM Schaltschwelle VOL VOL VOH Vin Nominale Spannungspegel Grundlagen der Technischen Informatik 7 CMOS-Transistor - Verzögerungsdefinitionen • Kennlinie eines realen Signalverlaufs: V in 50% t t pH L V out t pLH – Da reale Schaltungen 90% eine endliche 50% Umschaltgeschwindigkeit 10% t aufweisen, ergibt sich eine tf tr Signalverzögerung zwischen Vin und Vout – Die Signalverzögerung summiert sich bei einer Serienschaltung dieser Bauteile und hat den entscheidenden Einfluss auf die Taktfrequenz der gesamten Schaltung – Zusätzlich spielen hierbei Leitungskapazitäten eine Rolle, die die Umladevorgänge der Schaltknoten ausdehnen Grundlagen der Technischen Informatik 8 Beispiel CMOS-Gatter • CMOS-Schaltung für ein NAND-Gatter VDD PUN : F A B A B A PDN : G F A B A B F( x 1 , x 2 ,..., x n ) G(x 1 B OUT A , x 2 ,..., x n ) B GND Grundlagen der Technischen Informatik 9 CMOS: NAND-Gatter mit 4 Eingängen CMOS-Maskenlayout CMOS-Schaltung für NAND-4 Vdd VDD In1 In2 In1 In2 Out In3 In4 GND In1 In2 In3 In4 Grundlagen der Technischen Informatik 10 In3 In4 Out Beispiel CMOS-Gatter • CMOS-Schaltung für ein NOR-Gatter VDD PUN : F A B A B A PDN : G F A B A B F( x 1 , x 2 ,..., x n ) G(x 1 B OUT , x 2 ,..., x n ) A B GND Grundlagen der Technischen Informatik 11 Beispiel CMOS-Gatter VDD • CMOS-Schaltung für komplexes Gatter – In der CMOS-Technik lassen sich ebenfalls komplexere Gatter modellieren (siehe Schaltung rechts) B A C OUT D A (B C) – Dabei muss jedoch durch entsprechende Dimensionierung der TransistorkanalD breite (W) und der Kanallänge (L) die Geometrie der Transistoren beachtet werden, damit die geforderte Symmetrie wie beim Inverter erhalten bleibt. Grundlagen der Technischen Informatik 12 D OUT A B C GND CMOS-Gatterschaltungen • Einschränkungen komplexe CMOS-Gatter: – Bisher: • Im PUN-Ausdruck: nur negierte Literale (PMOS-Transistoren, Öffner) • Im PDN-Ausdruck: nur nichtnegierte Literale (NMOSTransistoren, Schließer) • Problem – Schaltfunktionen besitzen Literale in sowohl negierter als auch nicht negierter Form • Lösung – Ein negiertes (nichtnegiertes) Literal muss im PDN (PUN) entweder als weiterer (zusätzlicher) Eingang zur Verfügung stehen oder mit einem Inverter erzeugt werden Grundlagen der Technischen Informatik 13 Beispiel XOR-Gatter in CMOS PUN : F A, B A B A B PDN : G F A B A B (A B )(A B) VDD A A F(A,B) B B GND Grundlagen der Technischen Informatik 14 Beispiel XOR-Gatter in CMOS PUN : F A, B A B A B PDN : G F A B A B (A B )(A B) VDD A A F(A,B) B B GND Grundlagen der Technischen Informatik 15
© Copyright 2025 ExpyDoc