Publications Dr. Marc Widenmeyer 1. M. Widenmeyer, Bildung und Kristallstrukturen metastabiler Vanadiumnitride: V16Ny sowie Entwicklung eines Reaktors für die in-situ Neutronenbeugung, Diplomarbeit, Univ. Stuttgart, 2010. 2. M. Widenmeyer, R. Niewa, In situ Neutron Diffraction in the System V–N, Z. Anorg. Allg. Chem. 2012, 638, 1629. 3. M. Widenmeyer, R. Niewa, In situ Neutron Diffraction in the System Fe–N, Z. Anorg. Allg. Chem. 2012, 638, 1628. 4. A. Leineweber, S. Shung, Z.-K. Liu, M. Widenmeyer, R. Niewa, Crystal structure determination of Hägg carbide, χ-Fe5C2 by first-principles calculations and Rietveld refinement, Z. Kristallogr. 2012, 227, 207–220. 5. M. Widenmeyer, R. Niewa, H. Kohlmann, Formation mechanisms of (metastable) cobalt and manganese nitrides through in situ neutron diffraction of solid-gas-reactions, Experimental Report 5-25-223, Institut Laue-Langevin (ILL), 2013. 6. M. Widenmeyer, R. Niewa, H. Kohlmann, Formation mechanisms of (metastable) iron nitrides through in situ neutron diffraction of solid-gas-reactions, Experimental Report 5-25-222, Institut Laue-Langevin (ILL), 2013. 7. M. Widenmeyer, R. Niewa, H. Kohlmann, Formation mechanism of (metastable) copper, nickel and vanadium nitrides through in situ neutron diffraction of solid-gas-reactions, Experimental Report 5-25-214, Institut Laue-Langevin (ILL), 2013. 8. M. Widenmeyer, R. Niewa, H. Kohlmann, Formations mechanism of (metastable) iron nitrides through in situ neutron diffraction of solid-gas-reactions, Experimental Report 5-25-206, Institut Laue-Langevin (ILL), 2013. 9. C. Ney, M. Widenmeyer, R. Niewa, Structure determination of solid solutions in the system Li8TeN2–Li7IN2, Experimental Report 6362, Heinz Maier-Leibnitz Zentrum (FRM-II), 2013. 10. M. Widenmeyer, R. Niewa, T. C. Hansen, H. Kohlmann, In situ Neutron Diffraction as a Probe on Formation and Decomposition of Nitrides and Hydrides: A Case Study, Z. Anorg. Allg. Chem. 2013, 639, 285–295. 11. H. Kohlmann, P. Wenderoth, C. Reichert, M. Widenmeyer, Pathways of the hydrogenation of light-weight intermetallics with nitrogen, aluminium and silicon, Experimental Report 5-22714, Institut Laue-Langevin (ILL), 2013. 12. M. Widenmeyer, C. Ney, M. Bischoff, J. Hertrampf, R. Niewa, Nitrogen content of CrN1+x, Experimental Report 8946, Heinz Maier-Leibnitz Zentrum (FRM-II), 2013. 13. M. Widenmeyer, T. C. Hansen, R. Niewa, Formation and decomposition of metastable α´´Fe16N2 from in situ powder neutron diffraction and thermal analysis, Z. Anorg. Allg. Chem. 2013, 639, 2851–2859. 14. M. Widenmeyer, T. C. Hansen, E. Meissner, R. Niewa, Formation and decomposition of iron nitrides observed by in situ powder neutron diffraction and thermal analysis, Z. Anorg. Allg. Chem. 2014, 640, 1265–1274. 15. M. Widenmeyer, Synthese und Charakterisierung (meta)stabiler 3d-Übergangsmetallnitride MNx (M = V–Cu) und deren Zwischenstufen mittels in-situ Neutronenbeugung, Dissertation, Univ. Stuttgart 2014, ISBN 978-3-8439-1691-2, 1. Aufl., Dr. Hut, München. 16. M. Widenmeyer, E. Meissner, A. Senyshyn, R. Niewa, On the formation mechanism of chromium nitrides: An in situ study, Z. Anorg. Allg. Chem. 2014, 640, 2801–2808. 17. P. Woidy, A. J. Karttunen, M. Widenmeyer, R. Niewa, F. Kraus, On Copper(I)-Fluorides, the Cuprophilic Interaction, the Preparation of Copper Nitride at Room Temperature and its Formation Mechanism at Elevated Temperatures, Chem. Eur. J. 2015, 21, 3290–3303. 18. M. Widenmeyer, L. Shlyk, A. Senyshyn, R. Mönig, R. Niewa, Structural and magnetic characterization of single-phase sponge-like bulk α''-Fe16N2, Z. Anorg. Allg. Chem. 2015, 641, 348–354. 19. S. Söllradl, M. Greiwe, V. J. Bukas, M. R. Buchner, M. Widenmeyer, T. Kandemir, T. Zweifel, A. Senyshyn, S. Günther, T. Nilges, A. Türler, R. Niewa, Nitrogen-Doping in ZnO via Combustion Synthesis?, Chem. Mater. 2015, 27, 4188–4195. 20. M. Widenmeyer, C. Wessel, R. Dronskowski, R. Niewa, V16N1.5: Metastable or Missing in the Binary Phase Diagram?, Z. Anorg. Allg. Chem. 2015, 641, 2610–2616. 21. M. Widenmeyer, C. Peng, A. Baki, R. Niewa, A. Weidenkaff, Approaching Compositional Limits of Perovskite – type Oxides and Oxynitrides by Synthesis of Mg0.25Ca0.65Y0.1Ti(O,N)3, Ca1–xYxZr(O,N)3 (0.1 ≤ x ≤ 0.4), and Sr1–xLaxZr(O,N)3 (0.1 ≤ x ≤ 0.4), Solid State Sci. 2015, in press.
© Copyright 2025 ExpyDoc