Multiplikation von Potenzen mit gleicher Basis – Lösungen 1. a) 34 35 32 11 =3 e) k3 k5 m2 m7 = k8m9 2. a) x 2 xn = x2+n e) a5 a2x = a2x+5 3. a) x3 xm2 = xm+1 e) a2x ax 1 a3x 4 = a6x-3 b) 123 125 122 = 1210 f) x5 y3 x 2 y = x7y4 c) x3 x 2 x = x6 g) a2 b b3 a = a³b4 d) d3 d5 d4 = d12 h) p4 q6 p q5 = p5q11 b) bm b3 = bm+3 f) z2m zm = z3m c) ya y = ya+1 g) a3m a2m am = a6m d) xm xm = x2m h) m3x m4x m2x = m9x b) a5 ax 7 = ax-2 f) xm2 x3m4 x 2m3 = x6m+1 c) y2m ym1 = y3m-1 g) zp1 z3p4 z5p8 = z9p-5 d) xp4 xp2 = x2p-2 h) ym2 y2m5 ym8 = y4m+1 4 4. a) 5x²(x³6 + x ) b) a³(a5 + a4) = a8 + a7 e) y2a(y3a+1 – ya-4) = y5a+1 – y3a-4 =x +x d) am(am+1 – a3m-1) = a2m+1 – a4m-1 = x + 2x + x6 e) (2a² + 3a³)² b) (y3 – y4)² = y6 – 2y7 + y8 f) (4x5 – 2x6)² = 4a + 12a + 9a = 16x 5. a) 4(x² + x³)² 5 4 5 6 10 – 16x 11 + 4x 12 c) 3b³(4b² - 5b5) = 12b5 – 15b8 f) xn-3(x5 + x4) = xn+2 + xn+1 c) (a6 + a4)² = a12 + 2a10 + a8 g) (6d5 – 3d4)² d) (b3 – b7)² = b6 – 2b10 + b14 h) (3m² + 5m7)² – 36d + 9d = 9m +30m + 25m = 36d 10 9 b) (x5 + y4)(x5 – y4) =a –a = x10 – y8 d) (3x4 – 2y5)(3x4 + 2y5) e) (4y³ - 6x7)(4y³ + 6x7) = 9x8 – 4y10 = 16y6 – 36x14 6. a) 4(a² +6a³)(a² – a³) 3 4 + a5) 7. a) 5(a +8 a )(a² 6 9 8 4 9 14 c) (m³ + n5)(m³ - n5) = m6 – n10 f) (3a4 – 4b³)(3a4 + 4b³) = 9a8 – 16b6 =a +a +a +a d) (y4 + y5)(y3 – y6) b) (x² – x5)(x³ + x6) = x5 – x11 e) (2a5 + 3b3)(2a3 – 2b4) c) (a3 – b²)(a5 + b³) = a8 + a3b3 – a5b² – b5 f) (km + kn)(km+1 + kn+2) = y7 – y10 + y8 – y11 = 4a8 – 4a5b4 + 6a³b³ – 6b7 = k2m+1+km+n+2+km+n+1+k2n+2 8. Schreibe als Produkt von Potenzen. a) x3+5 x3 x5 © mathepower.de b) a3n+2 a3n a2 c) 5m+n 5m 5n d) z5k+3m z5k z3m xm+4 xm x 4
© Copyright 2024 ExpyDoc