Pfadverfolgung – Von Normalformen zu prädiktiven Reglern Timm Faulwasser Laboratoire d’Automatique, Ecole Polytechnique Fédérale de Lausanne Institut für Angewandte Informatik, Karlsruher Institut für Technologie Joint work with: Tobias Weber, Janine Matschek, Juan Pablo Zometa, Rolf Findeisen (OvGU MD) Sven Lorenz, Johann Dauer (DLR Braunschweig) Elgersburg Workshop | 11.02.2016 Stabilization, Trajectory Tracking and Path Following? • Reference set-point • Control error time invariant problem Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC Set-point Stabilization 2 Stabilization, Trajectory Tracking and Path Following? Set-point Stabilization • Reference trajectory • Reference set-point • Tracking error • Control error time varying problem performance limits? time invariant problem Qui, L. & Davison, E. Performance limitations of non-minimum phase systems in the servomechanism problem. Automatica, 1993, 29, 337-349 Seron, M.; Braslavsky, J.; Kokotovic, P. V. & Mayne, D. Q. Feedback limitations in nonlinear systems: from Bode integrals to cheap control. IEEE Trans. Automat. Contr., 1999, 44, 829-833 Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC Trajectory Tracking 3 Stabilization, Trajectory Tracking and Path Following? Path Following • Reference trajectory • Reference path • Tracking error • Path-following error time varying problem performance limits? time invariant problem additional design parameters Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC Trajectory Tracking Applications? Controller design? 4 Typical Applications • Autonomous vehicles • Machine tools • Motion problems • … Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC Path Following Problem definition? Controller design? 5 Path Following • Set-point stabilization, trajectory tracking and path following • Problem analysis: tailored normal forms • Path followability results • Examples • Feedforward path following and closed-loop path following Model Predictive Path Following Control • Convergence properties • MPFC for a robotic manipulator • Feedforward path following for an autonomous helicopter Outlook and Summary Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC Outline 6 Output Path-following Problem • Output path regular 1d curve Control task • Convergence to path • Convergence on path • Satisfaction of constraints Questions • Problem structure • Constraints Suitable formulation? Controller design? Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC • Dynamic system 7 state space • = path manifold output space Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC Analysis of Path-following Problems 8 Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC Vector Relative Degree (I) [Isidori `95; Nijmeijer & van der Schaft `90] 9 Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC Vector Relative Degree (II) [Isidori `95; Nijmeijer & van der Schaft `90] 10 Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC Vector Relative Degree (III) [Isidori `95; Nijmeijer & van der Schaft `90] 11 Analysis of Path-following Problems • Output space = path manifold Timing law Augmented system Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC State space 12 Transverse Normal Form Idea: map to suitable coordinates Transverse normal form [Nielsen & Maggiore `08; Banaszuk & Hauser `95; F. & Findeisen `16] Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC Augmented system 13 Transverse Normal Form Idea: map to suitable coordinates Example? Path followability? Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC Transverse normal form Augmented system 14 Augmented system Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC Example – Fully Actuated Robot 15 Example – Fully Actuated Robot Transverse normal form Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC Augmented system 16 Path Followability and Transverse Normal Forms Transverse normal form [Faulwasser `13] Necessary conditions? Constraints? Feedback design? Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC Augmented system 17 [Faulwasser `13] Feedback control? Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC Path Followability in the Presence of Constraints 18 Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC Feedforward Path Following 19 Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC Closed-loop Path Following 20 Path Following • Set-point stabilization, trajectory tracking and path following • Problem analysis: tailored normal forms • Path followability results • Examples • Feedforward path following and closed-loop path following Model Predictive Path Following Control • Convergence properties • MPFC for a robotic manipulator • Feedforward path following for an autonomous helicopter Outlook and Summary Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC Outline 21 Principle of Predictive Control Model Predictive Control (MPC) = repeated optimal control at 2. Solve 3. Apply for Advantages: constraints, MIMO systems, optimization of transients, dist. implementation NMPC for path-following problems? Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC 1. State observation 22 Principle of Predictive Path Following Optimal Control Problem Stability/convergence? Example? Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC Idea • Prediction based on augmented dynamics. • Costs penalize path-following error (and its time derivative). 23 Benchmark Problem • Robot KUKA LBR IV up to 7 joints. • Make the robot write on a blackboard. • Allow interaction between user and robot. Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC Application to a Robotic Manipulator 24 Implementation of Predictive Path-Following on KUKA LWR IV • Dynamics of the robot – Path parameter dynamics – Error outputs • Cost function, terminal penalty • Prediction horizon • Optimization solved with ACADO Toolkit , sampling time Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC – State space representation Results? 26 Joint work with: Juan P. Zometa, Janine Matschek, Tobias Weber, Rolf Findeisen (all OvG Magdeburg) Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC Application to a Robotic Manipulator [Faulwasser et al. `15] 27 Joint work with: Juan P. Zometa, Janine Matschek, Tobias Weber, Rolf Findeisen (all OvG Magdeburg) Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC Application to a Robotic Manipulator [Faulwasser et al. `15] 28 Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC Application to a Robotic Manipulator 29 Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC Application to a Robotic Manipulator 30 References • • • • • • Aguiar et al. (2005). Path-following for non minimumphase systems removes performanc e limitations. IEEE Transactions on Automatic Control 50, 234-239. Dacic & Kokotovic (2006). Path-following for linear systems with unstable zero dynamics. Automatica 42, 1673-1683. Aguiar et al. (2008). Performance limitations in reference tracking and path-following for nonlinear systems. Automatica 44, 598610. Skjetne et al. (2005). Robust output maneuvering for a class of nonlinear systems. Automatica 40, 373-383. Do & Pan (2006). Global robust adaptive path followng of underactuated ships. Automatica 42, 1713-1722. ... Differential geometric reformulation • • • • Banaszuk & Hauser (1995). Feedback linearization of transverse dynamics for periodic orbits Sys. Contr. Lett., 26, 95-105. Nielsen & Maggiore (2008). On local transverse feedback linearization. SIAM Journal on Control and Optimization, 47, 2227-2250. Faulwasser (2013). Optimization-based Solutions to Constrained Trajectory-tracking and Path-following Problems. Shaker, Aachen, Germany. … Feedforward path following • • • • Shin & McKay (1985). Minimum-time control of robotic manipulators with geometric path constraints IEEE Trans. Automat. Contr., 30, 531 – 541. Verscheure et al. (2009). Time-Optimal Path Tracking for Robots: A Convex Optimization Approach. IEEE Trans. Autom. Contr., 54, 2318-2327. Faulwasser, Hagenmeyer & Findeisen (2011). Optimal Exact Path-Following for Constrained Differentially Flat Systems. Proc. of 18th IFAC World Congress, pp. 9875–9880. Faulwasser, Hagenmeyer & Findeisen (2014). Constrained Reachability and Trajectory Generation for Flat Systems. Automatica, vol. 50, pp. 1151-1159. Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC Lyapunov and back-stepping approaches to path following 31 Predictive control for path following (theory) • Faulwasser & Findeisen (2008). Nonlinear model predictive path-following control. Proc. of Workshop Future Directions of Nonlinear Model Predictive Control, Pavia, Italy. • Faulwasser, Kern & Findeisen (2009). Model predictive path-following for constrained nonlinear systems. Proc. of 48th IEEE Conference on Decision and Control, pp. 8642-8647. • Faulwasser & Findeisen (2016). Nonlinear Model Predictive Control for Constrained Output Path Following. IEEE Trans. Automatic Control. • Faulwasser (2013). Optimization-based Solutions to Constrained Trajectory-tracking and Path-following Problems. Shaker, Aachen, Germany. Predictive control for path following (applications) • Faulwasser et al. (2013). Predictive Path-following Control: Concept and Implementation for an Industrial Robot. Proc. of IEEE Conference on Control Applications (CCA), pp. 128-133. • Dauer et al. (2013). Optimization-based Feedforward Path Following for Model Reference Adaptive Control of an Unmanned Helicopter. Proc. of AIAA Guidance, Navigation and Control Conference. • Lam et al. (2013). Model predictive contouring control for biaxial systems. IEEE Trans. Contr. Syst. Techn., 21, 552-559. • Böck & Kugi (2014). Real-time Nonlinear Model Predictive Path-Following Control of a Laboratory Tower Crane IEEE Trans. Contr. Syst. Techn., 22, 1461-1473. • Faulwasser et al. (2015). Implementation of Constrained Nonlinear Model Predictive Path-Following Control for an Industrial Robot. Submitted to IEEE Trans. Contr. Syst. Techn. Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC References 32 Summary and Conclusion • Path following: combines trajectory generation and tracking • Typical applications of path following: autonomous vehicles & robots, machine tools, … • Tailored Byrnes-Isidori Normal Form is the key step for analysis • MPC can be used to tackle path-following problems Open questions • Combination of path following and force control? • Model uncertainty and repetitive motions? • Implication of exo-systems with inputs for regulator problems? • … Thanks to: • Juan Pablo Zometa, Tobias Weber, Janine Matschek, Rolf Findeisen (OvG University Magdeburg) • Johann Dauer, Sven Lorenz (DLR Braunschweig) Timm Faulwasser | Pfadverfolgung - Von Normalformen zu MPC Summary 33
© Copyright 2024 ExpyDoc