Profilierungsmodul Computerlinguistik II Hinrich Schütze, David Kaumanns Center for Information and Language Processing, University of Munich 2015-10-13 Schütze: Text classification & Naive Bayes 1 / 10 Lectures Wednesday, 09:30-11:00, 131 Basic machine learning (Hinrich Schütze) Current topics in NLP research (PhD students at LMU) Schütze: Text classification & Naive Bayes 2 / 10 Lecturers Heike Adel David Kaumanns Sebastian Ebert Katharina Kann Sascha Rothe Hinrich Schütze Irina Sergienya Yadollah Yaghoobzadeh Wenpeng Yin Schütze: Text classification & Naive Bayes 3 / 10 Practical exercise (David Kaumanns) Wednesday, 11:00-11:45, 131 Introduction to Torch Help with programming projects Schütze: Text classification & Naive Bayes 4 / 10 Languages German (most lectures) English (most slides, talks by non-German speaking PhD students) Schütze: Text classification & Naive Bayes 5 / 10 Prüfungsform: Programmieraufgabe Eine Programmieraufgabe beinhaltet den Entwurf eines Algorithmus und dessen Implementierung in elektronischer Form. Das Programm ist schriftlich zu dokumentieren. Schütze: Text classification & Naive Bayes 6 / 10 Prüfungsform: Programmieraufgabe Eine Programmieraufgabe beinhaltet den Entwurf eines Algorithmus und dessen Implementierung in elektronischer Form. Das Programm ist schriftlich zu dokumentieren. Project advisors: Heike Adel Sebastian Ebert Katharina Kann Hinrich Schütze Irina Sergienya Yadollah Yaghoobzadeh Wenpeng Yin Schütze: Text classification & Naive Bayes 6 / 10 Schedule 15.11.: Select project 16.11.-26.01.: Work on project 27.1. / 3.2.: Give a talk about your project (15 minutes) Your project is due Jan 29. Schütze: Text classification & Naive Bayes 7 / 10 Home page of the class: www.cis.lmu.de/~ hs/teach/15w/pmclii/ Schütze: Text classification & Naive Bayes 8 / 10 Inverted classroom Each week watch one or two lectures of Andrew Ng’s machine learning introduction on Coursera. We will discuss these lectures in the first 5-10 minutes of each class. Schütze: Text classification & Naive Bayes 9 / 10 Programming project 1 (Schütze) Familiarize yourself with an existing code base for keyword in context search (piggyback) Add the following feature: the contexts can be clustered and presented in clustered form to the user based on a number of clustering criteria Schütze: Text classification & Naive Bayes 10 / 10
© Copyright 2025 ExpyDoc