Using satellite gravimetry for validating the water cycle in global and

Using Satellite Gravimetry
for Validating the Water Cycle
in Global and Regional Atmospheric Reanalyses
1
Anne Springer, Jürgen Kusche, Annette Eicker
Institute of Geodesy and Geoinformation, Bonn University, Germany
Christian Ohlwein, Christoph Bollmeyer, Jan Keller
Meteorological Institute, Bonn University, Germany
Laurent Longuevergne
CNRS – Géosciences Rennes, France
Susanne Crewell
Institute for Geophysics and Meteorology, Cologne University, Cologne, Germany
Anne Springer
Earth Observation for Water Cycle Science
21/10/2015
The water budget equation
ΔS=P-E-R
Precipitation P
2
Evapotranspiration E
Storage S
Discharge R
Anne Springer
Earth Observation for Water Cycle Science
21/10/2015
The water budget equation
ΔS+R=P-E
3
P - E represents:
• an important boundary condition for hydrological studies
and climate modeling.
• an indicator for the intensification of the water cycle.
• the coupling of the Earth’s water and energy cycles.
Anne Springer
Earth Observation for Water Cycle Science
21/10/2015
Data sets
ΔS+R=P-E
GFZ GRACE Release 05a
4
Regional Analysis
Regional Reanalysis
Global Reanalyses
GRDC
BfG
Observations
Anne Springer
Earth Observation for Water Cycle Science
COSMO-EU
COSMO-REA6
ERA-Interim
MERRA
MERRA-Land
MPI (E)
GPCC (P)
E-OBS (P)
21/10/2015
GRACE & Water budget studies
Evapotranspiration, Mississippi
Discharge, Global
Rodell et al., 2004
Syed et al., 2009
5
P-E, Danube
Springer et al., 2014
Anne Springer
Earth Observation for Water Cycle Science
21/10/2015
Availability of discharge 2003 - 2012
Availability of
monthly discharge
data from
GRDC and BfG
for 2003 -2012.
Anne Springer
Earth Observation for Water Cycle Science
6
21/10/2015
COSMO-REA6: a regional reanalysis
Data assimilation:
Continuous nudging scheme
 wind, temperature,
humidity, pressure
Surface analysis:
 Snow depth, sea surface
temperature, soil moisture
7
Boundary data:
ECMWF ERA-Interim
Bollmeyer et al. (2015): Towards a high-resolution regional reanalysis for the
European CORDEX domain
Anne Springer
Earth Observation for Water Cycle Science
21/10/2015
Study area
8
SIze [km2]
Region
Anne Springer
Meuse
27 000
Rhine
160 000
187 000
Ems
8 000
Weser
38 000
Elbe
132 000
Oder
110 000
110 000
Danube
807 000
807 000
Earth Observation for Water Cycle Science
178 000
21/10/2015
Processing strategy
Aim: consistent time series of ΔS & P-E
Careful processing of GRACE data:
• Degree 1 coefficients replaced
• c20 coefficient replaced
• GIA model applied
9
• DDK4 filter
• Central differences
• Time-variable rescaling factor
Springer, et al. (2014) New Estimates of Variations in Water Flux and Storage
over Europe Based on Regional (Re)Analyses and Multisensor Observations.
Anne Springer
Earth Observation for Water Cycle Science
21/10/2015
P-E = ΔS+R
10
Anne Springer
Earth Observation for Water Cycle Science
21/10/2015
P-E = ΔS+R: detrended, deseasoned
ρ=0.59 …0.64
ρ=0.63 …0.69
11
ρ=0.66 …0.74
Anne Springer
Earth Observation for Water Cycle Science
21/10/2015
Consistency: ΔS+R-(P-E)=0
12
Anne Springer
Earth Observation for Water Cycle Science
21/10/2015
Power Spectrum Density
13
Anne Springer
Earth Observation for Water Cycle Science
21/10/2015
Consistency: ΔS+R-(P-E)=0
14
𝜀 = 𝑎 + 𝑏 sin(2𝜋𝑡) + 𝑐 cos(2𝜋𝑡)
+ 𝑑 sin(4𝜋𝑡) + 𝑒 cos(4𝜋𝑡)
Anne Springer
Earth Observation for Water Cycle Science
21/10/2015
Bias
COSMO-REA6
COSMO-EU
GPCC+MPI
15
ERA-Interim
Anne Springer
MERRA
Earth Observation for Water Cycle Science
MERRA-Land
21/10/2015
Total water storage from fluxes: Danube
TWSC
ΔS = P-E-R
16
TWS
Anne Springer
S=
P−E−R
Earth Observation for Water Cycle Science
21/10/2015
Total water storage from fluxes: Danube
TWSC
ΔS = P-E-R
17
𝜀 = 𝑎 + 𝑏 sin(2𝜋𝑡) + 𝑐 cos(2𝜋𝑡)
+ 𝑑 sin(4𝜋𝑡) + 𝑒 cos(4𝜋𝑡)
TWS
Anne Springer
S=
P−E−R
Earth Observation for Water Cycle Science
21/10/2015
Total water storage from fluxes: Danube
TWSC
ΔS = P-E-R
18
TWS
Anne Springer
S=
P−E−R
Earth Observation for Water Cycle Science
21/10/2015
Total water storage from fluxes
19
Anne Springer
Earth Observation for Water Cycle Science
21/10/2015
Take Home Messages
• Short-term variability:
GRACE and models agree notably well even in very small basins.
• Constant biases, differences in annual amplitude and phase:
regional models perform better than global models.
• Reconstructed storage from fluxes:
Time-variable biases lead to trends in storage.
20
Further steps:
• Extend study to the whole European area
• Develop more sophisticated error models
• Understand flux-derived storage
Anne Springer
Earth Observation for Water Cycle Science
21/10/2015
Literatur
• Bollmeyer, C., J. D. Keller, C. Ohlwein, S. Wahl, S. Crewell, P. Friederichs, A. Hense, J. Keune, S. Kneifel, I. Pscheidt, S.
Redl and S. Steinke (2015) Towards a high-resolution regional reanalysis for the European CORDEX domain. Q. J. R.
Meteorol. Soc. 141: 1-15.
• Jung, M., M. Reichstein and A. Bondeau (2009) Towards global empirical upscaling of FLUXNET eddy covariance
observations: validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6:2001–2013.
• Klees, R., E.A. Zapreeva, H.C. Winsemius and H.H.G. Savenije (2007) The bias in GRACE estimates of continental
water storage variations. Hydrol. Earth Syst. Sci., 11:1227–1241.
21
• Kusche, J. (2007) Approximate decorrelation and non-isotropic smoothing of time-variable GRACE-type gravity field
models. J. Geodesy, 81:733–749.
• Lorenz, C. and H. Kunstmann (2012) The Hydrological Cycle in Three State-of-the-art Reanalyses: Intercomparison and
Performance Analysis. J. Hydrometeor., 13:1397–1420.
• M. Rodell, J. S. Famiglietti, J. Chen, S. I. Seneviratne, P. Viterbo, S. Holl and C. R. Wilson (2004) Basin scale estimates
of evapotranspiration using GRACE and other observations. Geophy. Res. Lett., 31.
• T. H. Syed, J. S. Famiglietti (2009) GRACE-Based Estimates of Terrestrial Freshwater Discharge from Basin to
Continental Scales. J. Hydrometeor., 10: 22-40.
• Springer, Anne, J. Kusche, K. Hartung, C. Ohlwein and L. Longuevergne (2014) New Estimates of Variations in Water
Flux and Storage over Europe Based on Regional (Re)Analyses and Multisensor Observations. J. Hydrometeor., 15:
2397-2417.
• Wahr, J., M. Molenaar and F. Bryan (1998) Time variability of the Earth’s gravity field: hydrological and oceanic effects
and their possible detection using GRACE. J. Geophys. Res.-Solid, 103:30205–30229.
Anne Springer
Earth Observation for Water Cycle Science
21/10/2015