Lin e a re G le ich u n g e n CO PY I n h a lt L ö s e n d u rc h P ro b i e re n ...................................................... G le ic h u n g e n d e r Fo rm x + a = b E i n S c h r i tt z u r L ö s u n g ....................................................... G le ic h u n g e n d e r Fo rm ax = b oder G le ic h u n g e n d e r Fo rm a x + b = c Z w e i S c h r i tt e z u r L ö s u n g oder x − a = b x a = b ......... ................. .................................... ................................................... G le ic h u n g e n d e r Fo rm a x + b = c x + d Z u s a m m e n fa s s e n − U m fo r m e n ........................... .......................................... Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K l a m m e r n a u f l ö s e n , z u s a m m e n fa s s e n , u m fo r m e n V e r m i s c h t e A u fg a b e n Z a h l e n rät s e l A l t e rs rät s e l ............. 1 − 2 3 − 4 5 6 7 8 − 10 11 − 12 13 14 15 − 16 ......................................................... 17 ......................................................................... 19 T e xt a u fg a b e n ....................................................................... ..................................................................... K re u z z a h l rät s e l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G le ic h u n g e n l ö se n : G ru n d w isse n 18 20 − 2 1 22 ....................................... 23 Ü b e rs i c h t : N a m e n / S e i t e n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 M a g i s t e r h e ft M 2 0 : L i n e a re G l e i c h u n g e n © 2 0 0© 1 DDeel tlto o VVe e rrll aag Lin e a re G le ich u n g e n 1 L ö s e n d u rc h P ro b i e re n G N ame: CO PY D as Lö s e n e i n e r G l e i c h u n g m it e i n e r V a ri a b l e n b e ste h t d a ri n , fü r d i e V a ri a b l e e i n e Z a h l z u fi n d e n , d i e b e i m E i n s etze n i n d i e G l e i c h u n g z u e i n e r w a h re n A u s s a g e fü h rt . D i e s ka n n d u rc h P ro b ie re n g e s c h e h e n . Lö s e n d e r G l e i c h u n g 2 x + 4 = 1 0 d u rc h P ro b i e re n : x 2x + 4 = 1 0 2 2 · 1 3 w a h r/fa l s c h ? 2 · + 4 = 6 fa l s c h , d e n n 6 = 1 0 2 · + 4 = 10 wah r, den n 1 0 = 1 0 + 4 = 8 fa l s c h , d e n n 8 = 1 0 L ö s e d i e G l e i c h u n g e n d u rc h P ro b i e re n ! Lö s u n g ? nein nein ja ! P R O B IE R E N G E H TÜB E R S TUD IE R E N ! G le ic h u n g Lös u n g 2x + 3 = 9 x = 3 3 k = 6 6 3y − 2 = 22 30 = 1 2 + 3k 1 5 − 2a = 7 v + 37 = 39 33 = 1 1 b 14 − z = 5 7t − 9 = 5 8 y = 8 4 a = 4 2 2 z = 9 9 v = b = 3 3 t = 2 2 M a g i s t e r h e ft M 2 0 : L i n e a re G l e i c h u n g e n © 2 0 0© 1 DDeel tlto o VVe e rrll aag ë vo n 8 1 Lin e a re G le ich u n g e n 2 L ö s e n d u rc h P ro b i e re n G N ame: CO PY Lö se d iese G le i c h u n g e n ! 5x = 1 5 2x = 1 6 4x = 4 0 4x = 4 8 5x = 1 0 0 8x = 4 8 x = x = x = x = x = 3 8 10 x = 12 20 6 x = 15 2 17 x = 7 21 5 x = 1 16 9 x = 11 4 19 23 22 18 14 13 24 2x = 30 x · 5 = 10 x · 4 = 28 3x = 63 1 1x = 1 1 x · 3 = 48 5x = 4 5 7x = 7 7 x · 1 5 = 60 2x = 38 3x = 69 x · 3 = 66 x · 2 = 36 3x = 42 5x = 6 5 x · 3 = 72 x = x = x = x = x = x = x = x = x = x = x = x = M a g i s t e r h e ft M 2 0 : L i n e a re G l e i c h u n g e n 3x = 5 1 x · 20 = 1 00 x = x = © 2 0 0© 1 DDeel tlto o VVe e rrll aag ë vo n 2 4 2 Lin e a re G le ich u n g e n 3 G l e i c h u n g e n d e r F o rm x + a = b o d e r x − a = b G N ame: CO PY U m d ie Lö s u n g vo n G le ic h u n g e n d e r Fo rm x + 3 = 5 o d e r x − 4 = 7 z u b est i m m e n , g e h e s o vo r: - 3 x + 3 = 5 − 3 x + 3 − 3 = 5 − 3 + 4 x − 4 + 4 = 7 + 4 LI = { 1 1 } LI = { 2} 2 + 3 5 x − 4 = 7 x = 11 x = 2 x + 3 + 4 5 S IC H E RI S TS IC H E R : P R O B E ! x − 4 5 5 11 − 4 7 5 = 5 wahr 7 7 7 7 = 7 wahr L ö s e d i e G l e i c h u n g e n ! T ra g e d a n n d i e z u d e n E rg e b n i s s e n g e h ö re n d e n B u c h s t a b e n re c h t s i n d i e K ä s t c h e n e i n ! G leich u n g x − 1 6 = 52 70 = a + 1 8 1 3 + y = 45 Lös u n g x = 68 32 H 68 S y = 32 89 E 1 9 ,7 R 381 L z = 3 7,8 39 ,9 E 52 C c = 8 2 ,4 111 U 82 ,4 I 37 ,8 F a = 52 84 = b − 2 7 b = s − 99 = 2 82 s = 381 35 ,2 + z = 73 82 ,7 = w + 42 ,8 45 = c − 37 ,4 1 1 1 = p + 22 57 ,3 − t = 37 ,6 111 w = 3 9,9 p = 89 t = 1 9,7 M a g i s t e r h e ft M 2 0 : L i n e a re G l e i c h u n g e n 68 S 52 C 32 H 111 U 381 L F 37 ,8 F E 39 ,9 E I 82 ,4 I E 89 E R 1 9,7 R S C H U L © 2 0 0© 1 DDeel tlto o VVe e rrll aag ë vo n 1 0 3 Lin e a re G le ich u n g e n 4 G l e i c h u n g e n d e r F o rm x + a = b o d e r x − a = b G N ame: CO PY Lö se d iese G le i c h u n g e n i m Ko pf ! x + 3 = 7 x + 8 = 14 3 + x = 10 2 + x = 16 x + 3 = 21 5 + x = 17 x − 3 = 2 x − 4 = 12 x − 10 = 10 x + 7 = 20 x + 5 = 13 x − 3 = 16 x − 12 = 1 1 x + 1 1 = 26 x − 6 = 5 x + 3 = 20 x − 10 = 12 1 8 + x = 21 1 1 + x = 21 x − 1 = 23 7 + x = 8 x + 7 = 28 8 + x = 10 x − 7 = 2 x = x = x = x = x = x = x = x = x = x = x = x = x = x = x = x = M a g i s t e r h e ft M 2 0 : L i n e a re G l e i c h u n g e n x = 4 6 7 x = 14 18 12 x = 5 16 20 x = 13 8 19 x = 23 15 11 x = 17 22 3 x = 10 24 1 x = 21 2 9 © 2 0 0© 1 DDeel tlto o VVe e rrll aag ë vo n 2 4 4 Lin e a re G le ich u n g e n 5 G l e i c h u n g e n d e r F o rm ax = b oder x a = b G N ame: U m d ie Lös u n g vo n G le ic h u n g e n d e r Fo rm 6x = 1 8 o d e r z u b est i m m e n , g e h e so vo r: 6x = 1 8 : 6 6x = 6 : 6 18 6 · 3 x = 3 LI = { 3} x = 2 3 3 ·x = 3 · 2 3 · 3 IL = { 6} 18 x 3 2 2 2 6 3 18 18 6 · 3 18 x = 2 3 x = 6 S IC H E RI S TS IC H E R : P R O B E ! 6x CO PY 1 8 = 1 8 wahr 2 2 = 2 wahr L ö s e d i e G l e i c h u n g e n ! T ra g e d a n n d i e z u d e n E rg e b n i s s e n g e h ö re n d e n B u c h s t a b e n re c h t s i n d i e K ä s t c h e n e i n ! G leic h u n g Lös u n g = 7 x = 35 x 5 3a = 75 30 = c 4 240 = k · 1 2 8t = 9 6 v 11 = 7 85z = 85 d 3 = 13 32 = q · 8 4 = b 7 D I ELÖ S U NG S T E C KTI M KO F F E R ! 12 R 39 A 35 K k = 20 1 20 N 1 B v = 28 S 1 25 O 4 S q = 4 20 T 77 A a = c = t = z = 25 1 20 12 77 d = 39 b = 28 M a g i s t e r h e ft M 2 0 : L i n e a re G l e i c h u n g e n 35 K 25 O N 1 20 N T 20 T R 12 R A 77 A 1 B A 39 A 4 S S 28 S K O B S © 2 0 0© 1 DDeel tlto o VVe e rrll aag ë vo n 1 0 5 Lin e a re G le ich u n g e n 6 E i n S c h r i tt z u r L ö s u n g G N ame: Lö se d iese G le i c h u n g e n i m Ko pf ! x + 7 = 9 x − 2 = 1 x · 3 = 27 5 + x = 15 1 0x = 1 0 x · 5 = 15 5 + x = 10 1 0x = 9 0 x = x = x = x + 1 8 = 20 x = 9x = 4 5 x = x + 1 3 = 25 x = 16 − x = 15 x = x − 5 = x = 1 2x = 1 6 x = x = x = 1 0x = 1 0 0 x = x − 2 = 2 x = 8x = 5 6 x = x − 4 = 2 x = x · 7 = x = M a g i s t e r h e ft M 2 0 : L i n e a re G l e i c h u n g e n 49 CO PY x = 2 3 8 x = 9 10 1 x = 3 5 9 x = 2 10 4 x = 5 4 11 x = 12 7 8 x = 1 6 11 x = 6 7 12 30 − x = 26 x · 5 = 55 1 2 + x = 20 22 − x = 1 1 5x = 6 0 © 2 0 0© 1 DDeel tlto o VVe e rrll aag ë vo n 2 4 6 7 Lin e a re G le ich u n g e n G le ic h u n g e n d e r Fo rm a x + b = c G N ame: CO PY D u k a n n s t G l e i c h u n g e n m i t e i n e r V a r i a b l e n d u rc h U m fo r m e n s c h r i ttw e i s e l ö s e n . D a z u d a rfs t d u í a u f b e i d e n S e i t e n d e r G l e i c h u n g d i e s e l b e Z a h l a d d i e re n í a u f b e i d e n S e i t e n d e r G l e i c h u n g d i e s e l b e Z a h l s u b t ra h i e re n í b e i d e S e ite n d e r G l e i c h u n g m it d e rse l b e n Z a h l ( = 0 ) m u lt i p l iz i e re n í b e i d e S e ite n d e r G l e i c h u n g d u rc h d i e se l b e Z a h l ( = 0 ) d iv i d i e re n . Beisp iel : − 5 3x + 5 = 1 1 − 5 3x + 5 − 5 = 1 1 − 5 : 3 3x = 6 3x 3 = : 3 6 3 x = 2 LI = { 2 } A u f b e id e n S e ite n d i e s e l b e Z a h l s u b t ra h i e re n A u f b e i d e n S e i t e n d u rc h d i e s e l b e Z a h l d i v i d i e re n 3x + 5 S IC H E RI S T S IC H E R ! 3 · 2 + 5 6 + 5 11 11 11 11 11 1 1 = 1 1 wahr L ö s e d i e G l e i c h u n g e n ! T ra g e d a n n d i e z u d e n E rg e b n i s s e n g e h ö re n d e n B u c h s t a b e n re c h t s i n d i e K ä s t c h e n e i n ! G leich u n g 5a + 1 2 = 27 2v − 1 0 = 22 Lös u n g a = 3 v = 16 3d + 9 = 54 d = 11g − 7 = 15 g = 2 56 = 4z − 32 z = I ND IE S E R S TA D THA B E IC HM E IN E N E R S T E NF A LL G E LÖ S T ! 15 22 96 = 89 + 7x x = 6b − 8 = 34 b = 1 32 = 1 2 + 1 5y y = 8 1 7 M a g i s t e r h e ft M 2 0 : L i n e a re G l e i c h u n g e n 8 D 22 M 16 O 3 D 7 N 15 R 1 U 2 T 3 D O 16 O R 15 R T 2 T M 22 M 1 U N 7 N 8 D D U D © 2 0 0© 1 DDeel tlto o VVe e rrll aag ë vo n 8 7 8 Lin e a re G le ich u n g e n Z w e i S c h r i tt e z u r L ö s u n g Rec h n e i m Ko pf ! 3x + 2 = 8 E N ame: 2x + 6 = 30 5x + 5 = 2 0 6x + 6 = 3 0 4x + 2 0 = 1 0 0 2x + 6 = 50 3x + 1 = 40 5x + 5 = 1 1 0 1 0x + 2 0 = 8 0 7x − 9 = 40 3x − 2 = 4 0 4x − 2 = 3 0 9x − 1 = 8 0 3x − 8 = 4 0 9x + 1 0 = 1 0 0 4x + 2 = 7 0 3x − 2 = 7 0 5x + 5 = 6 0 2x + 4 = 40 2x + 1 0 = 40 2x − 8 = 30 7x + 1 5 = 50 2x − 6 = 40 2 1 x − 1 = 20 x = x = x = x = x = x = x = x = x = x = x = x = x = x = x = x = CO PY x = 2 12 3 x = 4 20 22 x = 13 21 6 x = 7 14 8 x = 9 16 10 x = 17 24 11 x = 18 15 19 x = 5 23 1 D IE S ES P U RI S T S E H RH E IS S. . . M a g i s t e r h e ft M 2 0 : L i n e a re G l e i c h u n g e n © 2 0 0© 1 DDeel tlto o VVe e rrll aag ë vo n 2 4 8 9 Lin e a re G le ich u n g e n Z w e i S c h r i tt e z u r L ö s u n g E N ame: CO PY Rec h n e i m Ko pf ! 2x + 1 = 2 1 6x − 2 = 4 2x − 4 = 20 3x − 1 = 4 1 5x + 2 = 82 7x − 2 = 1 9 9x − 7 = 2 9 8x + 1 2 = 1 0 0 3x − 1 = 50 2x + 2 = 40 1 1 x + 4 = 59 4x − 2 = 5 0 6x + 3 = 4 5 3x − 8 = 6 1 5x + 9 = 9 9 1 0x + 9 = 9 9 4x − 3 = 8 1 9x + 2 = 2 0 7x + 3 = 45 7x − 7 = 49 3x + 4 = 7 0 1 0x + 3 = 2 0 3 3x + 3 = 7 5 x = x = x = x = x = 9x + 5 = 1 4 0 x = x = x = x = x = x = x = x = x = x = x = KO MB IN IE R ED E RTÄ T E RI S T G E W IC H TH E B E R ! M a g i s t e r h e ft M 2 0 : L i n e a re G l e i c h u n g e n x = 10 1 12 x = 14 16 3 x = 4 11 17 x = 19 5 13 x = 7 23 18 x = 15 9 21 x = 2 6 8 x = 22 20 24 © 2 0 0© 1 DDeel tlto o VVe e rrll aag ë vo n 2 4 9 Lin e a re G le ich u n g e n 10 Zw e i S c h ritte z u r Lö s u n g K N ame: CO PY Rec h n e i m Ko pf ! x + 1 2 = 1 x = 4x = x = x − 1 2 x − 2 ,5 = 7 ,5 x = 0 , 5x = 5 , 5 x = 3x + 1 2 = 36 ,5 x = x − 1 4 = x = 2 x = 2 3 x = = 2 3 3x = 6 5 x = x = 1 2 x − 1 x = 1 x − 1 = 0 7 2x − 2 ,5 = 2 7 ,5 x = 1 1 x + 2 = 6 2 H IE RS T E H E ND IE LÖ S U NG E N . M a g i s t e r h e ft M 2 0 : L i n e a re G l e i c h u n g e n 1 1 4 x = 1 8 2 5 4 1 2 x = 10 5 2 x = 11 7 9 12 15 17 16 14 18 3 4 6 13 3 8 19 = 0 ,5 1 3 x + 0 ,2 5 = 5 1 4 x = 2 x − 1 = 3 9 x + 1 ,5 = 7 2 x = 0 ,5 0 , 5x + 5 , 5 = 1 0 x = x = x = 1 x = 2 2 x + 2,1 = 7,1 x = 3 = 1 4 x + 1 x + 3 = 10 2 0 ,2 5x + 1 = 5 x = 1 3 x = 2x + 2 1 1 = 28 3 3 x = 1 x + 2 = 3 19 x = © 2 0 0© 1 DDeel tlto o VVe e rrll aag ë vo n 2 4 10 11 Lin e a re G le ich u n g e n G le ic h u n g d e r Fo rm a x + b = c x + d G N ame: CO PY D u k a n n s t G l e i c h u n g e n m i t e i n e r V a r i a b l e n d u rc h U m fo r m e n s c h r i tt w e i s e l ö s e n . D a z u d a rfs t d u í a u f b e i d e n S e i t e n d e r G l e i c h u n g d i e s e l b e Z a h l a d d i e re n í a u f b e i d e n S e i t e n d e r G l e i c h u n g d i e s e l b e Z a h l s u b t ra h i e re n í b e i d e S e ite n d e r G l e i c h u n g m it d e rs e l b e n Z a h l ( = 0 ) m u lt i p l iz i e re n í b e i d e S e ite n d e r G l e i c h u n g d u rc h d i e s e l b e Z a h l ( = 0 ) d iv i d i e re n . B e i G le ic h u n g e n d e r Fo rm 5x + 7 = 3x + 1 1 g e h e so vo r: − 3x − 7 : 2 5x + 7 = 3x + 1 1 2x + 7 = 1 1 − 3x Va ri a b le n a u f e i n e S e ite : 2 x b e re c h n e n − 7 2x = 4 x = 2 Z a h l e n a u f d i e a n d e re S e i t e IL = { 2 } 5x + 7 S IC H E RI S TS IC H E R : P R O B E ! 5 · 2 + 7 10 + 7 17 3x + 1 1 3 · 2 + 11 6 + 11 17 1 7 = 1 7 wahr L ö s e d i e G l e i c h u n g e n ! T ra g e d a n n d i e z u d e n E rg e b n i s s e n g e h ö re n d e n B u c h s t a b e n re c h t s i n d i e K ä s t c h e n e i n ! G leic h u n g Lös u n g D U R C HB L IC K IS TA LLE S ! D 16 T 10 D 12 E 12 E a = 4 E T 5 E 4 T 10 D 5 E 1 1 z + 44 = 3z + 1 00 z = E 4 T 7 K 1 9g − 5 = 1 3g + 91 g = K 2 I 16 T 21 k + 1 1 = 6k + 41 k = T 7 K 2 I V 3 V 3 V 1 2x + 1 7 = 6x + 7 7 x = 9d − 32 = 2d + 52 d = 1 0a + 2 = 8a + 1 0 8y − 1 7 = 4y + 3 42t − 7 = 9t + 92 y = 10 12 5 7 16 2 t = 3 M a g i s t e r h e ft M 2 0 : L i n e a re G l e i c h u n g e n I © 2 0 0© 1 DDeel tlto o VVe e rrll aag ë vo n 8 11 12 Lin e a re G le ich u n g e n G le ic h u n g d e r Fo rm a x + b = c x + d E N ame: CO PY Lö se d iese G le i c h u n g e n i m Ko pf! x − 7 = 6 x + 5 = 11 26 = 1 6 + x x = x = x = 2 4x = 1 2 0 5x = 6 0 4x = 7 2 x = x = 1 2x + 3 = 1 5 x = 2x = x + 8 x = 7 x = 3x + 6 8 x = 9x − 7 = 3 x + 1 1 x = 1 6 + 7x = 44 x = 5x + 5 = 3x + 3 5 x = M a g i s t e r h e ft M 2 0 : L i n e a re G l e i c h u n g e n x = 5x − 5 = 4 0 x = 3x − 2x + 6 = 20 x = 4x + 2 1 = 7 x x = 3x + 2 x = 1 6 + 4x x = 9x + 2 − 5x = 1 0 x = 6x − 5 = 4x + 1 7 x = © 2 0 0© 1 DDeel tlto o VVe e rrll aag 6 13 10 12 5 18 1 9 8 14 17 7 3 16 4 2 15 11 ë vo n 1 8 12 Z u s a m m e n fasse n − U m fo rm e n 13 Lin e a re G le ich u n g e n Z u s a m m e n fa s s e n − U m fo r m e n G N ame: CO PY Z u e rs t a u f b e i d e n S e i t e n d e r G l e i c h u n g s o w e i t w i e m ö g l i c h z u s a m m e n fa s s e n . D a n n d i e V a r i a b l e d u rc h U m fo r m e n b e re c h n e n : 8x + 1 2 − 2 x − 3 = 4 1 − 1 0x + 4 + 7x 6x + 9 = 4 5 − 3 x 9x + 9 = 4 5 9x = 3 6 S IC H E RI S T S IC H E R : P R O B E ! | + 3x | | x = 4 9 : 9 LI = { 4} Z u s a m m e n fasse n Va ri a b le n a u f e i n e S e ite Z a h le n a u f d ie a n d e re S e ite x b e re c h n e n 8x + 1 2 − 2x − 3 8 ·4 + 12 − 2 ·4 − 3 32 + 1 2 − 8 − 3 33 4 1 − 1 0x + 4 + 7x 41 − 1 0 · 4 + 4 + 7 · 4 41 − 40 + 4 + 28 33 33 = 33 wahr L ö s e d i e G l e i c h u n g e n ! T ra g e d a n n d i e z u d e n E rg e b n i s s e n g e h ö re n d e n B u c h s t a b e n re c h t s i n d i e K ä s t c h e n e i n ! G le ic h u n g Lö s u n g 5 + 8y = 6 5 + 1 2 y = 9 3b + 1 1 + 2b = 4b + 1 3 38 + 1 6 m − 6 − 1 3 m = 85 − 1 4 7p + 1 3 − 2 − 5p = 23 88 = 3z + 1 5 − 1 1 + 4z 5 − 6x − 3 6 + 9x = 1 5 − 1 1 x − 2 1 + 9 x D E RW E GZ U RLÖ S U NG IS TN IC H TM E H RW E I T. . . M a g i s t e r h e ft M 2 0 : L i n e a re G l e i c h u n g e n 6 E 9 R 5 N 2 U D 2 U 13 D 9 R 6 E R 13 D 12 R 12 R 5 N R 2 U p = 6 E b = m = 13 z = x = 12 5 N © 2 0 0© 1 DDeel tlto o VVe e rrll aag ë vo n 6 13 Lin e a re G le ich u n g e n 14 Test N ame: E CO PY L ö s e d u rc h P ro b i e re n ! G leich u ng Lös u n g 1 9 = 4x + 1 1 x = 21 − 3m = 6 m = 23 = z − 1 1 ,4 p 5 5 Lö se i m Ko pf! G le ic h u n g 2 2 Lösu ng E R S T R E C HN E N , D A NN KO N TR O LL IE R E N ! 34 ,4 z = 3 4 ,4 32 4a = 56 p = 32 a = v + 49 = 67 v = 18 8 = 4 14 14 18 L ö s e d u rc h U m fo r m e n ! G le ic h u n g Lös u n g 1 2k + 4 = 8k + 20 k = 4 5b − 1 9 = 1 6 1 5w − 9 = 3w + 2 7 7 7 = 5 + 6y b = 4 7 7 3 w = 3 y = 12 12 E rs t z u s a m m e n fa s s e n , d a n n u m fo r m e n ! G le ic h u n g 4c + 9 − 7 + 5c = 3c + 50 1 4 + 7q = 39 + 5q - 1 3 Lös u n g 8 c = 8 6 q = 6 M a g i s t e r h e ft M 2 0 : L i n e a re G l e i c h u n g e n © 2 0 0© 1 DDeel tlto o VVe e rrll aag ë vo n 1 2 14 Lin e a re G le ich u n g e n 15 K l a m m e rn a u fl ö s e n , z u s a m m e n fas s e n , u m fo rm e n G N ame: CO PY K o m m e n i n e i n e r G l e i c h u n g K l a m m e ra u s d r ü c k e m i t V a r i a b l e n v o r , s o s i n d d i e K l a m m e r n a u fz u l ö s e n . D a n n w i rd d i e V a r i a b l e d u rc h Z u s a m m e n fa s s e n u n d U m fo r m e n b e re c h n e t . 1 1 − (1 0 − 2 x) = 5 1 1 − 1 0 + 2x = 5 K la m m e rn a ufl öse n 1 + 2x = 5 Z u sa m m e nfasse n 2x = 4 LI = { 2} 5 S IC H E RI S T S IC H E R : P R O B E ! 5 = 5 wahr 4x − 3 6 = 2 0 4x = 5 6 x = 14 LI = { 1 4} 20 4 (x − 8 ) − 4 4 (14 − 8) − 4 4 · 6 − 4 24 − 4 20 5 5 5 5 1 1 − (1 0 − 2 · 2) 1 1 − (1 0 − 4) 11 − 6 5 4x − 3 2 − 4 = 2 0 x a u f e i n e S e ite , Za h le n a uf d ie a n d e re S e ite x = 2 1 1 − ( 1 0 − 2 x) 4 (x − 8 ) − 4 = 20 20 = 20 wahr 20 20 20 20 L ö s e d i e G l e i c h u n g e n ! T ra g e d a n n d i e z u d e n E rg e b n i s s e n g e h ö re n d e n B u c h s t a b e n re c h t s i n d i e K ä s t c h e n e i n ! Lös u n g G leic h u n g 8 x − 3 (x + 5 ) 1 4 + (1 2 y + 6) = = 20 44 3 (w − 7 ) + 2 w = 1 9 6 a − (9 − 5 a) = 2 4 7 S 8 N 7 S 7 S 2 I w = 8 N 5 N 8 N G 18 E 3 G 3 G 18 E N 2 I 5 N x = y = a = 3 5 ( b − 8 ) + 3 (4 − b ) = 8 b = 4 0 + (3 m − 1 8 ) = 3 7 m = LÖ S U NGD E R G LE IC H U NG ? 2 18 5 I E G LE IC H U NG E N S I NDM IR G LE IC HG Ü LT IG ! M a g i s t e r h e ft M 2 0 : L i n e a re G l e i c h u n g e n © 2 0 0© 1 DDeel tlto o VVe e rrll aag ë vo n 6 15 16 Lin e a re G le ich u n g e n L i n e a re G l e i c h u n g e n m i t K l a m m e r n E N ame: CO PY L ö s e s c h r i ft l i c h o d e r i m K o p f ! 3 · (x + 1 ) = 6 7 · (x + 4) = 4 2 4 · (x − 3) = 3 2 6 · (x − 4 ) = 2 4 5 · (x + 3) = x + 5 1 8 · (x + 5 ) = x + 3 3 x = x = x = x = x = x = 1 0 · (x − 1 1 ) = 1 6 + x 2 x − 5 = 7 · (x − 5) x = x = 2 · (x + 3 ) = 2 0 9 · (x + 2 ) = 4 5 x = 5 + 6 · (x + 1 ) = 3 5 x = x = 2 · (x − 3 ) + 1 2 = x + 4 x = 1 0 · (x − 4) = 8 · (x − 2) 4 · (x + 7) = 1 2 · (x − 1 ) 8 · (2 x − 5 ) = 1 0 · (x + 2) 4 · (x − 2) = 5 · (x − 1 ) x = x = M a g i s t e r h e ft M 2 0 : L i n e a re G l e i c h u n g e n x = x = © 2 0 0© 1 DDeel tlto o VVe e rrll aag 1 2 11 8 9 −1 14 6 7 3 4 −2 12 5 10 −3 ë vo n 2 6 16 17 Lin e a re G le ich u n g e n Lö se n vo n G l e i c h u n g e n − Ve rm is c h te A u fg a b e n E N ame: CO PY L ö s e d i e G l e i c h u n g e n ! T ra g e d a n n d i e z u d e n E rg e b n i s s e n g e h ö re n d e n B u c h s t a b e n u n t e n i n d i e K ä s t c h e n e i n ! G leich u n g Lös u n g 1 1 6 = x + 32 x = 84 B 84 B 13 E 6v + 4 − v = 2 5 + 3v − 7 v = E 7 R 1 1 w − 9 = 5w + 63 w = 12 R N 12 N 4 H 14 A 14 A 10 R z = 0 R D 8 D 61 I d = 5 I N 5 N 54 E n = E R 11 R 7y − 4 = 8 7 y = a = 3a = 42 z = 1 0 z − 5 (z − 6 ) = 8 0 2 1 + 1 5z = 1 4 1 b − 24 = 37 5 − 8d − 1 4 + 1 1 d = 6d + 49 + 7 − 1 6d 27n − 1 97 = 7n + 23 7 m = 4 3 5 − (2 9 − 4 m ) = 2 2 q = 6 9 13 H 10 b = 61 q = 54 11 D A SI S TJAE IN D IC KE RH U ND ! 7 61 11 13 4 5 84 10 12 54 8 14 M a g i s t e r h e ft M 2 0 : L i n e a re G l e i c h u n g e n © 2 0 0© 1 DDeel tlto o VVe e rrll aag ë vo n 1 2 17 Lin e a re G le ich u n g e n 18 Z a h l e n rä t s e l N ame: E W i rd e i n e Z a h l m i t 3 m u l t i p l i z i e rt u n d d a n n d a z u 2 1 a d d i e rt , s o e rh ä lt m a n 5 7 . D ie g es u c h te Z a h l h e i ßt ë . 12 W i rd v o m D o p p e l t e n e i n e r Z a h l 1 3 s u b t ra h i e rt , s o e r h ä l t m a n 3 5 . D ie g es u c h te Z a h l h e i ßt ë . 24 W i rd e i n e Z a h l d u rc h 4 d i v i d i e rt u n d d a n n d a z u 1 0 a d d i e rt , s o e rh ä lt m a n 1 5 . D ie g es u c h te Z a h l h e i ßt ë . 20 D i e D i ffe re n z a u s d e m F ü n ffa c h e n e i n e r Z a h l u n d d e r Z a h l 9 i s t 2 6 . D ie g es u c h te Z a h l h e i ßt ë . 7 CO PY 12 24 20 7 A d d i e rt m a n 1 7 z u e i n e r Z a h l , s o e r h ä l t m a n d a s s e l b e , a l s w e n n m a n v o m D re i fa c h e n d i e s e r Z a h l 5 s u b t ra h i e rt . D i e g e s u c h t e Z a h l heißt 11 ë . 11 O BI C HV O ND E M E TW A SLE R N E N KA NN ... ? M a g i s t e r h e ft M 2 0 : L i n e a re G l e i c h u n g e n © 2 0 0© 1 DDeel tlto o VVe e rrll aag ë vo n 5 18 Lin e a re G le ich u n g e n 19 A l t e rs rä t s e l K N ame: V at e r u n d M u tt e r s i n d z u s a m m e n 8 1 J a h re a l t . D i e M u tt e r i s t 5 J a h re j ü n g e r a l s d e r V at e r . D a n n i s t d e r V at e r J a h re a l t . ë 4 3 u n d d i e M u tt e r ë 38 CO PY 43 V at e r i s t d o p p e l t s o a l t w i e s e i n e T o c h t e r . B e i d e z u s a m m e n s i n d 7 8 J a h re a l t . D i e T o c h t e r i s t 2 6 u n d d e r V at e r ë 5 2 J a h re a l t . ë 38 52 26 P e t e rs G ro ß m u tt e r i s t 6 2 J a h re a l t . P e t e r ü b e r l e g t : „ W ä re i c h f ü n f m a l s o a l t w i e i c h b i n , s o w ä re i c h 3 J a h re ä l t e r a l s m e i n e G ro ß m u tt e r . “ P ete r ist 13 ë 1 3 J a h re a l t . M u tt e r i s t d re i m a l s o a l t w i e i h r S o h n . D e r A l t e rs u n t e rs c h i e d b e t rä g t 2 4 J a h re . D e r S o h n i s t ë 1 2 u n d d i e M u tt e r ë 3 6 J a h re a l t . 12 36 J u l i a , C h r i s t i n e u n d M a r i e s i n d z u s a m m e n 3 3 J a h re a l t . C h r i s t i n e i s t d re i J a h re ä l t e r a l s J u l i a , J u l i a i s t d o p p e l t s o a l t w i e M a r i e . D a n n i s t J u lia 1 2 , C h rist i n e ë Z U RLÖ S U NGD E S F A LLE SI MM E R D IE S ETA F E L B E A C H T E N ! 1 5 u n d M a rie s i n d ë M a g i s t e r h e ft M 2 0 : L i n e a re G l e i c h u n g e n 6 J a h re a l t . ë © 2 0 0© 1 DDeel tlto o VVe e rrll aag 12 15 ë vo n 1 0 6 19 20 Lin e a re G le ich u n g e n T e x t a u fg a b e n N ame: K CO PY E i n e z w e i t ä g i g e A u s s t e l l u n g w u rd e v o n i n s g e s a m t 5 1 6 0 P e rs o n e n b e s u c h t . A m z w e i t e n T a g w a re n e s 4 9 2 w e n i g e r a l s a m e rs t e n T a g . A l s o k a m e n a m e rs t e n T a g ë 2 3 3 4 Besu c her. 2 82 6 2 8 2 6 u n d a m zw e ite n Tag ë 2334 F ü r d i e B u s fa h rt i n s S c h u l l a n d h e i m b e t rä g t d e r P re i s 9 1 2 € . A u s d e r K l a s s e n k a s s e w e rd e n 1 6 8 € b e z a h l t . J e d e r d e r 2 4 Te i l n e h m e r m u ss n o c h 31 31 ë € b eza h le n . E i n e W e tt g e m e i n s c h aft a u s d re i P e rs o n e n h at i m L o tt o 1 2 8 7 0 € g e w o n n e n . A n d re a s h at d re i m a l s o v i e l e i n g e z a h l t w i e M a r k u s , B r i tt a h at d o p p e l t s o v i e l e i n g e z a h l t w i e M a r k u s . D a n n e r h ä l t M a r k u s a n t e i l s g e re c h t A n d re a s ë 643 5 €. 2 1 4 5 € , B r i tt a ë 4 2 9 0€ u n d ë 2 1 45 6435 4290 S a s k i a k a u ft 5 F l a s c h e n O ra n g e n s aft z u j e 1 , 2 5 € u n d 3 F l a s c h e n A p fe l s aft . S i e z a h l t 9 , 7 0 € . E i n e F l a s c h e A p fe l s aft k o s t e t 1 ,1 5 1 ,8 0 €. ë M i c h a e l s c h o s s f ü r s e i n e F u ß b a l l m a n n s c h aft d o p p e l t s o v i e l e T o re w i e s e i n M i t s p i e l e r S t e fa n . J ü rg e n e rz i e l t e 5 T o re w e n i g e r a l s S t e fa n . A l l e d re i s c h o s s e n i n s g e s a m t 3 1 T o re . M i c h a e l e rz i e l t e ë T o re , S t e fa n 18 9 ë u n d J ü rg e n e rz i e l t e n D I ELÖ S U NG E NV E R L IE R E N S IC HI MD U N KE LD E R G E S C H IC H T E ... M a g i s t e r h e ft M 2 0 : L i n e a re G l e i c h u n g e n ë 4 . © 2 0 0© 1 DDeel tlto o VVe e rrll aag 18 9 ë vo n 1 0 4 20 Lin e a re G le ich u n g e n 21 T e x t a u fg a b e n E N ame: CO PY IC H V E RD R E IF A C H E ME IN EZA H L , A D D IE R E1 U ND E R HA LT E13 . IC HD E N KEM IR E IN EZA H L , HA LB IE R ES IE , S UB TRA H IE R E2 UNDE R HA LTE1 . W E NNI C HME IN E G E D A C H T EZA H L V E RD O P P LEUND 2A D D IE R E , S O E R HA LT EI C H12 . 5 € € E IN E RV O NE U C HI S T80M I LL IO N E NJA H R EA LT , D IE A ND E R E NV IE RS I NDG LE IC HA LT . Z U S A MME NS E ID IH R5 60M I LL IO N E NJA H R EA LT . W I EA LTS I NDD I EA ND E R E NV IE R? 5 0 12 4 3U NB E S P IE LT E CD -R O MSUND 7KLE IN ED IS KE T T E N KO S T E N11 ,5 5€ . E IN ED IS KE T T E KO S T E T0 ,75€ . W I EV IE LKO S T E T E IN ECD −R O M? IC HKA U F E5H E F T E UNDE IN E NS T IF T ; D E RS T IF T KO S T E T1 ,3 0€ . IC HB E ZA H LE7 ,80€ . W I EV IE LKO S T E TE IN H E F T? 2, 6 10 1, 30 6 1 ,30 2,1 0 1 20 4 M a g i s t e r h e ft M 2 0 : L i n e a re G l e i c h u n g e n © 2 0 0© 1 DDeel tlto o VVe e rrll aag ë vo n 6 21 Lin e a re G le ich u n g e n 22 K re u z z a h l rä t s e l N ame: 1 NAD A NNE B E NM IT KÖ P F C H E N ... 4 1 2 3 8 1 3 W a a g e re c h t 1: 4x = 68 4: 115 3: 6: 8: 1 0: 1 1 b − 45 = 9b − 3 g = 3 1: 2y + 5 = 87 5: 1 03 3: 3c = 750 z = 4 7: 5p − 1 3 − 2 p = 35 9: 7q − 47 = 3q + 9 8: 6d = 78 4 5 1 2 10 1 2 0 9 1 4 1 7 1 6 2 1 7 4 2 3 1 2 4 5 1 0 2 3 1 4 ë 12 12 ë 21 21 ë 101 1 01 1 42 m = ë 123 1 23 c = ë 250 250 ë 16 16 z = p = d = q = M a g i s t e r h e ft M 2 0 : L i n e a re G l e i c h u n g e n 2 17 ë 142 y = 1 1 345 v = 1 6 ë 345 a = 2: 6 3 4 g = b = 8a − 6 − 2 a = 3a + 42 0 97 = m − 26 5 2 ë 17 w = S e n k re c h t 7 CO PY x = 1 37 = w + 36 7v − 5 = 79 E ë 41 41 ë 41 2 41 2 13 ë 13 ë 14 14 © 2 0 0© 1 DDeel tlto o VVe e rrll aag ë vo n 1 3 22 23 Lin e a re G le ich u n g e n G le ic h u n g e n löse n : G ru n d w isse n U m fo r m e n CO PY N ame: D u k a n n s t G l e i c h u n g e n m i t e i n e r V a r i a b l e n d u rc h U m fo r m e n s c h r i tt w e i s e l ö s e n . D a z u d a rfs t d u í a u f b e i d e n S e i t e n d e r G l e i c h u n g d i e s e l b e Z a h l a d d i e re n í a u f b e i d e n S e i t e n d e r G l e i c h u n g d i e s e l b e Z a h l s u b t ra h i e re n í b e i d e S e ite n d e r G l e i c h u n g m it d e rs e l b e n Z a h l ( = 0 ) m u lt i p l iz i e re n í b e i d e S e ite n d e r G l e i c h u n g d u rc h d i e s e l b e Z a h l ( = 0 ) d iv i d i e re n . Beisp iel : − 5 3x + 5 = 1 1 − 5 3x + 5 − 5 = 1 1 − 5 : 3 3x = 6 3x 3 = 6 3 x = 2 A u f b e i d e n S e ite n d i e s e l b e Z a h l s u b t ra h i e re n : 3 IL = { 2 } A u f b e i d e n S e i t e n d u rc h d i e s e l b e Z a h l d i v i d i e re n S IC H E RI S T S IC H E R ! 3x + 5 3 · 2 + 5 6 + 5 11 11 11 11 11 1 1 = 1 1 wahr K la m m e rn K o m m e n i n e i n e r G l e i c h u n g K l a m m e ra u s d r ü c k e m i t V a r i a b l e n v o r , s o s i n d d i e K l a m m e r n a u fz u l ö s e n . D a n n w i rd d i e V a r i a b l e d u rc h Z u s a m m e n fa s s e n u n d U m fo r m e n b e re c h n e t . 1 1 − (1 0 − 2 x) = 5 1 1 − 1 0 + 2x = 5 K la m m e rn a uflöse n 1 + 2x = 5 Z u sa m m e nfasse n 2x = 4 x a u f e i n e S e ite , Za h le n a u f d ie a n d e re S e ite x = 2 LI = { 2} 1 1 − ( 1 0 − 2 x) 1 1 − (1 0 − 2 · 2) 1 1 − (1 0 − 4) 11 − 6 5 5 = 5 wahr M a g i s t e r h e ft M 2 0 : L i n e a re G l e i c h u n g e n 5 5 5 5 5 S IC H E RI S TS IC H E R : P R O B E ! 4 (x − 8 ) − 4 = 20 4x − 3 2 − 4 = 2 0 4x − 3 6 = 2 0 4x = 5 6 x = 14 LI = { 1 4} 4 (x − 8) − 4 4 (14 − 8) − 4 4 · 6 − 4 24 − 4 20 20 = 20 wahr © 2 0 0© 1 DDeel tlto o VVe e rrll aagg 20 20 20 20 20 23 Lin e a re G le ich u n g e n Ü b e rs i c h t N a m e n / S e ite n K lasse : 1 S c h u lj a h r : 2 3 4 5 M a g i s t e r h e ft M 2 0 : L i n e a re G l e i c h u n g e n 6 7 8 CO PY 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 20 2 1 22 23 © 2 0 0© 1 DDeel tlto o VVe e rrll aagg 24
© Copyright 2024 ExpyDoc