Aufgabe 1 Consider boron‐like boron like carbon ion Ca7+ (nuclear charge Z=12, Z 12 number of electrons N=5) in which one of electrons is in Rydberg state with n=50. • Find ionization energy for the outer (Rydberg) electron (in state n n=50). 50). • Find wavelength of the photons emitted in the transition between n=51 and n=50 levels of this ion. Aufgabe 1: Lösung Rydberg electron can be considered to be in Coulomb field of effective charge Z effff = 12 − 4 = 8 . Therefore,, ionization p potential can be obtained as: I 50 = − E50 = R Z eff2 n2 82 = R 2 ≈ 0.35 eV 50 In order to find energy of n=51 ‐ n=50 transition: 1 ⎞ ⎛ 1 hω = E51 − E50 = 64 R⎜ − 2 + 2 ≈ 0.0135 eV ⎝ 51 50 ⎠ The wavelength, corresponding to this energy is: λ= 2πc ω ≈ 10 − 4 m = 0.1 mm Aufgabe 2: Normaler Zeeman‐Effekt Wie viele unterschiedliche Linien inien sind beim Übergang von einem d‐Niveau in ein p‐Niveau? Wie viele bei einem beliebigen Übergang? Hinweis: Auswahlregel g ∆m=+1,0,‐1 Aufgabe 2: Lösung B=0 B≠0 d level (l=2) ml 2 1 0 ‐1 ‐2 Energies of Zeeman levels (d‐state) Emd l = E d + µ B ml B, ml = −2,−1,0,+1,+2 Energies of Zeeman levels (p‐state) p level (l=1) ml m’ 1 0 ‐1 Empl′ = E p + µ B ml′B, ml′ = −1,0,+1 here E p ,d Z2 = −R 2 n Transition energies: ∆E = Emd l − Empl′ = E d − E p + µ B B(ml − ml′ ) = const + µ B B∆ml just a constant independent on projections ml Selection rule: !!! ∆ml = ml − ml′ = 0, ± 1 Only 3 transitions will be observed in experiment! Aufgabe 3 Given hydrogen atom A in a 4d state and atom B in a 3p state. Find the j values for each atom and then combine them to find the J values for the entire system. Aufgabe 3: Lösung Atom A: 4d state Atom B: 3p state l A = 2, s A = 1 / 2 lB = 1, sB = 1 / 2 lA − sA ≤ jA ≤ lA + sA lB − sB ≤ jB ≤ lB + sB j A = 3 / 2, 5 / 2 jB = 1 / 2, 3 / 2 j A − jb ≤ J ≤ j A + jB J = 0,1, 2, 3, 4
© Copyright 2025 ExpyDoc