April 12, 2016 BibTeX-File nhgbib [1].bib: References aaka69 [1] J. F. Aarnes and R. V. Kadison. Pure states and approximate identities. Proc. Amer. Math. Soc., 21:749–752, 1969. aairja02 [2] R. M. Aarts, R. Irwan, and A. J. E. M. Janssen. Efficient tracking of the cross-correlation coefficient. IEEE Trans. Speech Audio Process., 10(6):391– 402, 2002. aaja00 [3] R. M. Aarts and A. J. E. M. Janssen. On analytic design of loudspeaker arrays with uniform radiation characteristics. J. Acoust. Soc. Amer., 107(1):287–292, 2000. aaja03 [4] R. M. Aarts and A. J. E. M. Janssen. Approximation of the Struve function h1 occurring in impedance calculations. J. Acoust. Soc. Amer., 113(5):2635–2637, 2003. ab95 [5] B. Abadie. Generalized fixed-point algebras of certain actions on crossed products. Pacific J. Math., 171(1):1–21, 1995. ab99 [6] B. Abadie. Deformation quantization and crossed-products by Hilbert csp∗-bimodules. Bol. Acad. Nac. Cienc. (Crdoba), 63:5–13, 1999. ab00 [7] B. Abadie. The range of traces on quantum Heisenberg manifolds. Trans. Amer. Math. Soc., 352(12):5767–5780 (electronic), 2000. ab05 [8] B. Abadie. Morita equivalence for quantum Heisenberg manifolds. Proc. Amer. Math. Soc., 133(12):3515–3523 (electronic), 2005. abeiex98 [9] B. Abadie, S. Eilers, and R. Exel. Morita equivalence for crossed products by Hilbert C ∗ -bimodules. Trans. Amer. Math. Soc., 350(8):3043– 3054, 1998. abex97 [10] B. Abadie and R. Exel. Hilbert C ∗ -bimodules over commutative C ∗ algebras and an isomorphism condition for quantum Heisenberg manifolds. Rev. Math. Phys., 9(4):411–423, 1997. 1 abex01 [11] B. Abadie and R. Exel. Deformation quantization via Fell bundles. Math. Scand., 89(1):135–160, 2001. abwh92 [12] J. Abate and W. Whitt. The Fourier-series method for inverting transforms of probability distributions. Queueing Syst., 10(1-2):5 – 87, 1992. abdade02 [13] A. Abbate, C. M. DeCusatis, and P. K. Das. Wavelets and Subbands. Fundamentals and Applications. Birkhäuser, Basel, 2002. abmi04 [14] M. M. Abdelwahab and W. B. Mikhael. Multistage classification and recognition that employs vector quantization coding and criteria extracted from nonorthogonal and preprocessed signal representations. Appl. Opt., 43(2):416–424, 2004. ac09 [15] R. Aceska. Functions of Variable Bandwidth: a Time-Frequency Approach. PhD thesis, University of Vienna, 2009. ac01 [16] D. Achlioptas. Database-friendly random projections. In Proc. 20th Annual ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems, pages 274–281, 2001. ad06 [17] S. R. A. Adam. MATLAB (R) und Mathematik kompetent Einsetzen. Wiley-VCH, 1. Edition edition, March 2006. ad72 [18] D. R. Adams. Maximal operators and capacity. Proc. Amer. Math. Soc., 34:152–156, 1972. adhe96 [19] D. R. Adams and L. I. Hedberg. Function Spaces and Potential Theory, volume 314 of Grundlehren der Mathematischen Wissenschaften. Springer, Berlin, 1996. adme73 [20] D. R. Adams and N. G. Meyers. Bessel potentials. Inclusion relations among classes of exceptional sets. Indiana Univ. Math. J., 22:873–905, 1973. ad75 [21] R. A. Adams. Sobolev spaces. Number 65 in Pure Appl. Math. Academic Press, New York, 1975. adfo03 [22] R. A. Adams and J. J. F. Fournier. Sobolev Spaces., volume 140 of Pure and Applied Mathematics. Academic Press, New York, NY, 2nd ed. edition, 2003. 2 ag81 [23] G. Agarwal. Relation between atomic coherent-state representation, state multipoles, and generalized phase-space distributions. Phys. Rev. A, 24(6):2889–2896, 1981. agwo70 [24] G. Agarwal and E. Wolf. Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. I. Mapping theorems and ordering of functions of noncommuting operators. Phys. Rev. D, 2(10):2161–2186, 1970. ag93 [25] M. L. Agranovskij. Invariant function spaces on homogeneous manifolds of Lie groups and applications. Translated by A. I. Zaslavsky from an original Russian manuscript. PhD thesis, 1993. ag01 [26] O. Agratini. An approximation process of Kantorovich type. Math. Notes (Miskolc), 2(1):3–10, 2001. ah04 [27] P. Ahern. On the range of the Berezin transform. J. Funct. Anal., 215(1):206–216, 2004. akta07 [28] M. Akcakaya and V. Tarokh. Performance bounds on sparse representations using redundant frames. preprint, 2007. ak67 [29] C. Akemann. Some mapping properties of the group algebras of a compact group. Pacific J. Math., 22:1–8, 1967. alka06 [30] F. Albiac and N. J. Kalton. Topics in Banach Space Theory., volume 233 of Graduate Texts in Mathematics. Springer, Berlin, 2005. alne80 [31] E. Albrecht and M. Neumann. Automatic continuity of generalized local linear operators. Manuscripta Math., 32:263–294, 1980. alne82 [32] E. Albrecht and M. Neumann. Local operators between spaces of ultradifferentiable functions and. Manuscripta Math., 38:131–161, 1982. al95 [33] A. Aldroubi. Portraits of frames. 123(6):1661–1668, June 1995. al02 [34] A. Aldroubi. Non-uniform weighted average sampling and reconstruction in shift-invariant and wavelet spaces. Appl. Comput. Harmon. Anal., 13(2):151–161, 2002. 3 Proc. Amer. Math. Soc., alba99 [35] A. Aldroubi and P. Basser. Reconstruction of vector and tensor fields from sampled discrete data. In Baggett, Lawrence Wasson (ed) et al, The Functional and Harmonic Analysis of Wavelets and Frames Proceedings of the AMS Special Session, San Antonio, TX, USA, January 13-14, 1999 Providence, RI: American Mathematical Society Contemp Math 247, 1-15. 1999. alcahamo07 [36] A. Aldroubi, C. A. Cabrelli, D. Hardin, and U. Molter. Optimal shift invariant spaces and their Parseval frame generators. Appl. Comput. Harmon. Anal., 23:273–283, 2007. achmr04 [37] A. Aldroubi, C. A. Cabrelli, D. Hardin, U. M. Molter, and A. Rodado. Determining sets of shift invariant spaces. In M. Krishna, R. Radha, and S. Thangavelu, editors, Wavelets and Their Applications, Chennai, India, 2004. Allied Publishers. aledun90 [38] A. Aldroubi, M. Eden, and M. Unser. A sampling theory for polynomial splines. In Proceedings of the International Conference on Information Theory and its Applications, Waikiki, Hawaii, 1990., pages 279–282, 1990. alfe97 [39] A. Aldroubi and H. G. Feichtinger. Complete iterative reconstruction algorithms for irregularly sampled data in spline-like spaces. pages 1857–1860, April 1997. alfe98 [40] A. Aldroubi and H. G. Feichtinger. Exact iterative reconstruction algorithm for multivariate irregularly sampled functions in spline-like spaces: The Lp -Theory. Proc. Amer. Math. Soc., 126(9):2677–2686, 1998. alfe02 [41] A. Aldroubi and H. G. Feichtinger. Non-uniform sampling: exact reconstruction from non-uniformly distributed weighted-averages. In D. X. Zhou, editor, Wavelet Analysis: Twenty Years Developments Proceedings of the International Conference of Computational Harmonic Analysis, Hong Kong, China, June 4–8, 2001, volume 1 of Ser. Anal., pages 1–8. World Sci.Pub., Singapore, 2002. algr00 [42] A. Aldroubi and K. Gröchenig. Beurling-Landau-type theorems for non-uniform sampling in shift invariant spline spaces. J. Fourier Anal. Appl., 6(1):93–103, 2000. 4 algr01 [43] A. Aldroubi and K. Gröchenig. Nonuniform sampling and reconstruction in shift-invariant spaces. SIAM Rev., 43(4):585–620, 2001. alkr06 [44] A. Aldroubi and I. Krishtal. Robustness of sampling and reconstruction and Beurling-Landau-type theorems for shift-invariant spaces. Appl. Comput. Harmon. Anal., 20(2):250–260, 2006. allatawe04 [45] A. Aldroubi, D. R. Larson, W.-S. Tang, and E. Weber. Geometric aspects of frame representations of abelian groups. Trans. Amer. Math. Soc., 356(12):4767–4786, 2004. alli98 [46] A. Aldroubi and E. Lin. Wavelets, Multiwavelets, and their Applications. AMS Special Session, January 1997, San Diego, CA, USA., volume 216 of Contemporary Mathematics. American Mathematical Society (AMS) and Contemporary Mathematics. 216. Providence, RI: American Mathematical Society (AMS). ix, Providence, RI, 1998. alsuta01 [47] A. Aldroubi, Q. Sun, and W.-S. Tang. p-frames and shift invariant subspaces of Lp . J. Fourier Anal. Appl., 7(1):1–21, 2001. alsuta02 [48] A. Aldroubi, Q. Sun, and W.-S. Tang. Non-uniform sampling in multiply generated shift-invariant subspaces of Lp (Rd ). In et al. and D. Deng, editors, Wavelet Analysis and Applications Proceedings of an International Conference, Guangzhou, China, November 15-20, 1999, volume 25 of AMS/IP Stud. Adv. Math., pages 1–8. American Mathematical Society (AMS), Providence, RI, 2002. alsuta04 [49] A. Aldroubi, Q. Sun, and W.-S. Tang. Localization of Calderón convolution in the Fourier domain. In et al. and M. Neamtu, editors, Advances in Constructive Approximation: Vanderbilt 2003 Proceedings of the International Conference, Nashville, TN, USA, May 1417, 2003, Modern Methods in Mathematics, pages 25–35. Nashboro Press, Brentwood, TN, 2004. alsuta04-1 [50] A. Aldroubi, Q. Sun, and W.-S. Tang. Nonuniform average sampling and reconstruction in multiply generated shift-invariant spaces. Constr. Approx., 20(2):173–189, 2004. alsuta05 [51] A. Aldroubi, Q. Sun, and W.-S. Tang. Convolution, average sampling, and a Calderon resolution of the identity for shift-invariant spaces. J. Fourier Anal. Appl., 11(2):215–244, 2005. 5 alun93 [52] A. Aldroubi and M. Unser. Families of multiresolution and wavelet spaces with optimal properties. Numer. Funct. Anal. Optim., 14(56):417–446, 1993. alun94 [53] A. Aldroubi and M. Unser. A general sampling theory for nonideal acquisition devices. IEEE Trans. Signal Process., 42(11):2915–2925, 1994. alun94-1 [54] A. Aldroubi and M. Unser. Sampling procedures in function spaces and asymptotic equivalence with Shannon’s sampling theory. Numer. Funct. Anal. Optimization, 15(1-2):1–21, 1994. alleob02 [55] G. Alefeld, I. Lenhardt, and H. Obermaier. Parallele Numerische Verfahren. Springer, Berlin, 2002. al00 [56] Alejandro L. Garcia. Numerical Methods for Physics, Second Edition. 2000. alsi97 [57] A. Aleman and A. G. Siskakis. Integration operators on Bergman spaces. Indiana Univ. Math. J., 46(2):337–356, 1997. alanga93 [58] S. Ali, J.-P. Antoine, and J.-P. Gazeau. Continuous frames in Hilbert space. Ann. Physics, 222(1):1–37, 1993. alanga00 [59] S. Ali, J.-P. Antoine, and J.-P. Gazeau. Coherent States, Wavelets and their Generalizations. Graduate Texts in Contemporary Physics. Springer, New York, 2000. alrota04 [60] S. Ali, R. Roknizadeh, and M. K. Tavassoly. Representations of coherent states in non-orthogonal bases. J. Phys. A, 37(15):4407–4422, 2004. albast03 [61] T. Alieva, M. Bastiaans, and L. Stankovic. Time-frequency signal analysis based on the windowed fractional Fourier transform. Signal Process., 83(11):2459 – 2468, 2003. alba03 [62] T. Alieva and M. J. Bastiaans. Wigner Distribution and Fractional Fourier Transform, pages 145–152. Elsevier, Oxford, UK, 2003. alto07 [63] C. D. Aliprantis and R. Tourky. Cones and Duality, volume 84 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2007. 6 j.77 [64] J. B. Allen. Short term spectral analysis, synthesis, and modification by discrete Fourier transform. IEEE Trans. Acoust. Speech Signal Process., 25(3):235–238, 1977. al77 [65] J. B. Allen. Short term spectral analysis, synthesis, and modification by discrete Fourier transform. IEEE Trans. Acoustics, Speech and Signal Processing, 25(3):235–238, 1977. alra77 [66] J. B. Allen and L. R. Rabiner. A unified approach to short-time Fourier analysis and synthesis. Proc. IEEE, 65,(11):1558–1564, 1977. al03 [67] R. Allen. Signal Analysis : Time, Frequency, Scale, and Structure. Wiley, 2004. almi03 [68] R. Allen and D. Mills. Signal Analysis : Time, Frequency, Scale, and Structure. Wiley, 2003. al80 [69] W. O. Alltop. Complex sequences with low periodic correlations. IEEE Trans. Inform. Theory, 26(3):350–354, 1980. alcaharo06 [70] A. Almansa, V. Caselles, G. Haro, and B. Rougé. Restoration and zoom of irregularly sampled, blurred, and noisy images by accurate Total variation minimization with local constraints. Multiscale Model. Simul., 5(1):235–272, 2006. al94 [71] L. B. Almeida. The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process., 42(11), 1994. al01 [72] D. Alpay. The Schur Algorithm, Reproducing Kernel Spaces and System Theory. Transl. from the French by Stephen S. Wilson. SMF/AMS Texts and Monographs 5. New York, NY: AMS, 2001. algo06 [73] D. Alpay and I. e. . Gohberg. The State Space Method Generalizations and Applications. Operator Theory: Advances and Applications 161. Basel: Birkhäuser., 2006. alka07 [74] D. Alpay and H. T. Kaptanoglu. Toeplitz operators on Arveson and Dirichlet spaces. Integr. Equ. Oper. Theory, 58(1):1–33, 2007. al99 [75] H. W. Alt. Lineare Funktionalanalysis. Eine Anwendungsorientierte Einführung. (Linear Functional Analysis. An Application Oriented Introduction). Springer, Berlin, 1999. 7 al73 [76] M. Altman. Contractors, approximate identities and factorization in Banach algebras. Pacific J. Math., 48:323–334, 1973. al96 [77] J. Alvarez. Continuity of Calderon-Zygmund type operators on the predual of a Morrey space. In J. Ryan, editor, Clifford Algebras in Analysis and related Topics Based on a Conference, Fayetteville, AR, USA, April 8-10, 1993, Studies in Advanced Mathematics, pages 309– 319, Boca Raton, FL, 1996. CRC Press. algula00 [78] J. Alvarez, J. D. Lakey, and M. Guzm’an Partida. Spaces of bounded λ-central mean oscillation, Morrey spaces, and λ-central Carleson measures. Collect. Math., 51(1):1–47, 2000. almi87 [79] J. Alvarez and M. Milman. Spaces of Carleson measures: duality and interpolation. Ark. Mat., 25(2):155–174, 1987. almi88 [80] J. Alvarez and M. Milman. Interpolation of tent spaces and applications. In Function Spaces and Applications, Proc US-Swed Semin, Lund/Swed, volume 1302 of Lect. Notes Math., pages 11–21. SpringerVerlag, 1988. amfekl03 [81] A. Amann, H. G. Feichtinger, and A. Klotz. Elimination of CPRartefacts in VF-ECGs by time frequency methods. In Beiträge Zur Gemeinsamen Jahrestagung der Deutschen, der Österreichischen Und der Schweizerischen Gesellschaften für Biomedizinische Technik Biomedizinische Technik, volume 48, Ergänzungsband1, pages 2218– 2219, 2003. amfekl04 [82] A. Amann, H. G. Feichtinger, and A. Klotz. Removal of CPR Artefacts in Ventricular Fibrillation ECG by Local Coherent Line Removal. In Proc. Conf. EUSIPCO (Sept. 2004, TU Vienna), pages 2203–2206, 2004. ambafegiklkrwe07 [83] A. Amann, H. G. Feichtinger, A. Klotz, G. Kracher, T. Werther, H. Gilly, and M. Baubin. CPR artefact removal in ECG signals using Gabor multipliers. IEEE Trans. Biomedical Engineering, 56(2):320– 327, February 2007. am03 [84] H. Amann. Vector-valued distributions and Fourier multipliers. 2003. 8 amci91 [85] J.-P. Amiet and M. B. Cibils. Description of quantum spin using functions on the sphere s2 . J. Phys. A: Math. Gen., 24:1515–1535, 1991. amwe00 [86] J.-P. Amiet and S. Weigert. Contracting the Wigner kernel of a spin to the Wigner kernel of a particle. Phys. Rev. A, 63(1):012102, 2000. anda96 [87] C. Anderson and M. D. Dahleh. Rapid computation on the discrete Fourier transform. SIAM J. Sci. Comput., 17(4):913–919, 1996. andesmuh07 [88] F. Andersson, M. V. de Hoop, H. F. F. Smith, and G. Uhlmann. A multi-scale approach to hyperbolic evolution equations with limited smoothness. Comm. Partial Differential Equations, 33(4-6):988–1017, 2007. l.01 [89] L. M. Andersson. Quantum dynamics using a discretized coherent state representation: An adaptive phase space method. Journal of Chemical Physics, 115(3):1158–1165, April 2001. angr07 [90] F. Andreano and R. Grande. Convolution on spaces of locally summable functions. J. Funct. Spaces Appl., to appear, 2007. anpi07 [91] F. Andreano and M. A. Picardello. Approximate identities and multipliers on Marcinkiewicz spaces. 2007. anpita06 [92] S. Angenent, E. Pichon, and A. Tannenbaum. Mathematical methods in medical image processing. Bull. Amer. Math. Soc. (N.S.), 43(3):365–396, 2006. an85 [93] R. Ansorge. Connections between the Cimmino-method and the Kaczmarz-method for the solution of singular and regular systems of equations. Computing, 33:367–375, 1985. anbo03 [94] C. Antoine and C. J. Bordé. Quantum theory of atomic clocks and gravito-inertial sensors: an update. J. Opt. B Quantum Semiclass. Opt., 5:199–207, 2003. an80 [95] J.-P. Antoine. Partial inner product spaces. III: Compatibility relations revisited. J. Math. Phys., 21:268–279, 1980. an80-1 [96] J.-P. Antoine. Partial inner product spaces. IV. Topological considerations. J. Math. Phys., 21:2067–2079, 1980. 9 an98-2 [97] J.-P. Antoine. Quantum Mechanics beyond Hilbert Space. In A. Bohm, H.-D. Doebner, and P. Kileanowski, editors, Irreversibility and Causality, Semigroups and Rigged Hilbert Spaces. A Selection of Articles Presented at the 21st International Colloquium on Group Theoretical Methods in Physics (ICGTMP) at Goslar, Germany, 1621 July, 1996., volume 504 of Lecture Notes in Physics, Berlin, 1998. Springer Verlag. an99 [98] J.-P. Antoine. Partial inner product spaces of analytic functions. In I. Antoniou and et al., editors, Generalized Functions, Operator Theory, and Dynamical Systems, volume 399 of Chapman Hall/CRC Res. Notes Math., pages 26–47. Chapman and Hall/CRC, Boca Raton, FL, 1999. an06 [99] J.-P. Antoine. Partial Inner Product Spaces with Application to Gabor/Wavelet Analysis. 2006. anbatr99 [100] J.-P. Antoine, F. Bagarello, and C. Trapani. Topological partial ∗algebras: basic properties and examples. Rev. Math. Phys., 11(3):267– 302, 1999. andedehoja05 [101] J.-P. Antoine, V. Delouille, J. de Patoul, J.-F. Hochedez, and L. Jacques. Wavelet spectrum analysis of Solar EUV images: method and applications to network characteristic scale evolution, flare nowcasting, and extraction of Active Regions with EIT/SoHO. Solar Phys., 228:301–321, 2005. angr76 [102] J.-P. Antoine and A. Grossmann. Partial inner product spaces. I: General properties. J. Funct. Anal., 23:369–378, 1976. angr76-1 [103] J.-P. Antoine and A. Grossmann. Partial inner product spaces. II: Operators. J. Funct. Anal., 23:379–391, 1976. angr78 [104] J.-P. Antoine and A. Grossmann. Orthocomplemented subspaces of nondegenerate partial inner product spaces. J. Math. Phys., 19:329– 335, 1978. anka81 [105] J.-P. Antoine and W. Karwowski. Interpolation theory and refinement of nested Hilbert spaces. J. Math. Phys., 22:2489–2496, 1981. 10 alanmuva04 [106] J.-P. Antoine, R. Murenzi, P. Vandergheynst, and S. T. Ali. TwoDimensional Wavelets and their Relatives. Cambridge University Press, Cambridge (UK), 2004. anva99 [107] J.-P. Antoine and P. Vandergheynst. Wavelets on the 2-sphere: A group-theoretical approach. Appl. Comput. Harmon. Anal., 7(3):262– 291, 1999. an98 [108] H. Anton. Lineare Algebra. Einführung, Grundlagen, Übungen. Aus dem Amerikanischen von Anke Walz. (Linear algebra. Introduction, foundations, exercises. Transl. from the American by Anke Walz). Spektrum Akademischer Verlag, Heidelberg, 1998. ao81 [109] S. Aoki. On the boundedness and the nuclearity of pseudo-differential operators. Comm. Partial Differential Equations, 6:849–881, 1981. ap57 [110] T. M. Apostol. Mathematical Analysis. A Modern Approach to Advanced Calculus. Addison-Wesley, Reading, 1957. apwi70 [111] G. G. Apple and P. A. Wintz. Calculation of Fourier transforms on finite Abelian groups. IEEE Trans. Inform. Theory, 16:233–234, 1970. arcododyma07 [112] F. Arandiga, A. Cohen, R. Donat, N. Dyn, and B. Matei. Approximation of piecewise smooth functions and images by edge-adapted (ENO-EA) nonlinear multiresolution techniques. Appl. Comput. Harmon. Anal., 24(2):225–250, 2007. arfipe85 [113] J. Arazy, S. Fisher, and J. Peetre. Möbius invariant function spaces. J. Reine Angew. Math., 363:110–145, 1985. arfipe87 [114] J. Arazy, S. Fisher, and J. Peetre. Möbius invariant spaces of analytic functions. In Complex Analysis I, Proc Spec Year, College Park/Md 1985-86, Lect Notes Math 1275, 10-22. 1987. arfijape90-1 [115] J. Arazy, S. D. Fisher, S. Janson, and J. Peetre. An identity for reproducing kernels in a planar domain and Hilbert- Schmidt Hankel operators. J. Reine Angew. Math., 406:179–199, 1990. arfijape91 [116] J. Arazy, S. D. Fisher, S. Janson, and J. Peetre. Membership of Hankel operators on the ball in unitary ideals. J. London Math. Soc. (2), 43:485–508, 1991. 11 arfipe88-1 [117] J. Arazy, S. D. Fisher, and J. Peetre. Besov norms of rational functions. In Function Spaces and Applications, Proc US-Swed Semin, Lund/Swed, Lect Notes Math 1302, 125-129. 1988. arfipe88 [118] J. Arazy, S. D. Fisher, and J. Peetre. Hankel operators on weighted Bergman spaces. Amer. J. Math., 110(6):989–1053, 1988. arfipe90 [119] J. Arazy, S. D. Fisher, and J. Peetre. Hankel operators on planar domains. Constr. Approx., 6(2):113–138, 1990. arrosa02 [120] N. Arcozzi, R. Rochberg, and E. Sawyer. Carleson measures for analytic Besov spaces. Rev. Mat. Iberoam., 18(2):443–510, 2002. arrosa06 [121] N. Arcozzi, R. Rochberg, and E. T. Sawyer. Carleson Measures and Interpolating Sequences for Besov Spaces on Complex Balls., volume 859 of Mem. Am. Math. Soc. 2006. arcogith72 [122] F. T. Arecchi, E. Courtens, R. Gilmore, and H. Thomas. Atomic coherent states in quantum optics. Phys. Rev. A, 6(6):2211–2237, 1972. arbahine01 [123] W. Arendt, C. J. K. Batty, M. Hieber, and F. Neubrander. Vectorvalued Laplace Transforms and Cauchy Problems., volume 96 of Monographs in Mathematics. Birkhäuser, Basel, 2001. ar72 [124] L. N. Argabright. On the mean value of a weakly almost periodic function. Proc. Amer. Math. Soc., 36:315–316, 1972. areyfegi79 [125] L. N. Argabright, P. Eymard, H. G. Feichtinger, and J. Gil de Lamadrid. Winterschule 1979 Internationale Arbeitstagung über Topologische Gruppen und Gruppenalgebren Tagungsbericht, 1979. argi71 [126] L. N. Argabright and J. Gil de Lamadrid. Fourier transforms of unbounded measures. Bull. Amer. Math. Soc., 77:355–359, 1971. argi72 [127] L. N. Argabright and J. Gil de Lamadrid. Analyse harmonique des mesures non bornés sur les groupes abeliens localement compacts. In Conf. Harmonic Analysis, College Park, Maryland 1971, volume 266 of Lect. Notes Math., pages 1–16. Springer, New York, 1972. 12 argi74 [128] L. N. Argabright and J. Gil de Lamadrid. Fourier Analysis of Unbounded Measures on Locally Compact Abelian Groups. Deutscher Taschenbuch Verlag, München, 1974. ar83 [129] M. A. Armstrong. Basic Topology. Corr. Repr. Springer, New York, 1983. arcadh02 [130] A. Arnold, J. A. Carrillo, and E. Dhamo. On the periodic Wigner– Poisson–Fokker–Planck system. J. Math. Anal. Appl., 275(1):263– 276, 2002. ardemast89 [131] A. Arnold, P. Degond, P. A. Markowich, and H. Steinrück. The Wigner-Poisson problem in a crystal. Appl. Math. Lett., 2(2):187– 191, 1989. arlazw00 [132] A. Arnold, H. Lange, and P. F. Zweifel. A discrete-velocity, stationary Wigner equation. J. Math. Phys., 41(11):7167–7180, 2000. arlomaso04 [133] A. Arnold, J. L. Lopez, P. A. Markowich, and J. Soler. An analysis of quantum Fokker-Planck models: a Wigner function approach. Rev. Mat. Iberoam., 20(3):771–814, 2004. armatoun01 [134] A. Arnold, P. Markowich, G. Toscani, and A. Unterreiter. On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Comm. Partial Differential Equations, 26(1-2):43–100, 2001. arri96 [135] A. Arnold and C. Ringhofer. An operator splitting method for the Wigner-Poisson problem. SIAM J. Numer. Anal., 33(4):1623–1643, 1996. arun03 [136] A. Arnold and A. Unterreiter. Entropy decay of discretized FokkerPlanck equations. I: Temporal semidiscretization. Comput. Math. Appl., 46(10-11):1683–1690, 2003. arsm61 [137] N. Aronszajn and K. T. Smith. Theory of Bessel potentials. I. Ann. Inst. Fourier (Grenoble), 11:385–475, 1961. ar05 [138] G. Arsu. On Schatten-von Neumann class properties of pseudodifferential operators. The Cordes-Kato method. J. Operator Theory, 59(1):81–114, 2005. 13 ar91 [139] B. Artmann. Lineare Algebra. (Linear Algebra). 3., Überarb. u. erw. Aufl. Birkhäuser, Basel, 1991. ar70 [140] W. B. Arveson. Unitary invariants for compact operators. Bull. Amer. Math. Soc., 76:88–91, 1970. ar74 [141] W. B. Arveson. On groups of automorphisms of operator algebras. J. Funct. Anal., 15:217–243, 1974. ar75 [142] W. B. Arveson. Interpolation problems in nest algebras. J. Funct. Anal., 20(3):208–233, 1975. ar76 [143] W. B. Arveson. Aspectral theorem for nonlinear operators. Bull. Amer. Math. Soc., 82(3):511–513, 1976. ar83-1 [144] W. B. Arveson. Perturbation theory for groups and lattices. J. Funct. Anal., 53:22–73, 1983. ar83-2 [145] W. B. Arveson. Quantization and the uniqueness of invariant structures. Comm. Math. Phys., 89(1):77–102, 1983. ar84 [146] W. B. Arveson. Ten lectures on operator algebras. Reg. Conf. Ser. Math., 55:93 p., 1984. ar91-1 [147] W. B. Arveson. Discretized CCR algebras. J. Operator Theory, 26(2):225–239, 1991. ar93 [148] W. B. Arveson. Improper filtrations for C ∗ -algebras: Spectra of unilateral tridiagonal operators. Acta Math. Sci., 57(1-4):11–24, 1993. ar94-1 [149] W. B. Arveson. c∗ -algebras and numerical linear algebra. J. Funct. Anal., 122(2):333–360, 1994. ar94 [150] W. B. Arveson. The role of C ∗ -algebras in infinite dimensional numerical linear algebra. In Doran, Robert(ed), C ∗ -Algebras: 1943-1993 A Fifty Year Celebration AMS Special Session Commemorating the first Fifty Years of Csp∗-algebra Theory, January 13-14, 1993, San Antonio, TX, USA Providence, RI: American Mathematical Society Conte. 1994. ar02 [151] W. B. Arveson. The heat flow of the CCR algebra. Bull. Lond. Math. Soc., 34(1):73–83, 2002. 14 ardo90 [152] W. B. Arveson and R. G. Douglas. Operator Theory, Operator Algebras and Applications. Proceedings of the Summer Research Institute held at the University of New Hampshire, Durham, NH (USA), July 3-23, 1988. American Mathematical Society, Providence, RI, 1990. as05 [153] G. Ascensi and G. Kutyniok. Accumulative density. In Wavelets XI (San Diego, CA, 2005), volume 5914, pages 188–195. SPIE, 2005. as82 [154] I. U. Asekritova. On some properties of general approximation spaces. Dokl. Akad. Nauk SSSR, 267(2):265–268, 1982. askh05 [155] M. S. Asgari and A. Khosravi. Frames and bases of subspaces in Hilbert spaces. J. Math. Anal. Appl., 308(2):541–553, 2005. asnava98 [156] R. Ashino, M. Nagase, and R. Vaillancourt. Gabor, wavelet and chirplet transforms in the study of pseudodifferential operators. S, (1036):23–45, 1998. asatsu93 [157] R. Askey, N. M. Atakishiyev, and S. K. Suslov. An analog of the Fourier transformation for a q-harmonic oscillator. In B. Gruber, editor, Symmetries in Science VI: From the Rotation Group to Quantum Algebras Proceedings of a Symposium held in Bregenz, Austria, August 2-7, 1992, pages 57–63. Plenum Press, New York, NY, 1993. askl69 [158] E. W. Aslaksen and J. R. Klauder. Continuous representation theory using the affine group. J. Math. Phys., 10(12):2267–2275, 1969. aslepa99 [159] H. Aslaksen, S. T. Lee, and J. Packer. k-theory for the integer Heisenberg groups. K-Theory, 16(3):201–227, 1999. asfero02 [160] G. Assayag, H. G. Feichtinger, and J. F. Rodrigues, editors. Mathematics and music. A Diderot Mathematical Forum, Lisbon, Paris and Vienna, December 3–4, 1999. Springer, 2002. atha01 [161] K. Atkinson and W. Han. Theoretical Numerical Analysis. A Functional Analysis Framework. Springer, New York, NY, 2001. atbeka03 [162] N. D. Atreas, J. J. Benedetto, and C. Karanikas. Local sampling for regular wavelet and Gabor expansions. Sampl. Theory Signal Image Process., 2(1):1–24, 2003. 15 atbumi06 [163] H. Attouch, G. Buttazzo, and G. Michaille. Variational Analysis in Sobolev and BV Spaces. Applications to PDEs and Optimization. MPS/SIAM Series on Optimization. SIAM and SIAM, Society for Industrial and Applied Mathematics and MPS, Mathematical Programming Society, Philadelphia, PA, 2006. at73 [164] A. Atzmon. Translation invariant subspaces of Lp (G). Studia Math., 48:245–250, 1973. at78 [165] A. Atzmon. Spectral synthesis in some spaces of bounded continuous functions. Pacific J. Math., 74:277–284, 1978. at83 [166] A. Atzmon. Uniform approximation by linear combinations of translations and. J. Lond. Math. Soc. (2), 27:51–54, 1983. au70 [167] K. E. Aubert. Harmonic analysis and real group algebras. Math. Scand., 27:181–192, 1970. au87 [168] J.-P. Aubin. Analyse fonctionnelle appliquie. Tomes 1. Presses Universitaires de France, Paris, 1987. au84 [169] J.-P. Aubin. Applied Functional Analysis (second Edition). Wiley, 2000. aublhlle05 [170] F. Auger and F. Hlawatsch. Temps-fréquence. Concepts et Outils. Traitement du signal et de l’image. Hermes Science Publications, Paris, 2005. au94 [171] P. Auscher. Remarks on the local Fourier bases. In J. Benedetto and M. Frazier, editors, Wavelets: Mathematics and Applications, Stud. Adv. Math., pages 203–218. CRC Press, Boca Raton, 1994. au95 [172] P. Auscher. Solution of two problems on wavelets. J. Geom. Anal., 5(2):181–236, 1995. auwewi92 [173] P. Auscher, G. Weiss, and M. V. Wickerhauser. Local sine and cosine bases of Coifman and Meyer and the construction of smooth wavelets. In C. K. Chui, editor, Wavelets: A Tutorial in Theory and Applications, number 2 in Wavelet Anal. Appl., pages 237–256. Academic Press, Boston, 1992. 16 augeto91 [174] L. Auslander, I. Gertner, and R. Tolimieri. The discrete Zak Transform Application to time-frequency analysis and synthesis of nonstationary signals. IEEE Trans. Signal Process., 39(4):825–835, April 1991. aume96 [175] L. Auslander and Y. Meyer. A generalized Poisson summation formula. Appl. Comput. Harmon. Anal., 3(4):372–376, 1996. auto79 [176] L. Auslander and R. Tolimieri. Is computing with the finite Fourier transform pure or applied mathematics? Bull. Amer. Math. Soc. (N.S.), 1:847–897, 1979. auto85 [177] L. Auslander and R. Tolimieri. Radar ambiguity functions and group theory. SIAM J. Math. Anal., 16(3):577–601, 1985. auto88 [178] L. Auslander and R. Tolimieri. Computing decimated finite crossambiguity functions. IEEE Trans. Acoustics, Speech and Signal Processing, 36(3):359–364, 1988. ax95 [179] S. Axler. Down with determinants! 102(2):139–154, 1995. ax97 [180] S. Axler. Linear algebra Done Right 2nd ed. Undergraduate Texts in Mathematics. New York, NY: Springer. xii, New York, NY, 1997. axbora01 [181] S. Axler, P. Bourdon, and W. Ramey. Harmonic Function Theory, volume 137 of Graduate Texts in Mathematics. Springer, New York, NY, 2nd ed. edition, 2001. axcu91 [182] S. Axler and Z. Cuckovic. Commuting Toeplitz operators with harmonic symbols. Integr. Equ. Oper. Theory, 14(1):1–12, 1991. aybama04 [183] R. G. Aykroyd, S. Barber, and K. V. Mardia. Bioinformatics, Images and Wavelets; LASR2004 - 6th to 8th July 2004; Programme and Abstracts. 2004. az70 [184] R. Azencott. Espaces de Poisson des Groupes Localement Compacts. Lecture Notes in Mathematics. 148. Berlin-Heidelberg-New York:Springer- Verlag. IX, 141 p., 1970. 17 Amer. Math. Monthly, balopa07 [185] E. Babolian, T. Lotfi, and M. Paripour. Wavelet moment method for solving Fredholm integral equations of the first kind. Appl. Math. Comput., 186(2):1467–1471, 2007. babenesc87 [186] H. Babovsky, T. Beth, H. Neunzert, and M. Schulz Reese. Mathematische Methoden in der Systemtheorie: Fourieranalysis. (Mathematical Methods in System Theory: Fourier Analysis). Mathematische Methoden in der Technik Bd. 5. B. G. Teubner, Stuttgart, 1987. ba68 [187] I. Babuvska. Über universal optimale Quadraturformeln. I. Appl. Math., 13:304–338, 1968. ba68-1 [188] I. Babuvska. Über universal optimale Quadraturformeln. II. Appl. Math., 13:388–404, 1968. ba71 [189] G. F. Bachelis. On the ideal of unconditional convergent Fourier series in lp (g). Proc. Amer. Math. Soc., 27:309–312, 1971. ba73 [190] G. F. Bachelis. On the upper and lower majorant properties in Lp (g). Quart. J. Math. Oxford Ser. (2), 24:119–128, 1973. bagi72 [191] G. F. Bachelis and J. E. Gilbert. Banach spaces of compact multipliers and their dual spaces. Math. Z., 125:285–297, 1972. bagi79 [192] G. F. Bachelis and J. E. Gilbert. Banach algebras with Rider subalgebras. Bull. of the Inst. of Math. Sinica, (7-3):333–347, 1979. baparo72 [193] G. F. Bachelis, W. A. Parker, and K. A. Ross. Local units in L1 (g). Proc. Amer. Math. Soc., 31:312–313, 1972. bapi72 [194] G. F. Bachelis and L. Pigno. A characterization of compact multipliers. Trans. Amer. Math. Soc., 165:319–322, 1972. ba98-4 [195] C. Badea. The stable rank of topological algebras and a problem of R.G. Swan. J. Funct. Anal., 160(1):42–78, 1998. ba99-4 [196] C. Badea. Stable ranks, k-groups and Witt groups of some Banach and c∗ -algebras. In Function Spaces (Edwardsville, IL, 1998), volume 232 of Contemp. Math., pages 55–64. Amer. Math. Soc., Providence, RI, 1999. 18 basa85 [197] A. Baernstein and E. T. Sawyer. Embedding and multiplier theorems for Hp(Rn). Cambridge University Press, Cambridge, 1985. ba77 [198] R. J. Bagby. On Lp , Lq multipliers of Fourier transforms. Pacific J. Math., 68:1–12, 1977. ba79-1 [199] R. J. Bagby. Mixed-norm Sobolev theorems for Lipschitz spaces. Indiana Univ. Math. J., 28:417–427, 1979. bamasite00 [200] S. C. Bagchi, S. Madan, A. Sitaram, and U. B. Tewari. A First Course on Representation Theory and Linear Lie Groups. Universities Press India, India, 2000. ba90 [201] L. W. Baggett. Processing a radar signal and representations of the discrete Heisenberg group. Colloq. Math., 60/61:195–203, 1990. bapa91 [202] L. W. Baggett and J. Packer. c∗ -algebras associated to two-step nilpotent groups. In Selfadjoint and Nonselfadjoint Operator Algebras and Operator Theory (Fort Worth, TX, 1990), volume 120 of Contemp. Math., pages 1–6. Amer. Math. Soc., Providence, RI, 1991. bapa94 [203] L. W. Baggett and J. Packer. The primitive ideal space of two-step nilpotent group c∗ -algebras. J. Funct. Anal., 124(2):389–426, 1994. bala99 [204] L. W. W. e. . Baggett and D. R. e. . Larson. The Functional and Harmonic Analysis of Wavelets and Frames. Proceedings of the AMS Special Session, San Antonio, TX, USA, January 13–14, 1999. Contemporary Mathematics. 247. Providence, RI: American Mathematical Society (AMS). x, 1999. bamoprva01 [205] C. Baker, G. Monegato, J. Pryce, and G. Vanden Berghe. Numerical Analysis 2000. (In 7 Vols.) Vol. 6: Ordinary Differential Equations and Integral Equations. Repr. from the Journal of Computational and Applied Mathematics 125, No. 1-2 (2000). North-Holland/ Elsevier, Amsterdam, 2001. bare06 [206] G. Bal and K. Ren. Math. Models Methods Appl. Sci., 16(8):1347– 1373, 2006. bacahela06 [207] R. Balan, P. G. Casazza, C. Heil, and Z. Landau. Density, overcompleteness, and localization of frames I: Theory. J. Fourier Anal. Appl., 12(2):105–143, 2006. 19 bacahela06-1 [208] R. Balan, P. G. Casazza, C. Heil, and Z. Landau. Density, overcompleteness, and localization of frames. II: Gabor systems. J. Fourier Anal. Appl., 12(3):307–344, 2006. ba97 [209] R. M. Balan. Stability theorems for Fourier frames and wavelet Riesz bases. J. Fourier Anal. Appl., 3(5):499–504, 1997. ba98-2 [210] R. M. Balan. An uncertainty inequality for wavelet sets. Appl. Comput. Harmon. Anal., 5(1):106–108, 1998. ba98-1 [211] R. M. Balan. Extensions of no-go theorems to many signal systems. In A. Aldroubi and et al., editors, Wavelets, Multiwavelets, and their Applications AMS Special Session, January 1997, San Diego, CA, USA, volume 216 of Contemp. Math., pages 3–14. American Mathematical Society, Providence, RI, 1998. ba99-1 [212] R. M. Balan. Density and redundancy of the noncoherent WeylHeisenberg superframes. In L. W. Baggett and David Royal Larson, editors, The Functional and Harmonic Analysis of Wavelets and Frames, Proceedings of the AMS Special Session, volume 247 of Contemporary Mathematics, pages 29–41. American Mathematical Society, San Antonio, TX, USA, January 1999. ba99-2 [213] R. M. Balan. Equivalence relations and distances between Hilbert frames. Proc. Amer. Math. Soc., 127(8):2353–2366, 1999. ba00 [214] R. M. Balan. Multiplexing of signals using superframes. In Proc. SPIE, Wavelet Applications in Signal and Image Processing VIII, volume 4119, pages 118–129, 2000. ba05 [215] R. M. Balan. A strong invariance principle for associated random fields. Ann. Probab., 33(2):823–840, 2005. ba06-1 [216] R. M. Balan. A noncommutative Wiener lemma and a faithful tracial state on Banach algbras of time-frequency shift operators. 2006. bacaed05 [217] R. M. Balan, P. G. Casazza, and D. Edidin. On signal reconstruction from absolute value of frame coefficients. In et al. and B. G. Bodmann, editors, Frame Isotropic Multiresolution Analysis for Cardiac CT Imaging, volume 5914 of Proceedings of the SPIE, pages 355–362, 2005. 20 bacaedku05 [218] R. M. Balan, P. G. Casazza, D. Edidin, and G. Kutyniok. A fundamental identity for Parseval frames. 2005. bacaedku05-1 [219] R. M. Balan, P. G. Casazza, D. Edidin, and G. Kutyniok. Decompositions of frames and a new frame identity. In Wavelets XI (San Diego, CA, 2005), volume 5914 of SPIE Proc., pages 379–388. SPIE, 2005. bacahela03 [220] R. M. Balan, P. G. Casazza, C. Heil, and Z. Landau. Deficits and excesses of frames. Adv. Comput. Math., 18(2-4):93–116, 2003. bacahela03-1 [221] R. M. Balan, P. G. Casazza, C. Heil, and Z. Landau. Excesses of Gabor frames. Appl. Comput. Harmon. Anal., 14(2):87–106, 2003. bada03 [222] R. M. Balan and I. Daubechies. Optimal stochastic approximations and encoding schemes using Weyl-Heisenberg sets. In H. G. Feichtinger, editor, Advances in Gabor Analysis Basel: Birkhäuser Applied and Numerical Harmonic Analysis, 259-320. 2003. badava00 [223] R. M. Balan, I. Daubechies, and V. Vaishampayan. The analysis and design of windowed Fourier frame based multiple description source coding schemes. IEEE Trans. Inform. Theory, 46(7):2491–2536, 2000. bajoro98 [224] R. M. Balan, A. Jourjine, and J. Rosca. AR processes and sources can be reconstructed from degenerate mixtures. In Proceedings of the First International Workshop on Independent Component Analysis and Signal Separation, Aussois France, January 11-15 1999, pages 467–472, 1998. bala07 [225] R. M. Balan and Z. Landau. Measure functions for frames. 2007. baporive04 [226] R. M. Balan, S. Rickard, H. V. Poor, and S. Verd. Time-frequency and time-scale canonical representations of doubly spread channels. In Proc. European Signal Processing Conference 2004, 2004. bariro01 [227] R. M. Balan, S. Rickard, and J. Rosca. Real-time time-frequency based blind source separation. In Proceedings of the 3rd ICA and BSS Conference, San Diego, CA, December 9-13, 2001., 2001. bariro01-1 [228] R. M. Balan, S. Rickard, and J. Rosca. Robustness of parametric source demixing in echoic environments. In Proceedings of the 3rd ICA and BSS Conference, San Diego, CA, December 2001, 2001. 21 bariro03-3 [229] R. M. Balan, S. Rickard, and J. Rosca. Blind source separation based on space-time-frequency diversity. In Proceedings of the 4th ICA-BSS Conference, April 2003, Japan., 2003. bariro03-2 [230] R. M. Balan, S. Rickard, and J. Rosca. Non-square blind source separation under coherent noise by beamforming and time-frequency masking. In Proceedings of the 4th ICA-BSS Conference, April 2003, Japan., 2003. bariro03-1 [231] R. M. Balan, S. Rickard, and J. Rosca. Scalable non-square blind source separation in the presence of noise. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003 (ICASSP ’03)., pages V– 293–6, 2003. bariro05 [232] R. M. Balan, S. Rickard, and J. Rosca. Equivalence principle for optimization of sparse versus low-spread representations for signal estimation in noise. Int. J. Imaging System and TechnologyInt. J. Imaging Systems and Technology, 15(1):10 – 17, 2005. baro00 [233] R. M. Balan and J. Rosca. Statistical properties of STFT ratios for two channel systems and applications to blind source separation. In Proceedings of 2nd ICA and BSS Conference 2000, Helsinki, FINLAND, June 2000, 2000. baro02 [234] R. M. Balan and J. Rosca. Microphone array speech enhancement by Bayesian estimation of spectral amplitude and phase. In Sensor Array and Multichannel Signal Processing Workshop Proceedings, 2002, pages 209– 213, 2002. babero03 [235] R. M. Balan, J. Rosca, and C. Beaugeant. Multi-channel psychoacoustically motivated speech enhancement. In Proceedings of the International Conference on Multimedia and Expo, 2003. ICME ’03., pages III– 217–20, 2003. baboro04 [236] R. M. Balan, J. Rosca, and C. Borss. Generalized sparse signal mixing model and application to noisy blind source separation. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004 (ICASSP ’04), Montreal, Canada, May 2004., pages iii– 877–80, 2004. 22 bafaro01 [237] R. M. Balan, J. Rosca, and N. Fan. Real-time audio source separation by delay and attenuation compensation in the time domain. In Proceedings of the 3rd ICA and BSS Conference, San Diego, CA, December 2001, 2001. bafaro04 [238] R. M. Balan, J. Rosca, and N. Fan. Comparison of wavelet- and FFT-based single-channel speech signal noise reduction techniques. In Proc. SPIE 2004, 2004. babefagiro02 [239] R. M. Balan, J. Rosca, N. P. Fan, C. Beaugeant, and V. Gilg. Multichannel voice detection in adverse environments. In Proceedings of EUSIPCO 2002, 2002. bahoro04 [240] R. M. Balan, J. Rosca, and L. Hong. Bayesian single channel speech enhancement exploiting sparseness in the ICA domain. In Proceedings of EUSIPCO 2004, pages 1713–1716, 2004. bariro03 [241] R. M. Balan, J. Rosca, and S. Rickard. A Stochastic Speech Model Supporting W-Disjoint Orthogonality. In Proceedings of the 2003 Conference on Information Sciences and Systems, Johns Hopkins University, March 12-14, 2003., 2003. baoriro00 [242] R. M. Balan, J. Rosca, S. Rickard, and J. O’Ruanaidh. The influence of windowing on time delay estimates. In Proceedings of the CISS 2000, Princeton NJ, March 15-17 2000, 2000. basc05 [243] R. M. Balan and I. Schiopu Kratina. Asymptotic results with generalized estimating equations for longitudinal data. Ann. Statist., 33(2):522–541, 2005. ba05-1 [244] P. Balazs. Regular and Irregular Gabor Multipliers with Application to Psychoacoustic Masking. PhD thesis, University of Vienna, 2005. ba06-2 [245] P. Balazs. Frame multiplier and irregular Gabor filters with application in time frequency. In Proceedings ICSV13, 13th International Congress on Sound and Vibration, June 2006. ba07 [246] P. Balazs. Basic definition and properties of Bessel multipliers. J. Math. Anal. Appl., 325(1):571–585, 2007. 23 ba08-6 [247] P. Balazs. Hilbert-Schmidt operators and frames - classification, best approximation by multipliers and algorithms. Int. J. Wavelets Multiresolut. Inf. Process., 6(2):315 – 330, March 2008. ba08-2 [248] P. Balazs. Matrix-representation of operators using frames. Sampl. Theory Signal Image Process., 7(1):39–54, January 2008. hopewe03 [249] P. Balazs, W. A. Deutsch, and H. Waubke. Phasenanalyse mit akustischen Anwendungsbeispielen. In Proceedings DAGA 2003 Fortschritte der Akustik, March 2003. bael08 [250] P. Balazs and M. El Gebeily. A systematic study of frame sequence operators and their pseudoinverses. International Mathematical Forum, 3(5):229–239, 2008. bafehakr06 [251] P. Balazs, H. G. Feichtinger, M. Hampejs, and G. Kracher. Double preconditioning for Gabor frames. IEEE Trans. Signal Process., 54(12):4597–4610, December 2006. bakrwa06-2 [252] P. Balazs, W. Kreuzer, and H. Waubke. A 3D-stochastic model for imulating vibrations in soil layers. In Proceedings ICSV13, 13th International Congress on Sound and Vibration, June 2006. bakrwa06-1 [253] P. Balazs, W. Kreuzer, and H. Waubke. Effiziente Implementierung eines stochastischen Modells zur Berechnung von Erschütterungen in Böden und Fluiden. In DAGA ’06 (Braunschweig) Tagungsband, März 2006. bakrwa06 [254] P. Balazs, W. Kreuzer, and H. Waubke. Ein 3D-Modell zur Berechnung der Ausbreitung von Erschütterungen in Bodenschichten. In DAGA ’06 (Braunschweig) Tagungsband, März 2006. bakrwa07 [255] P. Balazs, W. Kreuzer, and H. Waubke. A stochastic 2D-model for calculating vibrations in random layers. J. Comput. Acoust., 15(3):271– 283, 2007. bakrwaXX-3 [256] P. Balazs, R. Kronland Martinet, and H. Waubke. Phase Analysis and its Application in Acoustics. bama07 [257] P. Balazs, B. Laback, and P. Majdak. Multiple Exponential Sweep Method for Fast Measurement of Head Related Transfer. J. Audio Eng. Soc., 55(7/8):623–637, July/August 2007. 24 bama07-1 [258] P. Balazs and D. Marelli. A Zero-Pole Vocal Tract Model Estimation Method Accurately Reproducing Spectral Zeroes. In Audio Engineering Society Convention Paper, 122nd Convention, 2007 May 5-8. Audio Engineering Society, 2007. badelano00 [259] P. Balazs, A. Noll, W. A. Deutsch, and B. Laback. Concept of the integrated signal analysis software system STX. In OPG 2000 (proceedings CD), 2000. bawa03 [260] P. Balazs and H. Waubke. Verwendung der zeitliche Rücktransformation zur Berücksichtigung der Kausalität in Spektren mehrdimensionaler Fourier Transformationen. In DAGA 2003 Tagungsband, März 2003. bajikrwa05 [261] P. Balazs, H. Waubke, B. Jilge, and W. Kreuzer. Waves in Random Layers with Arbitrary Covariance Functions. In 12th International Congress on Sound and Vibration, Lisbon, 2005. ba81-1 [262] R. Balian. Un principe d’incertitude fort en théorie du signal ou en mécanique quantique. C. R. Acad. Sci. Paris Sér. II Méc. Phys. Chim. Sci. Univers Sci. Terre, 292(20):1357–1362, 1981. basa04 [263] V. Bally and B. Saussereau. A relative compactness criterion in Wiener-Sobolev spaces and application to semi-linear stochastic PDEs. J. Funct. Anal., 210(2):465–515, 2004. ba91 [264] C. Bandt. Deterministic fractals and fractal measures. Rend. Ist. Mat. Univ. Trieste, 23:1–40, 1991. babobo06 [265] R. Bank, P. Borwein, and D. Boyd, editors. Mathematics of Computation, volume 75. American Mathematical Society, July 2006. bahu06 [266] W. Baoxiang and H. Hudzik. The global Cauchy problem for the NLS and NLKG with small rough data. page 36, 2006. ba92-1 [267] R. Barakat. A wave equation proof of Gabor’s beam expansion theorem. Opt. Commun., 87(4):139–143, 1992. balash06 [268] V. Baramidze, M. J. Lai, and C. K. Shum. Spherical splines for data interpolation and fitting. SIAM J. Sci. Comput., 28(1):241–259, 2006. 25 badadewa08 [269] R. G. Baraniuk, M. Davenport, R. A. DeVore, and M. Wakin. A simple proof of the restricted isometry property for random matrices. Constr. Approx., 28(3):253–263, 2008. bafljami01 [270] R. G. Baraniuk, P. Flandrin, A. J. E. M. Janssen, and O. J. J. Michel. Measuring time-frequency information content using the Rényi entropies. IEEE Trans. Inform. Theory, 47(4):1391–1409, 2001. bajo93 [271] R. G. Baraniuk and D. L. Jones. Shear madness: new orthonormal bases and frames using chirp functions. IEEE Trans. Signal Process., 41(12):3543–3549, 1993. ba92 [272] S. Barbarossa. Detection and imaging of moving objects with synthetic aperture radar. 1. Optimal detection and parameter estimation theory. IEE Proc. F, 139(1):79–88, 1992. bafa92 [273] S. Barbarossa and A. Farina. Detection and imaging of moving objects with synthetic aperture radar. 2. Joint time-frequency analysis by Wigner-Ville distribution. IEE Proc. F, 139(1):89–97, 1992. ba83 [274] K. Barbey. Periodically invariant linear systems. SIAM J. Math. Anal., 14:158–166, 1983. bahawi80 [275] K. Barbey, W. Hackenbroch, and H. Willie. Partially translation invariant linear systems. Integr. Equ. Oper. Theory, 3:311–322, 1980. babecaruvi06 [276] J. A. Barcelo, J. M. Bennett, A. Carbery, A. Ruiz, and M. C. Vilela. Some special solutions of the Schroedinger equation. 2006. baco89 [277] J. A. Barcelo and A. Cordoba. Band-limited functions: convergence. Trans. Amer. Math. Soc., 313(2):655–669, 1989. Lp - babustvi03 [278] C. Bardaro, P. L. Butzer, R. L. Stens, and G. Vinti. Convergence in variation and rates of approximation for Bernstein-type polynomials and singular convolution integrals. Analysis (Munich), 23(4):299–340, 2003. ba47 [279] V. Bargmann. Irreducible unitary representations of the Lorentz group. Ann. of Math., 48:568–640, 1947. 26 ba61 [280] V. Bargmann. On a Hilbert space of analytic functions and an associated integral transform. Commun. Pure Appl. Anal., 14:187–214, 1961. ba67 [281] V. Bargmann. On a Hilbert space of analytic functions and an associated integral transform. II: A family of related function spaces. Application to distribution theory. Commun. Pure Appl. Anal., 20:1– 101, 1967. babugikl71 [282] V. Bargmann, P. Butera, L. Girardello, and J. R. Klauder. On the completeness of coherent states. Rep. Math. Phys., 2:221–228, 1971. ba01-1 [283] L. Barker. Continuum quantum systems as limits of discrete quantum systems. I: State vectors. J. Funct. Anal., 186(1):153–166, 2001. ba01-2 [284] L. Barker. Continuum quantum systems as limits of discrete quantum systems. II: State functions. J. Phys. A, Math. Gen., 34(22):4673– 4682, 2001. ba01-3 [285] L. Barker. Continuum quantum systems as limits of discrete quantum systems. III: Operators. J. Math. Phys., 42(10):4653–4668, 2001. ba03 [286] L. Barker. Continuum quantum systems as limits of discrete quantum systems. IV. Affine canonical transforms. J. Math. Phys., 44(4):1535– 1553, 2003. bakl99 [287] O. E. Barndorff Nielsen and C. Klüppelberg. Tail exactness of multivariate saddlepoint approximations. Scand. J. Statist., 26(2):253–264, 1999. ba71-1 [288] B. A. Barnes. Banach algebras which are ideals in a Banach algebra. Pacific J. Math., 38:1–7, 1971. ba72 [289] B. A. Barnes. A result with applications to the theory of Beurling algebras and Segal algebras. 1972. ba87-1 [290] B. A. Barnes. The spectrum of integral operators on Lebesgue spaces. J. Operator Theory, 18(1):115–132, 1987. ba99-3 [291] B. A. Barnes. A result with applications to the theory of Beurling algebras and Segal algebras. Technical report, 1999. 27 ba07-1 [292] B. A. Barnes. Bounded linear operators on spaces in normed duality. Glasg. Math. J., 49(1):145–154, 2007. babadusawa05-1 [293] D. Baron, M. F. Duarte, S. Sarvotham, M. B. Wakin, and R. G. Baraniuk. An information-theoretic approach to distributed compressed sensing. In Proc 45rd Conference on Communication, Control, and Computing Monticello, IL, Sept 2005, 2005. babadusawa05 [294] D. Baron, M. F. Duarte, M. B. Wakin, S. Sarvotham, and R. G. Baraniuk. Distributed compressive sensing. preprint, 2005. bali95 [295] S. Baron and E. Liflyand. Complementary spaces and multipliers for Fourier transforms. Acta Math. Sci., 60(1-2):49–57, 1995. balisk96 [296] S. Baron, E. Liflyand, and M. Skopina. On the summability of double Fourier series at a point. Analysis, 16(2):195–205, 1996. balist00 [297] S. Baron, E. Liflyand, and U. Stadtmüller. Complementary spaces and multipliers of double Fourier series for functions of bounded variation. J. Math. Anal. Appl., 250(2):706–721, 2000. bafogopa08 [298] D. Barrera, M. A. Fortes, P. González, and M. Pasadas. Minimal energy surfaces on PowellSabin type triangulations. Appl. Numer. Math., 58(5):635–645, 2008. chdedodoeiporova94 [299] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2nd Edition edition, 1994. bacodade08 [300] A. Barron, A. Cohen, W. Dahmen, and R. A. DeVore. Approximation and learning by greedy algorithms. Ann. Statist., 36(1):64–94, 2008. bace05 [301] L. e. . Bartholdi and T. e. . a. Ceccherini Silberstein. Infinite groups: geometric, combinatorial and dynamical aspects. Based. Progress in Mathematics 248. Basel: Birkhäuser. vii, 413 p., 2005. bamo49 [302] M. S. Bartlett and J. E. Moyal. The exact transition probabilities of quantum-mechanical oscillators calculated by the phase-space method. Proc. Camb. Philos. Soc., 45:545–553, 1949. 28 ba64 [303] N. K. Bary. A Treatise on Trigonometric Series, Volumes 1 and 2. Macmillan, 1964. ba80-1 [304] A. G. Baskakov. General ergodic theorems in Banach modules. Funct. Anal. Appl., 14(3):215–217, 1980. ba90-1 [305] A. G. Baskakov. Wiener’s theorem and the asymptotic estimates of the elements of inverse matrices. Funct. Anal. Appl., 24(3):222–224, 1990. ba97-2 [306] A. G. Baskakov. Asymptotic estimates for elements of matrices of inverse operators, and harmonic analysis. Sibirsk. Mat. Zh., 38(1):14– 28, i, 1997. ba95 [307] R. F. Bass. Probabilistic Techniques in Analysis. Probability and its Applications. Springer-Verlag, New York, NY, 1995. bagr04 [308] R. F. Bass and K. Gröchenig. Random sampling of multivariate trigonometric polynomials. SIAM J. Math. Anal., 36(3):773–795, 2004. bagr10 [309] R. F. Bass and K. Gröchenig. Random sampling of bandlimited functions. Israel J. Math., 177(1):1–28, 2010. bamiru01 [310] J. Bastero, M. Milman, and F. J. Ruiz. On the connections between weighted norm inequalities, commutators and real interpolation. Mem. Amer. Math. Soc., 731:80 p., 2001. ba79-2 [311] M. J. Bastiaans. Wigner distribution function and its application to first-order optics. J. Opt. Soc. Amer., 69(12):1710–1716, 1979. ba80 [312] M. J. Bastiaans. Gabor’s expansion of a signal into Gaussian elementary signals. Proc. IEEE, 68(4):538– 539, 1980. ba81 [313] M. J. Bastiaans. A sampling theorem for the complex spectrogram and Gabor’sexpansion of a signal in Gaussian elementary signals. Opt. Eng., 20(4):594–598, July/August 1981. ba82 [314] M. J. Bastiaans. Optical generation of Gabor’s expansion coefficients for rastered signals. Optica Acta, 29(10):1349–1357, 1982. 29 ba85 [315] M. J. Bastiaans. On the sliding-window representation in digital signal processing. IEEE Trans. Acoustics, Speech and Signal Processing, 33(4):868–873, 1985. ba98-3 [316] M. J. Bastiaans. Gabor’s expansion and the Zak transform for continuous-time and discrete-time signals. In Signal and Image Representation in Combined Spaces, volume 7 of Wavelet Anal. Appl., pages 23–69. Academic Press, San Diego, CA, 1998. ba98 [317] M. J. Bastiaans. Gabor’s signal expansion in optics. In H. G. Feichtinger and T. Strohmer, editors, Gabor Analysis and Algorithms: Theory and Applications, Appl. Numer. Harmon. Anal., pages 427– 451. Birkhäuser Boston, Boston, MA, 1998. ba02 [318] M. J. Bastiaans. Gabor’s signal expansion based on a non-orthogonal sampling geometry. In H. J. Caulfield, editor, Optical Information Processing: A Tribute to Adolf Lohmann, pages 57–82. SPIE - The International Society for Optical Engineering, Bellingham, WA, 2002. bage96 [319] M. J. Bastiaans and M. C. W. Geilen. On the discrete Gabor transform and the discrete Zak transform. Signal Process., 49(3):151–166, 1996. bava98 [320] M. J. Bastiaans and A. J. van Leest. From the rectangular to the quincunx Gabor lattice via fractional Fourier transformation. IEEE Signal Proc. Letters, 5(8):203–205, 1998. bava98-1 [321] M. J. Bastiaans and A. J. van Leest. Modified Zak transform for the quincunx-type Gabor lattice. In Proc. IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, Pittsburgh, PA, 6-9 October 1998, pages 173–176, Piscataway, NJ, 1998. IEEE. bava98-2 [322] M. J. Bastiaans and A. J. van Leest. Product forms in Gabor analysis for a quincunx-type sampling geometry. In J. Veen, editor, Proc. CSSP-98, ProRISC/IEEE Workshop on Circuits, Systems and Signal Processing, Mierlo, Netherlands, 26-17 November 1998, pages 23–26, Utrecht, Netherlands, 1998. STW, Technology Foundation. bava98-3 [323] M. J. Bastiaans and A. J. van Leest. Rectangular-to-quincunx Gabor lattice conversion via fractional Fourier transformation. In Proc. 30 IEEE-SP International Symposium on Time-Frequency and TimeScala Analysis, Pittsburgh, PA, 6-9 October 1998, pages 169–172, Piscataway, NJ, 1998. IEEE. bava03 [324] M. J. Bastiaans and A. J. van Leest. Gabor’s signal expansion for a non-orthogonal sampling geometry. In B. Boashash, editor, TimeFrequency Signal Analysis and Processing: A Comprehensive Reference, pages 252–259. Elsevier, Oxford, UK, 2003. bawe97 [325] S. Bates and A. Weinstein. Lectures on the Geometry of Quantization. Berkeley Mathematics Lecture Notes 8. Providence, RI: American Mathematical Society and Berkeley, CA: Berkeley Center for Pure and Applied Mathematics. vi, 1997. ba87 [326] G. Battle. A block spin construction of ondelettes I. Comm. Math. Phys., 110:601–615, 1987. ba88 [327] G. Battle. Heisenberg proof of the Balian-Low theorem. Lett. Math. Phys., 15(2):175–177, 1988. ba99 [328] G. Battle. Wavelets and Renormalization. World Scientific, Singapore, 1999. ba79 [329] W. Bauhardt. Nuclear multipliers on compact groups. Math. Nachr., 93:293–303, 1979. baco00 [330] P. Baum and A. Connes. Geometric k-theory for Lie groups and foliations. Enseign. Math. (2), 46(1-2):3–42, 2000. babole97 [331] H. H. Bauschke, J. M. Borwein, and A. S. Lewis. The method of cyclic projections for closed convex sets in Hilbert space. In others and Y. Censor, editors, Recent Developments in Optimization Theory and Nonlinear Analysis AMS/IMU Special Session on Optimization and Nonlinear Analysis, May 24–26, 1995, Jerusalem, Israel, volume 204, pages 1–38. AMS, 1997. bacolu06 [332] H. H. Bauschke, P. L. Combettes, and D. R. Luke. A strongly convergent reflection method for finding the projection onto the intersection of two closed convex sets in a Hilbert space. J. Approx. Theory, 141:63–69, 2006. 31 ba01 [333] H. Bavinck. Differential operators having Sobolev-type Laguerre polynomials as eigenfunctions: New developments. J. Comput. Appl. Math., 133(1-2):183–193, 2001. baflfrlist78-1 [334] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer. Deformation theory and quantization. I. Deformations of symplectic structures. Ann. Physics, 111(1):61–110, 1978. baflfrlist78 [335] F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, and D. Sternheimer. Deformation theory and quantization. II. Physical applications. Ann. Physics, 111(1):111–151, 1978. baba00 [336] M. Bayram and R. G. Baraniuk. Multiple window time-varying spectrum estimation. In Nonlinear and Nonstationary Signal Processing, pages 292–316. Cambridge Univ. Press, Cambridge, 2000. be68-1 [337] R. Beals. Operators in function spaces which commute with multiplications. Duke Math. J., 35:353–362, 1968. be79-1 [338] R. Beals. Lp and Holder Estimates for Pseudodifferential Operators: Sufficient Conditions. Ann. Inst. Fourier (Grenoble), 29(3):239–260, 1979. be81 [339] R. Beals. Weighted distribution spaces and pseudodifferential operators. J. Anal. Math., 39:131–187, 1981. bechmo99 [340] R. K. Beatson, J. B. Cherrie, and C. T. Mouat. Fast fitting of radial basis functions: Methods based on preconditioned GMRES iteration. Adv. Comput. Math., 11(2-3):253–270, 1999. bedo89 [341] M. G. Beaty and M. M. Dodson. Derivative sampling for multiband signals. Numer. Funct. Anal. Optim., 10 (9 10):875–898, 1989. be06 [342] B. Beckman. Arne Beurling and Hitlers Geheimschreiber. The Success of Swedish Codebreaking During World War II. Transl. from the Swedish by Kjell-Ove Widman. (Arne Beurling und Hitlers Geheimschreiber. Schwedische Entzifferungserfolge im 2. Weltkrieg). Berlin: Springer. xix, 323 p. EUR 39.95, 2006. bete03 [343] R. J. Beerends and H. G. ter Morsche. Fourier and Laplace Transforms. Cambridge University Press, Cambridge (UK), 2003. 32 bexi95 [344] A. A. Beex and M. Xie. Time-Varying Filtering via Multiresolution Parametric Spectral Estimation. In ICASSP-95, pages 1565–1568, Detroit, MI, may 1995. beor01 [345] B. Beferull Lozano and A. Ortega. Efficient quantization for overcomplete expansions in RN. In Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP ’01). 2001 IEEE International Conference on, volume 6, pages 3901–3904, Salt Lake City, UT, 2001. begiwo03 [346] H. G. W. Begehr, R. P. Gilbert, and M. Wong. Progress in analysis. Proceedings of the third international ISAAC. World Scientific, 2003. befa02 [347] H. Behmard and A. Faridani. Sampling of bandlimited functions on unions of shifted lattices. J. Fourier Anal. Appl., 8(1):43–58, 2002. be83 [348] W. D. Beiglboeck. Lineare Algebra Eine Anwendungsorientierte Einführung in die Geometrie, die Gleichungs- und Ungleichungstheorie sowie die Proportionalitätsgesetze zum Gebrauch neben Vorlesungen. Springer, Berlin, Heidelberg, New York, Tokio, 1983. be76 [349] R. A. Bekes. A convolution theorem and a remark on uniformly closed Fourier algebras. Acta Sci., 38:3–6, 1976. be04 [350] B. Bekka. Square integrable representations, von Neumann algebras and an application to Gabor analysis. J. Fourier Anal. Appl., 10(4):325–349, 2004. bene02 [351] M. B. Bekka and M. Neuhauser. On Kazhdan’s property (T) for Sp2 (k). Journal of Lie Theory, 12(1):31–39, 2002. belu03 [352] P. Belı́k and M. Luskin. Approximation by piecewise constant functions in a BV metric. Math. Models Methods Appl. Sci., 13(3):373–393, 2003. bescva94 [353] J. Bellissard, A. van Elst, and H. Schulz Baldes. The noncommutative geometry of the quantum Hall effect. J. Math. Phys., 35(10):5373– 5451, 1994. be97 [354] R. Bellman. Introduction to Matrix Analysis. Classics in Applied Mathematics. 19. SIAM, Philadelphia, PA, 2nd ed., Reprint of the 1970 Orig. edition, 1997. 33 be63 [355] P. A. Bello. Characterization of Randomly Time-Variant Linear Channels. IEEE Trans. Comm., 11:360–393, 1963. bera92 [356] J. Ben Arie and K. R. Rao. Image Expansion and Pattern Recognition by Gaussian Group Wavelets Using Lattice Architectures. In Proc. 11th IAPR Int. Conf. Pattern Rec., Image, Speech and Sign. Anal., pages 650–654, The Hague, NL, 1992. bera95 [357] J. Ben Arie and K. R. Rao. Nonorthogonal signal representation by Gaussians and Gabor functions. IEEE Trans. Circuits Syst., II, Analog Digit. Signal Process., 42(6):402–413, 1995. bewa98 [358] J. Ben Arie and Z. Wang. Gabor kernels for affine-invariant object recognition. Feichtinger, Hans G. (ed.) et al., Gabor analysis and algorithms. Theory and applications. Boston, MA: Birkhäuser. Applied and Numerical Harmonic Analysis. 409-426, 453-488 (1998)., 1998. begr03 [359] A. Ben Israel and T. N. E. Greville. Generalized Inverses. Theory and Applications. 2nd Ed. Springer, NY, 2003. bepa61 [360] A. Benedek and R. Panzone. The space Lp , with mixed norm. Duke Math. J., 28(3):301–324, 1961. be71 [361] J. J. Benedetto. Harmonic Analysis on Totally Disconnected Sets. Springer, Berlin, Heidelberg, New York, 1971. be75 [362] J. J. Benedetto. Spectral Synthesis. Academic Press, Francisco, 1975. be80 [363] J. J. Benedetto. Euclidean Harmonic Analysis. Proceedings of Seminars held at the University of Maryland, 1979. Springer, Berlin, Heidelberg, New York, 1980. be89-1 [364] J. J. Benedetto. Gabor representations and wavelets. Contemp. Math., 19:9–27, 1989. be96 [365] J. J. Benedetto. Harmonic Analysis and Applications. Stud. Adv. Math. CRC Press, Boca Raton, FL, 1996. beczgapo03 [366] J. J. Benedetto, W. Czaja, P. Gadzinski, and A. M. Powell. The Balian-Low theorem and regularity of Gabor systems. J. Geom. Anal., 13(2):239–254, 2003. 34 beczma03 [367] J. J. Benedetto, W. Czaja, and A. Y. Maltsev. The Balian-Low theorem for the symplectic form on R2d . J. Math. Phys., 44(4):1735–1750, 2003. beczpo06 [368] J. J. Benedetto, W. Czaja, and A. M. Powell. An optimal example for the Balian-Low uncertainty principle. SIAM J. Math. Anal., 38(1):333–345, 2006. beczpost06 [369] J. J. Benedetto, W. Czaja, A. M. Powell, and J. Sterbenz. An endpoint (1, ∞) Balian-Low theorem. Math. Res. Lett., 13(3):467–474, 2006. befe01 [370] J. J. Benedetto and P. J. Ferreira. Modern Sampling Theory. Mathematics and Applications. Birkhäuser, Boston, 2001. befi03 [371] J. J. Benedetto and M. Fickus. Finite normalized tight frames. Adv. Comput. Math., 18(2-4):357–385, 2003. befr94 [372] J. J. Benedetto and M. W. Frazier. Wavelets: Mathematics and Applications. CRC Press, Boca Raton, FL, 1994. behewa95 [373] J. J. Benedetto, C. Heil, and D. F. Walnut. Differentiation and the Balian-Low theorem. J. Fourier Anal. Appl., 1(4):355–402, 1995. behewa98 [374] J. J. Benedetto, C. Heil, and D. F. Walnut. Gabor systems and the Balian-Low theorem. In Gabor Analysis and Algorithms: Theory and Applications, Appl. Numer. Harmon. Anal., pages 85–122. Birkhäuser Boston, Boston, MA, 1998. behe90 [375] J. J. Benedetto and W. Heller. Irregular sampling and the theory of frames. I. Note di Matematica, 10(1):103–125, 1990. beli98 [376] J. J. Benedetto and S. Li. The theory of multiresolution analysis frames and applications to filter banks. Appl. Comput. Harmon. Anal., 5(4):389–427, 1998. bepf97 [377] J. J. Benedetto and G. E. Pfander. Wavelet detection of periodic behaviour in EEG and ECOG data. In A. Sydow, editor, Proc. 15th IMACS World Congress on Scientific Computation, Modelling and Applied Mathematics, volume 5, pages 75–80, Berlin, 1997. Wissenschaft und Technik Verlag. 35 bepf98 [378] J. J. Benedetto and G. E. Pfander. Wavelet periodicity detection algorithms. In A. Aldroubi, A. F. Laine, and M. A. Unser, editors, Proc. SPIE, Wavelet Applications in Signal and Image Processing VI, volume 3458 of Design and Construction of Wavelets, pages 48–55, San Diego, CA, USA, July 1998. bepf02 [379] J. J. Benedetto and G. E. Pfander. Periodic wavelet transforms and periodicity detection. SIAM J. Appl. Math., 62(4):1329–1368 (electronic), 2002. bepf06 [380] J. J. Benedetto and G. E. Pfander. Frame expansions for Gabor multipliers. Appl. Comput. Harmon. Anal., 20(1):26–40, 2006. bepoyi06-1 [381] J. J. Benedetto, A. Powell, and O. Yilmaz. Sigma-Delta quantization and finite frames. IEEE Trans. Inform. Theory, 52(5):1990–2005, 2006. bepoyi06 [382] J. J. Benedetto, A. M. Powell, and O. Yilmaz. Second-order SigmaDelta quantization of finite frame expansions. Appl. Comput. Harmon. Anal., 20(1):126–148, 2006. bete94 [383] J. J. Benedetto and A. Teolis. A wavelet auditory model and data compression. Appl. Comput. Harmon. Anal., 01.Jän:3–28, 1994. bewa94 [384] J. J. Benedetto and D. F. Walnut. Gabor frames for L2 and related spaces. In Benedetto, John J (ed) et al, Wavelets: Mathematics and Applications Boca Raton, FL: CRC Press Studies in Advanced Mathematics 97-162. 1994. beza04 [385] J. J. Benedetto and A. I. Zayed. Sampling, Wavelets, and Tomography. Birkhäuser, 2004. bezi96 [386] J. J. Benedetto and G. Zimmermann. Poisson’s summation formula in the construction of wavelet bases, volume 76, pages 477–478. Proc. ICIAM/GAMM 95, 1996. bezi97 [387] J. J. Benedetto and G. Zimmermann. Sampling multipliers and the Poisson Summation Formula. J. Fourier Anal. Appl., 3(5):505–523, 1997. 36 behu03 [388] J. Benesty and Y. Huang. Adaptive Signal Processing. Applications to Real-world Problems. Springer, Berlin, 2003. bezy06 [389] I. Bengtsson and K. Zyczkowski. Geometry of Quantum States. An Introduction to Quantum Entanglement. Cambridge University Press, 2006. be66-1 [390] R. Benjamin. Modulation, Resolution and Signal Processing in Radar, Sonar and Related Systems. Pergamon Press, Headington Hill Hall, Oxford, 1966. be01 [391] H. Benker. Statistics using MATHCAD and MATLAB. Introduction to Probability Theory and Mathematical Statistics for Engineers and Scientists. Springer, Berlin, 2001. be73-1 [392] C. Bennett. A Hausdorff-Young theorem for rearrangement-invariant spaces. Pacific J. Math., 47:311–328, 1973. be74 [393] C. Bennett. Banach function spaces and interpolation methods. I: The abstract theory. J. Funct. Anal., 17:409–440, 1974. be74-1 [394] C. Bennett. Banach function spaces and interpolation methods II. Interpolation of, 1974. be75-1 [395] C. Bennett. Banach function spaces and interpolation methods. III: HAUSDORFF’Young estimates. J. Approx. Theory, 13:267–275, 1975. begi72-1 [396] C. Bennett and J. E. Gilbert. Homogeneous algebras on the circle. I: Ideals of analytic functions. Ann. Inst. Fourier (Grenoble), 22(3):1– 19, 1972. begi72-2 [397] C. Bennett and J. E. Gilbert. Homogeneous algebras on the circle. II: Multipliers, Ditkin conditions. Ann. Inst. Fourier (Grenoble), 22(3):21–50, 1972. beru80 [398] C. Bennett and K. Rudnick. On Lorentz-Zygmund spaces. Diss. Math., 175:67 p., 1980. besh88 [399] C. Bennett and R. C. Sharpley. Interpolation of Operators. 1988. 37 be62 [400] G. Bennett. Probability inequalities for the sum of independent random variables. J. Amer. Statist. Assoc., 57:33–45, 1962. belelu83 [401] H. R. Bennett, W. Lewis, and M. Luksic. Capacity spaces. In Topology, Proc. Conf., Houston/Tex. 1983, volume 8 of Topology Proc., pages 29–36. 1983. bgrgrok05 [402] A. Benyi, L. Grafakos, K. Gröchenig, and K. Okoudjou. A class of Fourier multipliers for modulation spaces. Appl. Comput. Harmon. Anal., 19(1):131–139, 2005. begrheok05 [403] A. Benyi, K. Gröchenig, C. Heil, and K. A. Okoudjou. Modulation spaces and a class of bounded multilinear pseudodifferential operators. J. Operator Theory, 54(2):387–399, 2005. begrokro07 [404] A. Benyi, K. Gröchenig, K. A. Okoudjou, and L. G. Rogers. Unimodular Fourier multipliers for modulation spaces. J. Funct. Anal., 246(2):366–384, 2007. beok04 [405] . Bényi and K. Okoudjou. Bilinear pseudodifferential operators on modulation spaces. J. Fourier Anal. Appl., 10(3):301–313, 2004. beboma07 [406] R. Benzid, F. Marir, and N. E. Bouguechal. Electrocardiogram Compression Method Based on the Adaptive Wavelet Coefficients Quantization Combined to a Modified Two-Role Encoder. IEEE Signal Processing Letters, 14(6):373–376, jun 2007. be98 [407] S. K. Berberian. Fundamentals of Real Analysis. Springer, New York, NY, 1998. Universitext. bechti01 [408] C. Berenstein, D.-C. Chang, and J. Tie. Laguerre Calculus and its Applications on the Heisenberg Group. AMS/IP Studies in Advanced Mathematics. 22. Providence, RI: American Mathematical Society (AMS). xii, 2001. be68 [409] J. M. Berezanskij. Expansions in Eigenfunctions of Selfadjoint Operators. Providence, R.I.: American Mathematical Society 1968. IX, 1968. bete03-1 [410] Y. M. Berezans’kyi and V. A. Tesko. Spaces of test and generalized functions related to generalized translation operators. Ukrain. Mat. Zh., 55(12):1587–1657, 2003. 38 besh72 [411] F. Berezin and M. A. Shubin. Symbols of operators and quantization. In Hilbert Space Operators and Operator Algebras (Proc Internat Conf, Tihany, 1970), pages 21–52. Colloq. Math. Soc. J’anos Bolyai, No. 5. North-Holland, Amsterdam, 1972. bemi96 [412] A. P. Berg and W. B. Mikhael. An iterative formulation for the least squares approximation of 2-D signals. In Circuits and Systems, 1996. ISCAS ’96., ’Connecting the World’., 1996 IEEE International Symposium on, volume 2, pages 360–363. IEEE, 1996. befo75 [413] C. Berg and G. Forst. Potential Theory on Locally Compact Abelian Groups. Springer, Berlin, Heidelberg, New York, 1975. belo03 [414] J. Berg and J. Löfström. Interpolation Spaces. 2003. bemc64 [415] P. W. Berg and J. L. McGregor. Elementary Partial Differential Equations. Preliminary Edition. Holden-Daqy, Inc, San Francisco, 1964. beco68 [416] C. A. Berger and L. A. Coburn. C ∗ -algebras of translations and multipliers. Bull. Amer. Math. Soc., 74:1008–1012, 1968. beco86-1 [417] C. A. Berger and L. A. Coburn. A symbol calculus for Toeplitz operators. Proc. Natl. Acad. Sci. USA, 84:3072–3073, 1986. beco86 [418] C. A. Berger and L. A. Coburn. Toeplitz operators and quantum mechanics. J. Funct. Anal., 68:273–299, 1986. beco96 [419] C. A. Berger and L. A. Coburn. On Voiculescu’s double commutant theorem. Proc. Amer. Math. Soc., 124(11):3453–3457, 1996. becozh87 [420] C. A. Berger, L. A. Coburn, and K. H. Zhu. Toeplitz operators and function theory in n-dimensions. In Pseudo-differential Operators, Proc Conf, Oberwolfach/Ger 1986, Lect Notes Math 1256, 28-35. 1987. becozh88 [421] C. A. Berger, L. A. Coburn, and K. H. Zhu. Function theory on Cartan domains and the Berezin-Toeplitz symbol calculus. Amer. J. Math., 110(5):921–953, 1988. be03 [422] M. Berger. A Panoramic View of Riemannian Geometry. SpringerVerlag, Berlin, 2003. 39 belo76 [423] J. Bergh and J. Löfström. Interpolation Spaces. An Introduction. Number 223 in Grundlehren Math. Wiss. Springer, Berlin, 1976. bepe74 [424] J. Bergh and J. Peetre. On the spaces vp (0 < p ≤ ∞). Boll. Un. Mat. Ital., 10:632–648, 1974. beja87-1 [425] J. W. M. Bergmans and A. J. E. M. Janssen. Robust data equalization, fractional tap spacing and the Zak transform. Philips J. Res., 42(4):351–398, 1987. bech91 [426] S. Berhanu and S. Chanillo. Boundedness of the FBI-transform on Sobolev spaces and propagation of singularities. Comm. Partial Differential Equations, 16(10):1665–1686, 1991. beho01 [427] S. Berhanu and J. Hounie. An F. and M. Riesz theorem for planar vector fields. Math. Ann., 320(3):463–485, 2001. bekoko96 [428] R. Bernardini and J. Kovacevic. Local orthogonal bases. I: Construction. Multidimens. Systems Signal Process., 7(3-4):331–369, 1996. beko96 [429] R. Bernardini and J. Kovacevic. Local orthogonal bases. II: Window design. Multidimens. Systems Signal Process., 7(3-4):371–399, 1996. beko00 [430] R. Bernardini and J. Kovacevic. Designing local orthogonal bases on finite groups. I: Abelian case. J. Fourier Anal. Appl., 6(1):1–23, 2000. bema94 [431] R. Bernardini and R. Manduchi. On the reduction of multidimensional DFT to separable DFT by Smith normal form theorem (discrete Fourier transform). European Transactions on Telecommunications and Related Technologies, 5(3):377–380, 1994. beri05 [432] R. Bernardini and R. Rinaldo. Efficient reconstruction from framebased multiple descriptions. IEEE Trans. Signal Process., 53(8):3282– 3296, 2005. be01-1 [433] J. Berndorfer. Spline-Type Spaces. Master’s thesis, University of Vienna, 2001. be79 [434] D. L. Bernstein. The role of applications in pure mathematics. Amer. Math. Monthly, 86:245–253, 1979. 40 be05 [435] D. S. Bernstein. Matrix Mathematics. Theory, Facts, and Formulas with Application to Linear Systems Theory. Princeton University Press, Princeton, NJ, 2005. beda77 [436] I. J. P. Bertrandias and C. Datry. Unions et intersections d’ espaces Lp sur un groupe. C. R. Acad. Sci. Paris S’er. A-B, 285:497–499, 1977. be66 [437] J.-P. Bertrandias. Espaces de fonctions bornées et continues en moyenne asymptotique d’ordre p. Bull. Soc. Math. France, Memoire Nr. 5:1–94, 1966. be71-1 [438] J.-P. Bertrandias. Espaces Lp rélatifs à une famille de mesures. Ann. Inst. Fourier (Grenoble), 21(4):267–291, 1971. be73 [439] J.-P. Bertrandias. Opérateurs subordinatifs sur des espaces de fonctions bornees en moyenne quadratique. J. Math. Pures Appl. (9), 52:27–63, 1973. be77 [440] J.-P. Bertrandias. Unions et intersections d’espaces Lp sur un espace localement compact. Bull. Sci. Math. (2), 101:209–247, 1977. be82 [441] J.-P. Bertrandias. Espaces lp (a) et lp (q). volume I of Groupe de travail d’analyse harmonique, pages 1–13. Université scientifique et medicale de Grenoble, laboratoire de mathématique pures associé au c.n.r.s., 1982. be84-2 [442] J.-P. Bertrandias. Elements reguliers et singuliers de l’espace de Marcinkiewicz. volume III of Groupe de travail d’analyse harmonique, pages III.1–III.7. Université scientifique et medicale de Grenoble, laboratoire de mathématique pures associé au c.n.r.s., 1984. be84-1 [443] J.-P. Bertrandias. Espaces lp (lα ). volume II of Groupe de travail d’analyse harmonique, pages IV.1–IV.12. Université scientifique et medicale de Grenoble, laboratoire de mathématique pures associé au c.n.r.s., 1984. be84 [444] J.-P. Bertrandias. Sur les theoremes de Littlewood et d’Orlicz-PaleySidon. volume II of Groupe de travail d’analyse harmonique, pages III.1–III.9. Université scientifique et medicale de Grenoble, laboratoire de mathématique pures associé au c.n.r.s., 1984. 41 bedadu78 [445] J.-P. Bertrandias, C. Datry, and C. Dupuis. Unions et intersections d’espaces Lp invariantes par translation ou convolution. Ann. Inst. Fourier (Grenoble), 28(2):53–84, 1978. bedu77-2 [446] J.-P. Bertrandias and C. Dupuis. Analyse harmonique sur les espaces 0 `p (lp ). C. R. Acad. Sci. Paris S’er. A-B, 285:669–671, 1977. bedu77-1 [447] J.-P. Bertrandias and C. Dupuis. Espaces `p (Lp ). C. R. Acad. Sci. Paris S’er. A-B, 285(9):617–619, 1977. bedu77 [448] J.-P. Bertrandias and C. Dupuis. Extension maximale du domaine de la transformation de Fourier. C. R. Acad. Sci. Paris S’er. A-B, 285(11):703–705, 1977. bedu79 [449] J.-P. Bertrandias and C. Dupuis. Transformation de Fourier sur les 0 espaces lp (Lp ). Ann. Inst. Fourier (Grenoble), 29(1):189–206, 1979. be55 [450] A. S. Besicovitch. Almost Periodic Functions. Dover Publications Inc, New York, reprint edition, 1955. beilni78 [451] O. V. Besov, V. P. Il’in, and S. M. Nikol’skii. Integral Representations of Functions and Imbedding Theorems. Vol. I. Ed. by Mitchell H. Taibleson. Translation from the Russian. John Wiley and Sons, Washington, D.C., 1978. beilni79 [452] O. V. Besov, V. P. Il’in, and S. M. Nikol’skii. Integral Representations of Functions and Imbedding Theorems. Vol. II. Ed. by Mitchell H. Taiblesson. Translation from the Russian. John Wiley and Sons, Washington, D.C., 1979. bejemoro07 [453] J. J. Betancor, C. Jerez, S. M. Molina, and L. Rodrı́guez Mesa. Distributional convolutors for Fourier transform. J. Math. Anal. Appl., 325(1):459–468, 2007. bero98 [454] J. J. Betancor and L. Rodrı́guez Mesa. On the Besov-Hankel spaces. J. Math. Soc. Japan, 50(3):781–788, 1998. behewi78 be49 0 [455] T. Beth, P. Hess, and K. Wirl. Kryptographie. Teubner, 1978. [456] A. Beurling. Sur les spectres des fonctions. In Colloques Internat Centre Nat Rech Sci 15 (Analyse Harmonique, Nancy 15-2261947), pages 9–29, 1949. 42 be64 [457] A. Beurling. Construction and analysis of some convolution algebras. Ann. Inst. Fourier (Grenoble), 14(2):1–32, 1964. be89 [458] A. Beurling. The Collected Works of Arne Beurling. Volume 1: Complex Analysis. Ed. by Lennart Carleson, Paul Malliavin, John Neuberger, John Wermer. Contemporary Mathematicians. Boston etc.: Birkhäuser Verlag. xx, 475 p./v.1 and and DM 198.00/set, 1989. bema67 [459] A. Beurling and P. Malliavin. On the closure of characters and the zeros of entire functions. Acta Math., 118:79–93, 1967. be00 [460] A. Beutelspacher. Lineare Algebra. Eine Einführung in die Wissenschaft der Vektoren, Abbildungen und Matrizen. (Linear Algebra. An Introduction to the World of Vectors, Mappings and Matrices). 4., durchgesehene Aufl. Vieweg, Braunschweig, 2000. bezs01 [461] A. Beutelspacher and M.-A. Zschiegner. Lineare Algebra interaktiv. Eine CD-ROM mit Tausenden von Übungsaufgaben. (Linear algebra interactive. A CD-ROM with thousands of exercises). Vieweg, Wiesbaden, 2001. becoro91 [462] G. Beylkin, R. R. Coifman, and V. Rokhlin. Fast wavelet transforms and numerical algorithms. I. Commun. Pure Appl. Anal., 44(2):141– 183, 1991. bhwi01 [463] A. Bhalerao and R. Wilson. A Fourier Approach to 3D Local Feature Estimation from Volume Data. 2:461–470, 2001. bhky06 [464] S. Bharitkar and C. Kyriakakis. Immersive Audio Signal Processing. Information Technology:Transmission, Processing, and Storage. Springer-Verlag, 2006. bh96 [465] R. Bhatia. Matrix Analysis. Graduate Texts in Mathematics. 169. Springer, 1996. bh05 [466] R. Bhatia. Fourier Series. Classroom Resource Materials. Cambridge University Press, 2005. bh07 [467] R. Bhatia. Positive Definite Matrices. Princeton Series in Applied Mathematics. Princeton University Press, 2007. 43 bhde03 [468] S. J. Bhatt and H. V. Dedania. Beurling algebra analogues of the classical theorems of Wiener and Levy on absolutely convergent Fourier series. Proc. Indian Acad. Sci., Math. Sci., 113(2):179–182, 2003. bize04 [469] G. Bi and Y. Zeng. Transforms and Fast Algorithms for Signal Analysis and Representations. Birkhäuser, Boston, 2004. bi58 [470] H. Bialy. Iterative Lösung von Funktionalgleichungen erster Art. ZAMM Z. Angew. Math. Mech., 38:261–263, 1958. bi95 [471] E. Bieber. Interpolation unregelmässiger Daten durch Spline Funktionen. Master’s thesis, University of Vienna, 1995. bi93 [472] M. U. Bikdash and K. B. Yu. Analysis and filtering using the optimally smoothed Wigner distribution. ISP, 41(4), 1993. azbishvo96 [473] Bin Tian, M. R. Azimi Sadjadi, M. A. Shaikh, and T. Vonder Haar. An FFT-based algorithm for computation of Gabor transform with its application to cloud detection/classification. In International Geoscience and Remote Sensing Symposium, 1996. IGARSS ’96. Remote Sensing for a Sustainable Future., volume 2, pages 1108–1110, Lincoln, NE, USA, may 1996. bicodade07 [474] P. Binev, A. Cohen, W. Dahmen, and R. A. DeVore. Universal Algorithms for Learning Theory. Part II: Piecewise Polynomial Functions. Constr. Approx., 26(2):127–152, 2007. bicodadete05 [475] P. Binev, A. Cohen, W. Dahmen, R. A. DeVore, and V. Temlyakov. Universal algorithms for learning theory - Part I : piecewise constant functions. J. Mach. Learn. Res., 6:12971321, 2005. bipo04 [476] E. Binz and S. Pods. The Heisenberg Group in Classical and Quantum Information Transmission. Kluwer Acad. Publ., Dordrecht, 2004. biposc03 [477] E. Binz, S. Pods, and W. Schempp. Heisenberg groups—a unifying structure of signal theory, holography and quantum information theory. J. Appl. Math. Comput., 11(1-2):1–57, 2003. biposc03-1 [478] E. Binz, S. Pods, and W. Schempp. Heisenberg groups—the fundamental ingredient to describe information, its transmission and quantization. J. Phys. A, 36(23):6401–6421, 2003. 44 bisc00 [479] E. Binz and W. Schempp. A unitary parallel filter bank approach to magnetic resonance tomography. In Proceedings of the Third International Conference on Symmetry in Nonlinear Mathematical Physics, volume 30 of Proc. Inst. Math. Natl. Acad. Sci. Ukr., Math. Appl., pages 419–428. Kyiv, 2000. bisc02 [480] E. Binz and W. Schempp. Information technology: the Lie groups defining the filter banks of the compact disc. J. Comput. Appl. Math., 144(1-2):85–103, 2002. bisc03 [481] E. Binz and W. Schempp. Quantum teleportation and spin echo: a unitary symplectic spinor, 2003. bima00 [482] L. Birgé and P. Massart. An adaptive compression algorithm in Besov spaces. Constr. Approx., 16(1):1–36, 2000. biso77 [483] M. S. Birman and M. Solomyak. Estimates of singular numbers of integral operators. Russian Math. Surveys, 32(1):15–89, 1977. biso80 [484] M. S. Birman and M. Solomyak. Quantitative Analysis in Sobolev Imbedding Theorems and Applications to Spectral Theory, volume 114 of Translations, Series 2. American Mathematical Society, 1980. biso03 [485] M. S. Birman and M. Solomyak. Double operator integrals in a Hilbert space. Integr. Equ. Oper. Theory, 47(2):131–168, 2003. bi61 [486] F. T. Birtel. Banach algebras of multipliers. Duke Math. J., 28:203– 211, 1961. bi62 [487] F. T. Birtel. Isomorphisms and isometric multipliers. Proc. Amer. Math. Soc., 13:204–209, 1962. bi62-1 [488] F. T. Birtel. On a commutative extension of a Banach algebra. Proc. Amer. Math. Soc., 13:815–822, 1962. bikr01 [489] H. Bischof and W. G. Kropatsch. Digital Image Analysis. Selected Techniques and Applications. Incl. 1 CD-ROM. Springer, New York, 2001. bi06 [490] C. M. Bishop. Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, New York, NY, 2006. 45 bi98 [491] K. Bittner. On the reproduction of linear functions by local trigonometric bases. In C. K. Chui et al., editors, Approximation Theory IX, Volume 2 Computational Aspects Proceedings of the 9th International Conference, Nashville, TN, USA, January 3-6, 1998, Innov. Appl. Math., pages 1–8. Vanderbilt University Press, Nashville, 1998. bi99 [492] K. Bittner. Error estimates and reproduction of polynomials for biorthogonal local trigonometric bases. Appl. Comput. Harmon. Anal., 6:75–102, 1999. bi00 [493] K. Bittner. Biorthogonal local trigonometric bases. In G. Anastassiou, editor, Handbook on Analytic-Computational Methods, pages 407–463. Chapman Hall CRC Press, Boca Raton, 2000. bi02 [494] K. Bittner. Linear approximation and reproduction of polynomials by Wilson bases. J. Fourier Anal. Appl., 8:85–108, 2002. bich02 [495] K. Bittner and C. K. Chui. Gabor Frames with arbitrary windows. In C. K. Chui, M. Cwikel, and J. Stöckler, editors, Approximation Theory X, Innov. Appl. Math., pages 41–50. Vanderbilt University Press, Nashville, 2002. bigr02 [496] K. Bittner and K. Gröchenig. Direct and inverse approximation theorems for local trigonometric bases. J. Approx. Theory, 117:74–102, 2002. bj74 [497] J. E. Bjoerk. Lp estimates for convolution operators defined by compactly supported distributions in Rn . Math. Scand., 34:129–136, 1974. bj96 [498] A. Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, PA, 1996. bjda03 [499] A. Björck and G. Dahlquist. Numerical Methods. Translated from the Swedish by Ned Anderson. Reprint of the 1974 English Translation. Dover Publications Inc, NY, 2003. bj66 [500] G. Björck. Linear partial differential operators and generalized distributions. Ark. Mat., 6:351–407, 1966. bjsa95 [501] G. Björck and B. Saffari. New classes of finite unimodular sequences with unimodular Fourier transforms. Circulant Hadamard 46 matrices with complex entries. C. R. Acad. Sci. Paris S’er. I Math., 320(3):319–324, 1995. bl06 [502] B. Blackadar. Operator Algebras. Theory of C ∗ -algebras and von Neumann Algebras. Encyclopaedia of Mathematical Sciences 122. Operator Algebras and Non-Commutative Geometry 3. Berlin: Springer., 2006. blbrel92 [503] B. Blackadar, O. Bratteli, and G. A. a. Elliott. Reduction of real rank in inductive limits of c∗ -algebras. Math. Ann., 292(1):111–126, 1992. ba06 [504] R. Blan. The noncommutative Wiener lemma, linear independence, and spectral properties of the algebra of time-frequency shift operators. Trans. Amer. Math. Soc., 360(7):3921–3941, 2006. blbr99 [505] P. Blanchard and E. Brüning. Mathematical Methods in Physics. Distributions, Hilbert Space Operators, and Variational Methods. Birkhäuser, Boston, 1999. blcahe05 [506] C. Blanco, C. A. Cabrelli, and S. B. Heineken. Functions in Sampling Spaces. Sampl. Theory Signal Image Process., 5(3):275–295, 2005. bl06-1 [507] N. Blank. Generating sets for Beurling algebras. J. Approx. Theory, 140(1):61–70, 2006. blruve99 [508] O. Blasco, A. Ruiz, and L. Vega. Non interpolation in MorreyCampanato and block spaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 28(1):31–40, 1999. bl98 [509] C. Blatter. Wavelets. Eine Einführung. (Wavelets. An Introduction). Vieweg, Wiesbaden, 1998. blca00 [510] R. C. Blei and J. Caggiano. Projective boundedness and convolution of Fr’echet measures. Proc. Amer. Math. Soc., 128(12):3523–3528, 2000. blsi83 [511] R. C. Blei and S. J. Sidney. Banach Spaces, Harmonic Analysis, and Probability Theory. Proceedings of the Special Year in Analysis, Held at the University of Connecticut 1980- 1981. Springer, Berlin, Heidelberg, New York, Tokio, 1983. 47 bl07 [512] I. e. . Bloch. Information Fusion in Signal and Image Processing. Digital Signal and Image Processing Series. London: ISTE. 320 p., 2007. blre97 [513] J. A. Bloom and T. R. Reed. An Uncertainty Analysis of Some Real Functions for Image Processing Applications. In Proc. IEEE ICIP-97, volume 3, pages 670 – 673, October 1997. bl74 [514] L. M. Bloom. The Fourier mulriplier problem for spaces of continuous founctions with p–summable transforms. J. Aust. Math. Soc., 17:319– 331, 1974. bl79 [515] L. M. Bloom. Multiplier problems for spaces of continuous functions with p–summable transforms. Bull. Austral. Math. Soc., 20:152–154, 1979. blbl80 [516] L. M. Bloom and W. R. Bloom. Idempotent multipliers on spaces of continuous functions with p–summable Fourier transforms. Proc. Amer. Math. Soc., 1980. bl75 [517] W. R. Bloom. A characterisation of Lipschitz classes on 0-dimensional groups. Proc. Amer. Math. Soc., 53:149–154, 1975. bl81-1 [518] W. R. Bloom. Multipliers of Lipschitz spaces on zero dimensional groups. Math. Z., 176:485–488, 1981. bl82-1 [519] W. R. Bloom. Absolute convergence of Fourier series on totally disconnected groups. Ark. Mat., 20:101–109, 1982. bl82 [520] W. R. Bloom. Strict local inclusion results between spaces of Fourier transforms. Pacific J. Math., 99:265–270, 1982. bl72-1 [521] A. P. Blozinski. Convolution of L(p, q) functions. Proc. Amer. Math. Soc., 32:237–240, 1972. bl72 [522] A. P. Blozinski. On a convolution theorem for L(p,q) spaces. Trans. Amer. Math. Soc., 164:255–265, 1972. bl81 [523] A. P. Blozinski. Multivariate rearrangements and Banach function spaces with mixed norms. Trans. Amer. Math. Soc., 263:149–167, 1981. 48 blun02 [524] T. Blu and M. Unser. Wavelets, fractals, and radial basis functions. IEEE Trans. Signal Process., 50(3):543–553, 2002. blun06 [525] T. Blu and M. Unser. Self-similarity: Part I - Splines and operators. IEEE Trans. Signal Process., page submitted, 2006. blun06-1 [526] T. Blu and M. Unser. Self-similarity: Part II - Optimal estimation of fractal processes. IEEE Trans. Signal Process., page submitted, 2006. bldaXX [527] T. Blumensath and M. E. Davies. Monte Carlo Methods for Adaptive Sparse Approximations of Time-Series. IEEE Transactions on Signal Processing, in press. bo55 [528] R. P. Boas. Isomorphisms between hp and Lp . Amer. J. Math., 77:655– 656, 1955. bo92 [529] B. Boashash, editor. Time-Frequency Analysis. Methods and Applications. Longman Cheshire and Halsted Press, Wiley, 1992. bo03-2 [530] B. Boashash. Time-Frequency Signal Analysis and Processing: A Comprehensive Reference. Elsevier Science and Technology. Elsevier, 2003. bo28 [531] S. Bochner. Ueber Faktorenfolgen fuer Fouriersche Reihen. Acta Math. Sci., 4:125–129, 1928. bo32 [532] S. Bochner. Vorlesungen über Fouriersche Integrale. Akademische Verlagsgesellschaft, Leipzig, 1932. bo52 [533] S. Bochner. Book Review: Theorie des distributions by Laurent Schwartz. Bull. Amer. Math. Soc., 58:78–85, 1952. bo56 [534] S. Bochner. Stationarity, boundedness, almost periodicity of randomvalued functions. In Jerzy Neyman, editor, Proceedings of the third Berkeley symposium on mathematical statistics and probability. December 26-31,1954. July and august, 1955. Held at the statistical laboratory, University of California., volume II, pages 7–27, Berkeley and Los Angeles, 1956. University of California Press. boch49 [535] S. Bochner and K. Chandrasekharan. Fourier Transforms. Princeton University Press, Princeton, N.J., 1949. 49 bo98-2 [536] V. I. Bogachev. Gaussian measures. Transl. from the Russian by the author., volume 62 of Mathematical Surveys and Monographs. American Mathematical Society (AMS), Providence, RI, 1998. bo04-2 [537] P. Boggiatto. Localization operators with Lp symbols on modulation spaces. In Advances in Pseudo-differential Operators, volume 155 of Oper. Theory Adv. Appl., pages 149–163. Birkhäuser, Basel, 2004. boburo96 [538] P. Boggiatto, E. Buzano, and L. Rodino. Global Hypoellipticity and Spectral Theory. Akademische Verlagsgesellschaft, Berlin, 1996. bocogr04 [539] P. Boggiatto, E. Cordero, and K. Gröchenig. Generalized anti-Wick operators with symbols in distributional Sobolev spaces. Integr. Equ. Oper. Theory, 48(4):427–442, 2004. bodeol07 [540] P. Boggiatto, G. De Donno, and A. Oliaro. Uncertainty principle, positivity and Lp -boundedness for generalized spectrograms. J. Math. Anal. Appl., 335(1):93–112, 2007. boolwo06 [541] P. Boggiatto, A. Oliaro, and M. Wong. Lp boundedness and compactness of localization operators. J. Math. Anal. Appl., 322(1):193–206, 2006. borotowo06 [542] P. Boggiatto, L. Rodino, J. Toft, and M. Wong, editors. Pseudodifferential Operators and Related Topics. Papers Based on Lectures Given at the International Conference, Växjö University, Sweden, June 22 to June 25, 2005., volume 164 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 2006. boroto06 [543] P. Boggiatto, L. Rodino, J. Toft, and M. Wong. Pseudo-differential operators and related topics. Papers based on lectures given at the international conference, Växjö University, Sweden, June 22 to June 25, 2005. Operator Theory: Advances and Applications 164. Basel: Birkhäuser., 2006. boto05 [544] P. Boggiatto and J. Toft. Embeddings and compactness for generalized Sobolev-Shubin spaces and modulation spaces. Appl. Anal., 84(3):269–282, 2005. 50 asbowo04 [545] P. Boggiatto, M. Wong, and R. Ashino. Advances in Pseudodifferential Operators, volume 155 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 2004. boga89 [546] A. Bohm and M. Gadella. Diract kets, Gamov vectors and Gel’fand triplets. The rigged Hilbert space formulation of quantum mechanics. Lectures in mathematical physics at the University of Texas at Austin, USA., volume 348 of Lecture Notes in Physics. Springer-Verlag, Berlin etc., 1989. bogawi99 [547] A. Bohm, M. Gadella, and S. Wickramasekara. Some little things about rigged Hilbert spaces and quantum mechanics and all that. In et al. and I. Antoniou, editors, Generalized Functions, Operator Theory, and Dynamical Systems, volume 399 of Chapman Hall/CRC Res. Notes Math., pages 202–250. Chapman and Hall/CRC, Boca Raton, FL, 1999. bo91 [548] G. Bohnke. Treillis d’ondelettes associés aux groupes de Lorentz. (Wavelet lattices associated with Lorentz groups). 1991. bo47 [549] H. Bohr. Almost Periodic Functions. Chelsea Publishing Company, New York, 1947. bo84 [550] A. Bojanczyk. Complexity of solving linear systems in different models of computation. SIAM J. Numer. Anal., 21/Nr.3:591–603, June 1984. bo94 [551] H. Bölcskei. Gabor expansion and frame theory. Master’s thesis, University of Technology Vienna, oct 1994. bo97 [552] H. Bölcskei. Oversampled filter banks and predictive subband coders. PhD thesis, University of Technology Vienna, nov 1997. bo98 [553] H. Bölcskei. Oversampling in wavelet subspaces. In Proc. IEEE-SP 1998 Int. Sympos. Time-Frequency Time-Scale Analysis, pages 489– 492, oct 1998. bo99 [554] H. Bölcskei. A necessary and sufficient condition for dual WeylHeisenberg frames to be compactly supported. J. Fourier Anal. Appl., 5(5):409–419, 1999. 51 bo99-1 [555] H. Bölcskei. Efficient design of pulse shaping filters for OFDM systems. In SPIE Proc., “Wavelet Applications in Signal and Image Processing VII”, volume 3813, pages 625–636, jul 1999. bo03 [556] H. Bölcskei. Orthogonal frequency division multiplexing based on offset QAM, pages 321–352. 2003. bo04 [557] H. Bölcskei. Principles of MIMO-OFDM Wireless Systems. 2004. boduhl99-1 [558] H. Bölcskei, P. Duhalem, and R. Hleiss. Pulse shaping filter design for wireless OFDM/OQAM systems with high spectral efficiency. IEEE Trans. Signal Process., submitted, 1999. boduhl99 [559] H. Bölcskei, P. Duhamel, and R. Hleiss. Design of pulse shaping OFDM/OQAM systems for high data-rate transmission over wireless channels. In Proc. of the 1999 IEEE Int. Conf. on Communications (ICC ’99), volume 1, pages 559–564, jun 1999. boduhl01 [560] H. Bölcskei, P. Duhamel, and R. Hleiss. A subspace-based approach to blind channel identification in pulse shaping OFDM/OQAM systems. IEEE Trans. Signal Process., 49(7):1594–1598, July 2001. boduhl03 [561] H. Bölcskei, P. Duhamel, and R. Hleiss. Orthogonalization of OFDM/OQAM pulse shaping filters using the discrete Zak transform. EURASIP J. Signal Process., 83(7):1379–1391, July 2003. boel03 [562] H. Bölcskei and Y. Eldar. Geometrically uniform frames. IEEE Trans. Inform. Theory, 49(4):993–1006, April 2003. boel03-1 [563] H. Bölcskei and Y. Eldar. Structured group frames. In Proceedings of the 2003 Workshop on Sampling Theory and Applications (SampTA’03), may 2003. bofegrhl96 [564] H. Bölcskei, H. G. Feichtinger, K. Gröchenig, and F. Hlawatsch. Discrete-time Wilson expansions. In Proc. IEEE-SP Int.Symp. on Time-Frequency and Time-Scale Analysis, pages 525–528, Paris, France, 1996. bofehl95 [565] H. Bölcskei, H. G. Feichtinger, and F. Hlawatsch. Diagonalizing the Gabor frame operator. In TFTS’95 - Symposium on Applications of Time-Frequency and Time-Scale Methods, pages 249–255a, Warwick/UK, August 1995. 52 bogepava06 [566] H. Bölcskei, D. Gesbert, C. B. Papadias, and A.-J. van der Veen. Space-time wireless systems. From array processing to MIMO communications. Cambridge Univ. Press, 2006. bofegrhl97 [567] H. Bölcskei, K. Gröchenig, F. Hlawatsch, and H. G. Feichtinger. Oversampled Wilson expansions. IEEE Signal Proc. Letters, 4(4):106–108, 1997. bohl94-1 [568] H. Bölcskei and F. Hlawatsch. Unified theory of displacementcovariant time-frequency analysis. In Proc. IEEE-SP 1994 Int. Sympos. Time-Frequency Time-Scale Analysis, pages 524–527, oct 1994. bohl95-1 [569] H. Bölcskei and F. Hlawatsch. Displacement-covariant time-frequency energy distributions. In Proc. IEEE ICASSP-95, volume 2, pages 1025–1028, may 1995. bohl95 [570] H. Bölcskei and F. Hlawatsch. Time-frequency distributions based on conjugate operators. In Proc. IEEE UK Sympos. Applications of Time-Frequency and Time-Scale Methods, pages 187–193a, aug 1995. bohl96 [571] H. Bölcskei and F. Hlawatsch. Covariant time-frequency distributions based on conjugate operators. IEEE Signal Processing Letters, 3(2):44–46, February 1996. bohl96-1 [572] H. Bölcskei and F. Hlawatsch. Oversampled Wilson-type cosine modulated filter banks with linear phase. In Asilomar Conf. on Signals, Systems, and Computers, pages 998–1002, nov 1996. bohl97-1 [573] H. Bölcskei and F. Hlawatsch. Discrete Zak transforms, polyphase transforms, and applications. IEEE Trans. Signal Process., 45(4):851– 866, April 1997. bohl97-2 [574] H. Bölcskei and F. Hlawatsch. Oversampled cosine-modulated filter banks with linear phase. In Proc. IEEE ISCAS-97, pages 357–360, jun 1997. bohl97-3 [575] H. Bölcskei and F. Hlawatsch. Oversampled filter banks: Optimal noise shaping, design freedom, and noise analysis. In Proc. IEEE ICASSP-97, Munich, Germany, volume 3, pages 2453–2456, apr 1997. 53 bohl97 [576] H. Bölcskei and F. Hlawatsch. Oversampled Modulated Filter Banks. In H. G. Feichtinger and T. Strohmer, editors, Gabor Analysis and Algorithms: Theory and Applications, pages 295–322. Birkhäuser Boston, Boston, 1997. bohl98 [577] H. Bölcskei and F. Hlawatsch. Oversampled cosine modulated filter banks with perfect reconstruction. IEEE Trans. Circuits and Systems II, 45(8):1057–1071, August 1998. bohl98-1 [578] H. Bölcskei and F. Hlawatsch. Quantization noise reduction in oversampled filter banks. In Proc. IEEE-SP 1998 Int. Sympos. TimeFrequency Time-Scale Analysis, pages 509–512, oct 1998. bohl01 [579] H. Bölcskei and F. Hlawatsch. Noise reduction in oversampled filter banks using predictive quantization. IEEE Trans. Inform. Theory, 47(1):155–172, January 2001. bofehl95-1 [580] H. Bölcskei, F. Hlawatsch, and H. G. Feichtinger. Equivalence of DFT Filter banks and Gabor expansions. In SPIE 95, Wavelet Applications in Signal and Image Processing III, volume 2569, part I, pages 128– 139, San Diego, July 1995. bofehl96-2 [581] H. Bölcskei, F. Hlawatsch, and H. G. Feichtinger. Frame-theoretic analysis and design of oversampled filter banks. In Proc. IEEE ISCAS96, volume 2, pages 409–412, Atlanta (GA), May 1996. bofehl96-1 [582] H. Bölcskei, F. Hlawatsch, and H. G. Feichtinger. Oversampled FIR and IIR DFT filter banks and Weyl-Heisenberg frames. In Proc. IEEE ICASSP-96, volume 3, pages 1391–1394, Atlanta (GA), May 1996. bofehl97 [583] H. Bölcskei, F. Hlawatsch, and H. G. Feichtinger. Frame-theoretic analysis and design of oversampled filter banks. In Proc. IEEE ISCAS97, Hong Kong, June 1997. bofehl98 [584] H. Bölcskei, F. Hlawatsch, and H. G. Feichtinger. Frame-theoretic analysis of oversampled filter banks. IEEE Trans. Signal Process., 46(12):3256–3268, 1998. bohlstsu97 [585] H. Bölcskei, F. Hlawatsch, T. Stranz, and R. Sucher. Subband image coding using cosine modulated filter banks with perfect reconstruction 54 and linear phase. In Proc. IEEE ICIP-97, volume 2, pages 594–597, oct 1997. bohltw96 [586] H. Bölcskei, F. Hlawatsch, and T. Twaroch. Wigner-type a-b and time-frequency analysis based on conjugate operators. In Proc. IEEE ICASSP-96, volume 3, pages 1395–1398, may 1996. boja00-1 [587] H. Bölcskei and A. J. E. M. Janssen. Equivalence of two methods for constructing tight Gabor frames. IEEE Signal Processing Letters, 7(4):79–82, April 2000. boja00 [588] H. Bölcskei and A. J. E. M. Janssen. Gabor frames, unimodularity, and window decay. J. Fourier Anal. Appl., 6(3):255–276, 2000. bohejath00 [589] H. Bölcskei, A. J. E. M. Janssen, R. Heusdens, and R. Theunis. Design of orthogonal and biorthogonal lapped transforms satisfying perception related constraints. IEEE Trans. Image Process., 9(5):760–772, May 2000. bokoma02 [590] H. Bölcskei, R. Koetter, and S. Mallik. Coding and modulation for underspread fading channels. In IEEE International Symposium on Information Theory (ISIT) 2002, page 358, jun 2002. bomo98 [591] H. Bölcskei and A. F. Molisch. Error floor of pulse amplitude modulation with adaptive sampling phase in time-dispersive fading channels. In Proc. IEEE PIMRC-98, pages 884–890, sep 1998. bopa00 [592] H. Bölcskei and A. J. Paulraj. Space-frequency coded broadband OFDM systems. In IEEE Wireless Communications and Networking Conference (WCNC) 2000, volume 1, pages 1–6, sep 2000. bopa01 [593] H. Bölcskei and A. J. Paulraj. Space-frequency codes for broadband fading channels. In IEEE International Symposium on Information Theory (ISIT) 2001, page 219, jun 2001. bo98-1 [594] J. Bolker. Writing Your Dissertation in Fifteen Minutes a Day. Henry Holt Company, 1998. bosh71 [595] J. Boman and H. S. Shapiro. Comparison theorems for a generalized modulus of continuity. Ark. Mat., 9:91–116, 1971. 55 bopo89 [596] I. Bomze and B. M. Pötscher. Game Theoretical Foundations of Evolutionary Stability. Springer, Berlin, 1989. bode06 [597] A. Bonami and B. Demange. A survey on uncertainty principles related to quadratic forms. Collect. Math., (Vol. Extra):1–36, 2006. bodeja03 [598] A. Bonami, B. Demange, and P. Jaming. Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms. Rev. Mat. Iberoam., 19(1):23–55, 2003. bome08 [599] J. Bonet and R. Meise. Characterization of the convolution operators on quasianalytic classes of Beurling type that admit a continuous linear right inverse. Studia Math., 184(1):49–77, 2008. bo86-1 [600] F. F. Bonsall. Decompositions of functions as sums of elementary functions. Quart. J. Math. Oxford Ser. (2), 37:129–136, 1986. bo87 [601] F. F. Bonsall. Domination of the supremum of a bounded harmonic function by its supremum over a countable subset. Proc. Edinburgh Math. Soc. (2), 30:471–477, 1987. bodu73 [602] F. F. Bonsall and J. Duncan. Complete Normed Algebras. SpringerVerlag, New York, 1973. bo00-3 [603] J. Boos. Classical and Modern Methods in Summability. Oxford University Press, 2000. bocowi03 [604] W. C. Booth, G. G. Colomb, and J. M. Williams. The Craft of Research. The University of Chicago Press, 2003. bo86 [605] W. M. Boothby. An introduction to differentiable manifolds and Riemannian geometry. 2nd ed. Academic Press, Orlando, 1986. bo33 [606] S. Borcher. Ein Satz von Landau und Ikehara. Math. Z., 37:1–9, 1933. bo01 [607] G. D. Boreman. Modulation Transfer Function in Optical and Electrooptical Systems. SPIE Optical Engineering Press, Bellingham, WA, 2001. bodhke07 [608] A. Borichev, R. Dhuez, and K. Kellay. Sampling and interpolation in large Bergman and Fock spaces. J. Funct. Anal., 242(2):563–606, 2007. 56 bofegriskapeOd99 [609] P. O. Börjesson, H. G. Feichtinger, N. Grip, M. Isaksson, N. Kaiblinger, L.-E. Persson, and P. Ödling. A low-complexity PAR-reduction method for DMT-VDSL. In Proc. Conf. DSPCS-99 (Perth, Australia), pages 164–169, 1999. bofegriskapeOd99-1 [610] P. O. Börjesson, H. G. Feichtinger, N. Grip, M. Isaksson, N. Kaiblinger, L.-E. Persson, and P. Ödling. DMT PAR-reduction by weighted cancellation waveforms. In Proc. RVK-99 (Karlskrona, Sweden), pages 303–307, 1999. akbebojeri07 [611] K. Borre, D. M. Akos, N. Bertelsen, P. Rinder, and S. H. Jensen. A Software-defined GPS and Galileo Receiver. A Single-frequency Approach. Applied and Numerical Harmonic Analysis. Boston, MA: Birkhäuser., 2007. boco98 [612] R. L. Borrelli and C. S. Coleman. A Modelling Perspective. New York, NY: John Wiley & Sons. xiii, 1998. bogr86 [613] T. B. Borukayev and I. S. Gruzman. Use of Fourier-Hermite functional series in the statistical analysis of strongly nonlinear systems. Soviet J. Comm. Tech. Electron., 1986. bo04-1 [614] L. Borup. Pseudodifferential operators on α-modulation spaces. J. Funct. Spaces Appl., 2(2):107–123, 2004. boni06-2 [615] L. Borup and M. Nielsen. Banach frames for multivariate αmodulation spaces. J. Math. Anal. Appl., 321(2):880–895, 2006. boni06-1 [616] L. Borup and M. Nielsen. Boundedness for pseudodifferential operators on multivariate α-modulation spaces. Ark. Mat., 44(2):241–259, 2006. boni06-3 [617] L. Borup and M. Nielsen. Nonlinear approximation in α-modulation spaces. Math. Nachr., 279(1–2):101–120, 2006. boni07 [618] L. Borup and M. Nielsen. Frame decomposition of decomposition spaces. J. Fourier Anal. Appl., 13(1):39–70, 2007. boni08-4 [619] L. Borup and M. Nielsen. On anisotropic Triebel-Lizorkin type spaces - with applications to the study of pseudo-differential operators. J. Funct. Spaces Appl., 6(2):107–154, 2008. 57 bo00-1 [620] J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimization. Springer-Verlag, 2000. bo85 [621] N. K. Bose. Multidimensional Systems Theory. Progress, Directions and Open Problems in Multidimensional Systems. D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, 1985. bo90 [622] N. K. Bose. Multidimensional digital signal processing: problems, progress, and future scopes. Proc. IEEE, 78(4):590–597, 1990. bo79 [623] R. K. Bose. Realizability theory of continuous linear operators on groups. SIAM J. Math. Anal., 10:767–777, 1979. boop77 [624] G. Bottaro and P. Oppezzi. Un’algebra di operatori ad integrale singolare su una nuova classe di funzioni. Boll. Un. Mat. Ital. B (5), 14:301–319, 1977. bogr00 [625] A. Böttcher and S. M. Grudsky. Toeplitz Matrices, Asymptotic Linear Algebra, and Functional Analysis. Birkhäuser, Basel, 2000. bogr05 [626] A. Böttcher and S. M. Grudsky. Spectral Properties of Banded Toeplitz Matrices. SIAM, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2005. bokasp02 [627] A. Böttcher, Y. I. Karlovich, and I. M. Spitkovsky. Convolution Operators and Factorization of Almost Periodic Matrix Functions. Birkhäuser, Basel, 2002. bosi90 [628] A. Böttcher and B. Silbermann. Analysis of Toeplitz Operators. Springer-Verlag, Berlin etc., Lizenzausg. d. Akademie-Verl. Berlin. edition, 1990. bosi06 [629] A. Böttcher and B. Silbermann. Analysis of Toeplitz Operators. Prepared Jointly with Alexei Karlovich. Springer Monographs in Mathematics. Springer, Berlin, 2nd ed. edition, 2006. bopa86 [630] G. F. Boudreaux Bartels and T. W. Parks. Time–varying filtering and signal estimation using Wigner distribution functions. ISP, 34:442– 451, 1986. 58 bopa86-1 [631] G. F. Boudreaux Bartels and T. W. Parks. Time-varying filtering and signal estimation using Wigner distribution synthesis techniques. IEEE Trans. Acoustics, Speech and Signal Processing, 34(3):442–451, 1986. babo07 [632] P. Boufounos and R. G. Baraniuk. Quantization of sparse representations. 2007. bon04 [633] B. Boufoussi and M. N’Zi. Donsker type theorem in Besov spaces involving regularly varying functions. Stochastics Stochastics Rep., 76(4):309–321, 2004. bo95 [634] A. Boulkhemair. L2 estimates for pseudodifferential operators. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 22(1):155–183, 1995. bo97-1 [635] A. Boulkhemair. Remarks on a Wiener type pseudodifferential algebra and Fourier integral operators. Math. Res. Lett., 4(1):53–67, 1997. bo64 [636] N. Bourbaki. Elements de mathematique. Fasc. XVI. Premiere partie: Les structures fondamentales de l’analyse. Livre III: Topologie generale. Fascicule de resultats. Nouvelle edition. Hermann and Cie, Paris, 1964. bo66 [637] N. Bourbaki. Elements of General Topology. Addison Wesley Publishing Comp., Part I, 1966. bo67 [638] N. Bourbaki. Elements de Mathematique Fasc., 32 Theories Spectrales. Hermann, Paris, 1967. albotr88 [639] R. Bourdier, J. F. Allard, and K. Trumpf. Effective frequency response and signal replica generation for filtering algorithms using multiplicative modifications of the STFT. SIGPRO, 15(2):605–612, 1988. botz87 [640] J. Bourgain and L. Tzafriri. Invertibility of ’large’ submatrices with applications to the geometry of Banach spaces and harmonic analysis. Israel J. Math., 57(2):137–224, 1987. boke73 [641] D. E. Bourne and P. C. Kendall. Vektoranalysis. Aus dem Englischen Übersetzt von I. Fuchs. B. G. Teubner, Stuttgart, 1973. 59 bo76 [642] L. Boutet de Monvel. A Course on Pseudo Differential Operators and their Applications. Mathematics Department, Duke University, Durham, 1976. bokr67 [643] L. Boutet de Monvel and P. Kree. Pseudo-differential operators and Gevrey classes. Ann. Inst. Fourier (Grenoble), 17(1):295–323, 1967. azbo97 [644] A. W. Bowman and A. Azzalini. Applied Smoothing Techniques for Data Analysis: The Kernel Approach with S-Plus Illustrations., volume 18 of Oxford Statistical Science Series. Oxford University Press, Oxford, 1997. bo00 [645] M. Bownik. The structure of shift-invariant subspaces of L2 (Rn ). J. Funct. Anal., 177(2):282–309, 2000. bo03-1 [646] M. Bownik. Anisotropic Hardy spaces and wavelets. Mem. Amer. Math. Soc., 164(781):vi+122, 2003. bo05-1 [647] M. Bownik. Atomic and molecular decompositions of anisotropic Besov spaces. Math. Z., 250(3):539–571, 2005. bo05 [648] M. Bownik. Boundedness of operators on Hardy spaces via atomic decompositions. Proc. Amer. Math. Soc., 133(12):3535–3542, 2005. bo07 [649] M. Bownik. The structure of shift-modulation invariant spaces: The rational case. J. Funct. Anal., 244(1):172–219, 2007. bofo07 [650] M. Bownik and G. B. Folland. Duals of Hardy spaces on homogeneous groups. Math. Nachr., 280(11):1223 – 1229, 2007. boho06 [651] M. Bownik and K.-P. Ho. Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces. Trans. Amer. Math. Soc., 358(4):1469–1510, 2006. boka06 [652] M. Bownik and N. Kaiblinger. Minimal generator sets for finitely generated shift-invariant subspaces of L2 (Rn ). J. Math. Anal. Appl., 313(1):342–352, 2006. borz03 [653] M. Bownik and Z. Rzeszotnik. The spectral function of shift-invariant spaces. Michigan Math. J., 51(2):387–414, 2003. 60 borz04 [654] M. Bownik and Z. Rzeszotnik. The spectral function of shift-invariant spaces on general lattices, 2004. borz05 [655] M. Bownik and Z. Rzeszotnik. On the existence of multiresolution analysis for framelets. Math. Ann., 332(4):705–720, 2005. borz09 [656] M. Bownik and Z. Rzeszotnik. Construction and reconstruction of tight framelets and wavelets via matrix mask functions. J. Funct. Anal., 256(4):1065–105, 2009. borzsp01 [657] M. Bownik, Z. Rzeszotnik, and D. Speegle. A characterization of dimension functions of wavelets. Appl. Comput. Harmon. Anal., 10(1):71–92, 2001. bosp06 [658] M. Bownik and D. Speegle. The Feichtinger conjecture for wavelet frames, Gabor frames and frames of translates. Canad. J. Math., 58(6):1121–1143, 2006. bodi86 [659] W. E. Boyce and R. C. DiPrima. Elementary Differential Equations and Boundary Value Problems. 4th Ed. With Solutions Manual. John Wiley and Sons, New York, 1986. bo80 [660] J. P. Boyd. The Rate of Convergence of Hermite Function Series. Mathematics of Computation (AMS), 35(152):1309–1316, 1980. bo02 [661] J. P. Boyd. A comparison of numerical algorithms for Fourier extension of the first, second, and third kinds. J. Comput. Phys., 178(1):118–160, 2002. bo03-3 [662] J. P. Boyd. Approximation of an analytic function on a finite real interval by a bandlimited function and conjectures on properties of prolate spheroidal functions. Appl. Comput. Harmon. Anal., 15(2):168– 176, 2003. bo04-3 [663] J. P. Boyd. Prolate spheroidal wavefunctions as an alternative to Chebyshev and Legendre polynomials for spectral element and pseudospectral algorithms. J. Comput. Phys., 199(2):688–716, 2004. bova04 [664] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge Univ. Press, 2004. 61 boto03 [665] S. Boza and R. H. Torres. Decomposition of Ḃ10,1 (Z) into special atoms. Math. Nachr., 254-255:3–10, 2003. bo82 [666] N. S. Bozinov. A convolutional approach to the multiplier problem connected with generalized eigenvector expansions of an unbounded operator. Serdica, 8:425–441, 1982. brdedijajuwi02 [667] J. J. M. Braat, P. De Bisschop, P. Dirksen, A. J. E. M. Janssen, C. A. H. Juffermans, and A. M. Williams. Characterization of a projection lens using the extended Nijboer-Zernike approach. In A. Yen, editor, Proceedings of SPIE Optical Microlithography XV, July 2002, volume 4691, pages 1392–1399, 2002. brdija02 [668] J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen. Assessment of an extended Nijboer-Zernike approach for the computation of optical point-spread functions. J. Opt. Soc. Amer. A, 19(5):858–870, 2002. brdija02-1 [669] J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen. Diffractive read-out of optical disks. In Focus on Microscopy 2002, 2002. brdijaju03 [670] J. J. M. Braat, P. Dirksen, A. J. E. M. Janssen, and C. A. H. Juffermans. Aberration retrieval using the extended Nijboer-Zernike approach. Journal of Microlithography, Microfabrication, and Microsystems, 2(1):61–68, 2003. brdijajule03 [671] J. J. M. Braat, P. Dirksen, A. J. E. M. Janssen, C. A. H. Juffermans, and A. Leeuwestein. Experimental determination of lens aberrations from the intensity point-spread function in the focal region. In A. Yen, editor, Proceedings of SPIE Optical Microlithography XVI, June 2003, volume 5040, pages 1–10, 2003. brdijale05 [672] J. J. M. Braat, P. Dirksen, A. J. E. M. Janssen, and A. Leeuwestein. Aberration retrieval for high-NA optical systems using the extended Nijboer-Zernike theory. In B. W. Smith, editor, Proc. SPIE, Optical Microlithography XVIII, volume 5754 of Image Quality and Characterization, pages 262–273, San Jose, CA, USA, 2005. brdijakwleva04 [673] J. J. M. Braat, P. Dirksen, A. J. E. M. Janssen, A. Leeuwestein, H. Kwinten, and D. van Steenwinckel. Determination of resist parameters using the extended Nijboer-Zernike theory. In B. W. Smith, 62 editor, Proceedings of SPIE Optical Microlithography XVII, May 2004, volume 5377, pages 150–159, 2004. brdijava03 [674] J. J. M. Braat, P. Dirksen, A. J. E. M. Janssen, and A. S. van de Nes. Extended Nijboer-Zernike representation of the vector field in the focal region of an aberrated high-aperture optical system. J. Opt. Soc. Amer. A, 20:2281–2292, 2003. br83 [675] R. N. Bracewell. The Fourier Transform and its Applications. McGraw-Hill Book Company, Auckland etc., 2nd ed., 3rd printing. International Student Edition. edition, 1983. br86 [676] R. N. Bracewell. Sampling Series, chapter Chapter.10, page . McGraw Hill, 1986. br03 [677] R. N. Bracewell. Fourier Analysis and Imaging. New York, NY: Kluwer Academic / Plenum Publishers. xiv, 2003. brri67 [678] R. N. Bracewell and A. C. Riddle. Inversion of fan-beam scans in radio astronomy. Astrophys. J., 150:427–434, November 1967. bred66 [679] B. Brainerd and R. E. Edwards. Linear operators which commute with translations. I: Representation theorems. II: Applications of the representation theorems. 1966. br89 [680] K. Brandenburg. Ein Beitrag zu den Verfahren und der Qualitätsbeurteilung für hochwertige Musikcodierung. PhD thesis, Universität Erlangen-Nürnberg, 1989. br75 [681] L. H. Brandenburg. On identifying the maximal ideals in Banach algebras. J. Math. Anal. Appl., 50:489–510, 1975. brco99 [682] L. Brandolini and L. Colzani. Localization and convergence of eigenfunction expansions. J. Fourier Anal. Appl., 5(5):431–447, 1999. brcoiotr04 [683] L. Brandolini, L. Colzani, A. Iosevich, and G. Travaglini. Fourier Analysis and Convexity. Birkhäuser, 2004. brgarzwe99 [684] L. Brandolini, G. Garrigós, Z. Rzeszotnik, and G. Weiss. The behaviour at the origin of a class of band-limited wavelets. In Baggett, Lawrence Wasson (ed) et al, The Functional and Harmonic Analysis 63 of Wavelets and Frames Proceedings of the AMS Special Session, San Antonio, TX, USA, January 13-14, 1999 Providence, RI: American Mathematical Society Contemp Math 247, 75-91. 1999. br86-1 [685] O. Bratteli. Derivations, dissipations and group actions on C ∗ algebras, volume 1229 of Lecture Notes in Mathematics. SpringerVerlag, Berlin, 1986. brel96 [686] O. Bratteli and G. A. Elliott. Small eigenvalue variation and real rank zero. Pacific J. Math., 175(1):47–59, 1996. brelevki91 [687] O. Bratteli, G. A. Elliott, D. E. Evans, and A. Kishimoto. Noncommutative spheres. I. Internat. J. Math., 2(2):139–166, 1991. brelevki92 [688] O. Bratteli, G. A. Elliott, D. E. Evans, and A. Kishimoto. Noncommutative spheres. II. Rational rotations. J. Operator Theory, 27(1):53–85, 1992. brelgojo89 [689] O. Bratteli, G. A. Elliott, F. M. Goodman, and P. E. T. Jorgensen. Smooth Lie group actions on noncommutative tori. Nonlinearity, 2(2):271–286, 1989. brjo02 [690] O. Bratteli and P. Jorgensen. Wavelets Through A Looking Glass. The World of the Spectrum. Birkhäuser, Basel, 2002. brro81 [691] O. Bratteli and D. W. Robinson. Operator Algebras and Quantum Statistical Mechanics. II: Equilibrium States. Models in Quantum Statistical Mechanics. Springer, New York, Heidelberg, Berlin, 1981. brcodr83 [692] M. Braun, C. S. e. . Coleman, and D. A. e. . Drew. Differential Equation Models. Springer-Verlag, New York-Heidelberg-Berlin, 1983. brfe83 [693] W. Braun and H. G. Feichtinger. Banach spaces of distributions having two module structures. J. Funct. Anal., 51:174–212, 1983. brst99 [694] W. Bray and C. V. Stanojevic. Analysis of Divergence. Control and Management of Divergent Processes. Proceedings of the 7th International Workshop in Analysis and Its Applications, IWAA, Orono, ME, USA June 1–6, 1997. Birkhäuser, Boston, 1999. br63 [695] G. E. Bredon. A new treatment of the Haar integral. Michigan Math. J., 10:365–373, 1963. 64 br65-1 [696] L. M. Bregman. The method of successive projection for finding a common point of convex sets. Sov. Math., Dokl., 6:688–692, 1965. brse93 [697] S. Brekke and K. Seip. Density theorems for sampling and interpolation in the Bargmann-Fock space. III. Math. Scand., 73(1):112–126, 1993. br02 [698] P. Bremaud. Mathematical Principles of Signal Processing. Springer, 2002. brcomasz06 [699] J. C. Bremer, R. R. Coifman, M. Maggioni, and A. D. Szlam. Diffusion wavelet packets. Appl. Comput. Harmon. Anal., 21(1):95–112, 2006. br65 [700] H. Bremermann. Distributions, Complex Variables and Fourier Transforms. Addison-Wesley Publishing Company, 1965. brcuelne87 [701] B. Brenken, J. Cuntz, G. A. Elliott, and R. Nest. On the classification of noncommutative tori. III. In Operator Algebras and Mathematical Physics, volume 62 of Contemp. Math., pages 503–526. Amer. Math. Soc., Providence, RI, 1987. brthwa75 [702] P. Brenner, V. Thomee, and L. B. Wahlbin. Besov Spaces and Applications to Difference Methods for Initial Value Problems. Lecture Notes in Mathematics. 434. Berlin-Heidelberg-New York: SpringerVerlag. 154 p. DM 18.00, 1975. br70 [703] J. Brezin. Harmonic analysis on nilmanifolds. Trans. Amer. Math. Soc., 150:611–618, 1970. br00 [704] C. Brezinski. Numerical Analysis 2000. Vol. 2: Interpolation and Extrapolation. North-Holland/ Elsevier, Amsterdam, 2000. brma98 [705] C. Brif and A. Mann. A general theory of phase-space quasiprobability distributions. J. Phys. A: Math. Gen., 31:L9–L17, 1998. brma99 [706] C. Brif and A. Mann. Phase-space formulation of quantum mechanics and quantum-state reconstruction for physical systems with Lie-group symmetries. Phys. Rev. A, 59(2):971 – 987, 1999. br87 [707] W. L. Briggs. A Multigrid Tutorial. SIAM, Philadelphia, Pa., 1987. 65 brhe95 [708] W. L. Briggs and V. E. Henson. The DFT. An Owner’s Manual for the Discrete Fourier Transform. SIAM, Philadelphia, PA, 1995. br97 [709] E. O. Brigham. FFT Anwendungen. Übers. aus dem Engl. von Seyed Ali Azizi. Oldenbourg, München, Wien, 1997. brda02-1 [710] P. J. Brockwell and R. Davis. Introduction to Time Series and Forecasting. Springer, New York, 2002. brda02 [711] P. J. Brockwell and R. A. Davis. Introduction to Time Series and Forecasting. 2nd ed. Springer Texts in Statistics. New York, NY: Springer. xiv, 2002. brsi98 [712] M. Brokate and A. H. Siddiqi. Functional Analysis with Current Applications in Science, Technology and Industry. Longman, Harlow, 1998. br88 [713] T. P. Bronez. Spectral estimation of irregularly sampled multidimensional processes by generalized prolate spheroidal sequences. IEEE Trans. Acoustics, Speech and Signal Processing, 36(12):1862–1873, 1988. brlo88 [714] D. S. Broomhead and D. Lowe. Multivariable functional interpolation and adaptive networks. Complex Syst., 2(3):321–355, 1988. brkr76 [715] B. Brosowski and R. Kres. Einführung in die Numerische Mathematik. II. Bibliographisches Institut, Mannheim, Wien, Zürich, 1976. br72 [716] D. S. Browder. Derived algebras in L1 of a compact group. Pacific J. Math., 43:39–49, 1972. brpe66 [717] F. E. Browder and W. V. Petryshyn. The solution by iteration of linear functional equations in Banach spaces. Bull. Amer. Math. Soc., 72:566–570, 1966. brpe66-1 [718] F. E. Browder and W. V. Petryshyn. The solution by iteration of nonlinear functional equations in Banach spaces. Bull. Amer. Math. Soc., 72:571–575, 1966. brgrri77 [719] L. G. Brown, P. Green, and M. A. Rieffel. Stable isomorphism and strong Morita equivalence of C ∗ -algebras. Pacific J. Math., 71:349– 363, 1977. 66 br06-1 [720] N. P. Brown. Invariant Means and Finite Representation Theory of C*-algebras, volume 184. Amer. Math. Soc., 2006. br67 [721] J. L. Brown Jr. On the error in reconstructing a non-bandlimited function by means of the bandpass sampling theorem. J. Math. Anal. Appl., 18(1):75–84, April 1967. brkr91 [722] Y. A. Brudnyi and N. Y. Kruglyak. Interpolation Functors and Interpolation Spaces. Vol. I, volume 47 of North-Holland Mathematical Library. North-Holland Publishing Co., Amsterdam, 1991. br06 [723] A. Brudnyii. Representation of holomorphic functions on coverings of pseudoconvex domains in Stein manifolds via integral formulas on these domains. J. Funct. Anal., 231(2):418–437, 2006. brgu94 [724] J. Bruening and V. W. Guillemin. Mathematics Past and Present. Fourier Integral Operators. Selected Classical Articles by J. J. Duistermaat, V. W. Guillemin and L. Hörmander. Springer-Verlag, Berlin, 1994. br61 [725] F. Bruhat. Distributions sur un groupe localement compact et applications à l etude des représentations des groupes p-adiques. Bull. Soc. Math. France, 89:43–75, 1961. br01 [726] J. Bruna. Sampling in complex and harmonic analysis. In et al. and C. Casacuberta, editors, 3rd European Congress of Mathematics (ECM), Barcelona, Spain, volume 201 of Prog. Math., pages 225–246, Basel, 2001. Birkhäuser. brgr96 [727] G. Bruno and R. Grande. Compact embedding theorems for SobolevBesicovitch spaces of almost. 1996. bu01 [728] A. Buchholz. Operator Khintchine inequality in non-commutative probability. Math. Ann., 319:1–16, 2001. bu77 [729] H. Buchwalter. Espaces de mesures et partitions continues de l’unite. Preprint Lyon, -:119–129, 1977. bujo68 [730] R. S. Bucy and P. D. Joseph. Filtering for Stochastic Processes with Applications to Guidance. Interscience Publishers, New York, 1968. 67 bu00 [731] M. D. Buhmann. Radial basis functions. Acta Numer., 9:1–38, 2000. bu03 [732] M. D. Buhmann. Radial Basis Functions: Theory and Implementations. Brooks Cole, Cambridge, 2003. budyle95 [733] M. D. Buhmann, N. Dyn, and D. Levin. On quasi-interpolation by radial basis functions with scattered centres. Constr. Approx., 11(2):239–254, 1995. bula04 [734] H.-Q. Bui and R. S. Laugesen. Spanning and sampling in Lebesgue and Sobolev spaces. Technical report, University of Canterbury, 2004. bu99 [735] A. Bultan. A four-parameter atomic decomposition of chirplets. IEEE Trans. Signal Process., 47(3):731–745, 1999. buha00 [736] A. Bultan and R. A. Haddad. System identification with denoising, 2000. buma03 [737] A. Bultheel and H. Martinez. A shattered survey of the Fractional Fourier Transform. 2003. busu05 [738] A. Bultheel and H. M. Sulbaran. An introduction to the fractional Fourier transform and friends. Cubo Mat. Educ., 7(2):201–221, 2005. buni78 [739] J. R. Bunch and C. P. Nielsen. Updating the singular value decomposition. Numer. Math., 31:111–129, 1978. buelhr01 [740] B. Bunck, A. Elcrat, and T. Hrycak. On detecting emerging surface cracks from boundary measurements. Inverse Problems, 17(5):1391– 1400, 2001. bu75 [741] I. M. Bund. Birnbaum-Orlicz spaces of functions on groups. Pacific J. Math., 58:351–359, 1975. buXX [742] Bunji Tozawa. The Idea Generator: Quick and Easy Kaizen’. bule95 [743] H. G. Burchard and J. Lei. Coordinate order of approximation by functional-based approximation operators. J. Approx. Theory, 82:240–256, 1995. bu80 [744] R. Bürger. Functions of translation type and functorial properties of Segal algebras I. Monatsh. Math., 90:101–115, 1980. 68 buew04 [745] Burkhard Wünsche and Ewan Tempero. A comparison and evaluation of interpolation methods for visualising discrete 2D survey data. In CRPIT ’35: Proceedings of the 2004 Australasian Symposium on Information Visualisation, pages 1–7, Darlinghurst, Australia, Australia, 2004. Australian Computer Society, Inc. bu70 [746] J. T. Burnham. Closed ideals in subalgebras of Banach Algebras II. Notices Amer. Math. Soc., 17:815, 1970. bu70-2 [747] J. T. Burnham. Multipliers of L1 (G) ∪ Lp (G). Notices Amer. Math. Soc., 17:970, 1970. bu70-1 [748] J. T. Burnham. On a space of functions of Wiener. Notices Amer. Math. Soc., 17:1071, 1970. bu72 [749] J. T. Burnham. Closed ideals in subalgebras of Banach algebras I. Proc. Amer. Math. Soc., 32:551–555, 1972. bu72-1 [750] J. T. Burnham. Nonfactorization in subsets of the measure algebra. Proc. Amer. Math. Soc., 35:104–106, 1972. bu73 [751] J. T. Burnham. Segal algebras and dense ideals in Banach algebras. In Functional Analysis Appl, Internat Conf, Madras 1973, volume 399 of Lect. Notes Math., pages 33–58. Springer-Verlag, 1973. bu73-1 [752] J. T. Burnham. Segal algebras and generalizations. PhD thesis, University of Iowa, 1973. bu74-1 [753] J. T. Burnham. Approximate identities in normed moduls and Reiter’s dh s(g) ideals. 1974. bu74 [754] J. T. Burnham. Closed ideal s in subalgebras of Banach algebras. II: Ditkin’s condition. Monatsh. Math., 78:1–3, 1974. bugo73 [755] J. T. Burnham and R. R. Goldberg. Basic properties of Segal algebras. J. Math. Anal. Appl., 42:323–329, 1973. bugo74 [756] J. T. Burnham and R. R. Goldberg. The convolution theorems of Dieudonne. Acta Math. Sci., 36:1–3, 1974. 69 bugo79 [757] J. T. Burnham and R. R. Goldberg. Weak∗ and norm convergence with applications to Segal algebras. Bull. Math., Acad. Sinica, 7(1):117–122, 1979. bukrla75 [758] J. T. Burnham, H. E. Krogstad, and R. Larsen. Multipliers and the Hilbert distribution. Nanta Math., 8(2):95–103, 1975. bumu75 [759] J. T. Burnham and P. S. Muhly. Multipliers of commutative Segal algebras. Tamkang J. Math., 6:229–238, 1975. bugogu98 [760] C. S. Burrus, R. A. Gopinath, and H. Guo. Introduction to Wavelets and Wavelet Transforms. A Primer. Prentice Hall, 1998. bumcoppascsc94 [761] C. S. Burrus, J. H. McClellan, A. V. Oppenheim, T. W. Parks, R. W. Schafer, and H. W. Schuessler. Computer-based Exercises for Signal Processing using MATLAB. 1994. adbu83 [762] P. Burt and E. H. Adelson. The Laplacian Pyramid as a Compact Image Code. IEEE Trans. Comm., 31:532–540, 1983. busc72 [763] R. C. Busby and I. Schochetman. Compact induced representations. Canad. J. Math., 24:5–16, 1972. buscsm72 [764] R. C. Busby, I. Schochetman, and H. A. Smith. Integral operators and the compactness of induced representations. Trans. Amer. Math. Soc., 164:461–477, 1972. busm81 [765] R. C. Busby and H. A. Smith. Product-convolution operators and mixed-norm spaces. Trans. Amer. Math. Soc., 263:309–341, 1981. bu70-3 [766] V. S. Buslaev. Quantization and the WKB method. Tr. Mat. Inst. Steklova, 110:5–28, 1970. bufl95 [767] D. Butnariu and S. D. Flm. Strong convergence of expected-projection methods in Hilbert spaces. Numer. Funct. Anal. Optimization, 16(56):601–636, 1995. bu05 [768] T. Butz. Fourier Transforms for Pedestrians. (Fouriertransformation für Fußgänger) 4th Revised and Expanded ed. Wiesbaden: Teubner. xiv, 211 p. EUR 24.90, 2005. bu06 [769] T. Butz. Fourier Transformation for Pedestrians. Springer, 2006. 70 bustsz84 [770] P. Butzer, R. L. Stens, and B. Sz. Nagy, editors. Anniversary Volume on Approximation Theory and Functional Analysis. (Proceedings of the International Conference on Approximation Theory and Functional Analysis held at the Oberwolfach Mathematical Research Institute from July 30 to August 6, 1983), volume 65 of International Series of Numerical Mathematics. Basel-Boston- Stuttgart: Birkhäuser Verlag, 1984. bu83 [771] P. L. Butzer. A survey of the Whittaker-Shannon sampling theorem and some of its extensions. J. Math. Res. Exposition, 1:185–212, 1983. bu83-1 [772] P. L. Butzer. The Shannon sampling theorem and some of its generalizations: an overview. In Constructive function theory, Proc. int. Conf., Varna/Bulg. 1981, RWTH Aachen, 1983. bebu67 [773] P. L. Butzer and H. Berens. Semigroups of operators and approximation. Grundlagen der math. Wiss. Vol. 145. Springer, Berlin - New York - Heidelberg, 1967. buensc82 [774] P. L. Butzer, W. Engels, and U. Scheben. Magnitude of the truncation error in sampling expansions of band-limited signals. IEEE Trans. Acoustics, Speech and Signal Processing, 30:906–912, 1982. buenrist86 [775] P. L. Butzer, W. Engels, R. L. Stens, and S. Ries. The Shannon sampling series and the reconstruction of signals in terms of linear, quadratic and cubic splines. SIAM J. Appl. Math., 46(2):299–323, 1986. bufist93 [776] P. L. Butzer, A. Fischer, and R. L. Stens. Generalized sampling approximation of multivariate signals; general theory. Atti Sem. Mat. Fis. Univ. Modena, 41(1):17–37, 1993. buhist00 [777] P. L. Butzer, J. R. Higgins, and R. L. Stens. Sampling theory of signal analysis. In J.-P. Pier, editor, Development of Mathematics 1950-2000, pages 193–234. Basel: Birkhäuser, 2000. buhist05 [778] P. L. Butzer, J. R. Higgins, and R. L. Stens. Classical and approximate sampling theorems; studies in the lp (r) and the uniform norm. J. Approx. Theory, 137(2):250–263, 2005. 71 buhi89-1 [779] P. L. Butzer and G. Hinsen. Reconstruction of bounded signals from pseudo-periodic irregularly spaces samples. Signal Process., 17:1–17, 1989. buhi89 [780] P. L. Butzer and G. Hinsen. Two-dimensional nonuniform sampling expansions - an iterative approach I: Theory of two-dimensional band limited signals. Appl. Anal., 32(1):53–67, 1989. buhi89-2 [781] P. L. Butzer and G. Hinsen. Two-dimensional nonuniform sampling expansions - an iterative approach. II: Reconstruction formulae and applications. Appl. Anal., 32(1):69–85, 1989. buja00 [782] P. L. Butzer and S. Jansche. Mellin-Fourier series and the classical Mellin transform. Comput. Math. Appl., 40(1):49–62, 2000. bujast92 [783] P. L. Butzer, S. Jansche, and R. L. Stens. Functional analytic methods in the solution of the fundamental theorems on best-weighted algebraic approximation. In Approximation Theory, Proc 6th Southeast Approximation Theory Conf, Memphis/TN (USA) 1991, volume 138 of Lect. Notes Pure Appl. Math., pages 151–205, 1992. bune71 [784] P. L. Butzer and R. J. Nessel. Fourier Analysis and Approximation. Vol. 1: One-dimensional Theory. Birkhäuser, Stuttgart, 1971. burist84 [785] P. L. Butzer, S. Ries, and R. L. Stens. Shannon’s sampling theorem, Cauchy’s integral formula, and related results. In Approximation Theory and Functional Analysis, Anniv Vol, Proc Conf Oberwolfach 1983, ISNM 65, pages 363–377, 1984. burist87 [786] P. L. Butzer, S. Ries, and R. L. Stens. Approximation of continuous and discontinuous functions by generalized sampling series. J. Approx. Theory, 50:25–39, 1987. busc68 [787] P. L. Butzer and K. Scherer. Approximationsprozesse und Interpolationsmethoden. (B.I.- Hochschulskripten. 826/826a). Bibliographisches Institut, Mannheim, Zürich, 1968. buspst88 [788] P. L. Butzer, W. Splettstösser, and R. L. Stens. The sampling theorem and linear prediction in signal analysis. Jber. Deutsch. Math.-Verein., 90:1–70, 1988. 72 bust76-1 [789] P. L. Butzer and R. L. Stens. Chebyshev transform methods in the theory of best algebraic approximation. Abh. Math. Sem. Univ. Hamburg, 45:165–190, 1976. bust76 [790] P. L. Butzer and R. L. Stens. Fractional Chebyshev operational calculus and best algebraic approximation. In Approx Theory II, Proc Int Symp, Austin 1976, pages 315–319, 1976. bust77-1 [791] P. L. Butzer and R. L. Stens. The operational properties of the Chebyshev transform. I: General properties. Funct. Approx. Comment. Math., 5:129–160, 1977. bust77 [792] P. L. Butzer and R. L. Stens. The operational properties of the Chebyshev transform. II: Fractional derivatives. In The Theory of the Approximation of Functions, Proc Int Conf Collect Artic Kaluga 1975, pages 49–61, 1977. bust78 [793] P. L. Butzer and R. L. Stens. Chebyshev transform methods in the solution of the fundamental theorem of best algebraic approximation in the fractional case, 1978. bust83-1 [794] P. L. Butzer and R. L. Stens. The Euler-MacLaurin summation formula, the sampling theorem, and approximate integration over the real axis. Linear Algebra and Appl., 52-53:141–155, 1983. bust83 [795] P. L. Butzer and R. L. Stens. The Poisson summation formula, Whittaker’s cardinal series and approximate integration. In Approximation Theory, 2nd Conf, Edmonton/Alberta 1982, CMS Conf Proc, volume 3, pages 19–36, 1983. bust85 [796] P. L. Butzer and R. L. Stens. A modification of the WhittakerKotelnikov-Shannon sampling series. Aequationes Math., 28:305–311, 1985. bust87 [797] P. L. Butzer and R. L. Stens. Prediction of non-bandlimited signals from past samples in terms of splines of low degree. Math. Nachr., 132:115–130, 1987. bust88 [798] P. L. Butzer and R. L. Stens. Linear prediction in terms of samples from the past; an overview. In Numerical Methods and Approximation Theory III, 3rd Conf, Nis/Yugosl 1987, pages 1–22, 1988. 73 bust92 [799] P. L. Butzer and R. L. Stens. Sampling theory for not necessarily band-limited functions: a historical overview. SIAM Rev., 34(1):40– 53, March 1992. bust95 [800] P. L. Butzer and R. L. Stens. An extension of Kramer’s sampling theorem for not necessarily “bandlimited” signals – the aliasing error. Acta Sci. Math. (Szeged), 60(1-2):59–69, 1995. babustvi06 [801] P. L. Butzer, R. L. Stens, C. Bardaro, and G. Vinti. Approximation error of the Whittaker cardinal series in terms of an averaged modulus of smoothness covering discontinuous signals. J. Math. Anal. Appl., 316(1):269–306, 2006. budygost77 [802] P. L. Butzer, R. L. Stens, H. Dyckhoff, and E. Görlich. Best trigonometric approximation, fractional order derivatives and Lipschitz classes. Canad. J. Math., 29:781–793, 1977. bufist90 [803] P. L. Butzer, R. L. Stens, and A. Fischer. Generalized sampling approximation of multivariate signals; theory and some applications. Note Mat., 10(Suppl. n. 1):173–191, 1990. buhast91 [804] P. L. Butzer, R. L. Stens, and M. Hauss. The sampling theorem and its unique role in various branches of mathematics. Mitt. Math. Ges. Hamb., 12(3):523–547, 1991. bustwe79 [805] P. L. Butzer, R. L. Stens, and M. Wehrens. Approximation by algebraic convolution integrals. In Approximation Theory and Functional Analysis, Proc Int Symp, Campinas 1977, Math Stud, North-Holland, volume 35, pages 71–120, 1979. bustwe79-1 [806] P. L. Butzer, R. L. Stens, and M. Wehrens. Saturation classes of the Cesaro and Abel-Poisson means of Fourier- Legendre series. Acta Math. Acad. Sci. Hungar., 33:19–35, 1979. bustwe80-1 [807] P. L. Butzer, R. L. Stens, and M. Wehrens. Higher order moduli of continuity based on the Jacobi translation operator and best approximation. C. R. Math. Acad. Sci. Soc. R. Can., 2:83–88, 1980. bustwe80 [808] P. L. Butzer, R. L. Stens, and M. Wehrens. The continuous Legendre transform, its inverse transform, and applications. Int. J. Math. Math. Sci., 3:47–67, 1980. 74 by96 [809] C. L. Byrne. Block-iterative methods for image reconstruction from projections. IEEE Trans. Image Process., 5(5):792–794, 1996. by97 [810] C. L. Byrne. Convergent Block-iterative Algorithms for Image Reconstruction from Inconsistent Data. IEEE Trans. Signal Process., 6(9):1296–1304, 1997. by98 [811] C. L. Byrne. Accelerating the EMML algorithm and related iterative algorithms by rescaled block-iterative methods. IEEE Trans. Image Process., 7(1):100–109, 1998. by01-1 [812] J. Byrnes. Local signal reconstruction via chromatic differentiation filterbanks. In Conference Record of the Thirty-Fifth Asilomar Conference on Signals, Systems and Computers, 2001., pages 568–572, 2001. by01 [813] J. Byrnes and J. S. Byrnes, editors. Twentieth Century Harmonic Analysis - A Celebration. Proceedings of the NATO Advanced Study Institute, Il Ciocco, Italy, July 2-15, 2000., volume 33 of ATO Science Series II: Mathematics, Physics and Chemistry., Dordrecht, 2001. Kluwer Academic Publishers. by99 [814] J. e. . Byrnes. Signal Processing for Multimedia. Proceedings of the NATO ASI, Lucca, Italy, July 5-18, 1998., volume 174 of NATO ASI Series. Series F. Computer and Systems Sciences. IOS Press, Amsterdam, 1999. bybyha94 [815] J. S. Byrnes, J. L. Byrnes, and K. A. Hargreaves. Wavelets and their Applications. Proceedings of the NATO ASI Conference, 16-29 August 1992, Il Ciocco, Italy., volume 442 of NATO ASI Series. Series C. Mathematical and Physical Sciences. Kluwer Academic Publishers, Dordrecht, 1994. cahemo98 [816] C. A. Cabrelli, C. Heil, and U. Molter. Accuracy of lattice translates of several multidimensional refinable functions. J. Approx. Theory, 95(1):5–52, 1998. cahemo99 [817] C. A. Cabrelli, C. Heil, and U. Molter. Polynomial reproduction by refinable functions. In Advances in Wavelets (Hong Kong, 1997), pages 121–161. Springer, Singapore, 1999. 75 cahemo00 [818] C. A. Cabrelli, C. Heil, and U. Molter. Accuracy of several multidimensional refinable distributions. J. Fourier Anal. Appl., 6(5):483– 502, 2000. cahemo04 [819] C. A. Cabrelli, C. Heil, and U. M. Molter. Self-similarity and Multiwavelets in Higher Dimensions. American Mathematical Society, Providence, Rhode Island, 2004. cahemo05 [820] C. A. Cabrelli, S. B. Heineken, and U. M. Molter. Refinable shift invariant spaces in Rd . Int. J. Wavelets Multiresolut. Inf. Process., 3(3):321–345, 2005. cahemo06 [821] C. A. Cabrelli, S. B. Heineken, and U. M. Molter. Local bases for refinable spaces. Proc. Amer. Math. Soc., 134(6):1707–1718, 2006. brca91 [822] S. Cabrera and J. L. j. Brown. On well-posedness of the Papoulis generalized sampling expansion. IEEE Trans. Circuits and Systems, 38(5):554–556, 1991. ca81 [823] J. Cadzow. Observations on the extrapolation of a band-limited signal problem. IEEE Trans. Acoustics, Speech and Signal Processing, 29(6):1208–1209, 1981. caha05 [824] A. M. Caetano and D. Haroske. Continuity envelopes of spaces of generalised smoothness: a limiting case; embeddings and approximation numbers. J. Funct. Spaces Appl., 3(1):33–71, 2005. cagl69-1 [825] K. E. Cahill and R. J. Glauber. Density Operators and Quasiprobability Distributions. Phys. Rev. A, 177(5):1882 – 1902, 1969. cagl69 [826] K. E. Cahill and R. J. Glauber. Ordered Expansions in Boson Amplitude Operators. Phys. Rev. A, 177(5):1857–1881, 1969. brca98 [827] T. T. Cai and L. D. Brown. Wavelet shrinkage for nonequispaced samples. Ann. Statist., 26(5):1783–1799, 1998. cagrpo93 [828] G. Caire, R. L. Grossmann, and H. V. Poor. Wavelet transforms associated with finite cyclic groups. IEEE Trans. Information Theory, 39(4), July 1993. 76 cahomo06 [829] A. R. Calderbank, S. D. Howard, and W. Moran. Finite HeisenbergWeyl groups and Golay complementary sequences. In Proc. of the 2nd International Waveform Diversity and Design Conf., Jan. 2006, Kauai, HI., 2006. ca63 [830] A. P. Calderón. Intermediate spaces and interpolation. Stud. Math., Ser. spec. No., 1:31–34, 1963. ca64 [831] A. P. Calderón. Intermediate spaces and interpolation, the complex method. Studia Math., 24:113–190, 1964. ca77 [832] A. P. Calderon. An atomic decomposition of distributions in parabolic hp spaces. Adv. Math., 25(3):216–225, 1977. cato75 [833] A. P. Calderon and A. Torchinsky. Parabolic maximal functions associated with a distribution. Adv. Math., 16:1–64, 1975. cato77 [834] A. P. Calderon and A. Torchinsky. Parabolic maximal functions associated with a distribution. II. Adv. Math., 24:101–171, 1977. cava71 [835] A. P. Calderon and R. Vaillancourt. On the boundedness of pseudodifferential operators. J. Math. Soc. Japan, 23:374–378, 1971. cava72 [836] A. P. Calderon and R. Vaillancourt. A class of bounded pseudodifferential operators. Proc. Natl. Acad. Sci. USA, 69:1185–1187, 1972. cach05 [837] O. Calin and D.-C. Chang. Geometric Mechanics on Riemannian Manifolds. Birkhäuser, Boston, 2005. cachgr07 [838] O. Calin, D.-C. Chang, and P. Greiner. Geometric Analysis on the Heisenberg Group and its Generalizations, volume 40 of AMS/IP Studies in Advanced Mathematics. American Mathematical Society, Providence, RI, 2007. cachti06 [839] O. Calin, D.-C. Chang, and J. Tie. Fundamental solutions for Hermite and subelliptic operators. J. Anal. Math., 100:223–248, 2006. ca89 [840] A. D. Calway. The Multiresolution Fourier Transform: A General Purpose Tool for Image Analysis. PhD thesis, University of Warwick, 1989. 77 cahswi93 [841] A. D. Calway, T.-I. Hsu, and R. Wilson. Texture Analysis Using the Multiresolution Fourier Transform. In Proc. 8th Scandinavian Conference on Image Analysis, Tromso, 1993., pages 823–830, 1993. caha82 [842] S. Cambanis, , and M. K. Habib. Finite sampling approximations for non-band-limited signals. IEEE Trans. Inform. Theory, 28(1):67–73, jan 1982. caha81 [843] S. Cambanis and M. K. Habib. Sampling Approximations for Non-Band-Limited Harmonizable Random Signals. Inform. Sci., 23(3):143–152, 1981. caho93 [844] S. Cambanis and C. Houdré. Stable processes: Moving averages versus Fourier transforms. Probab. Theory Relat. Fields, 95(1):75–85, 1993. ca68 [845] L. L. Campbell. Sampling theorem for the Fourier transform of a distribution with bounded support, May 1968. came79 [846] S. L. Campbell and C. D. j. Meyer. Generalized Inverses of Linear Transformations. Pitman Publishing Ltd, London, San Francisco, Melbourne, 1979. came91 [847] S. L. Campbell and C. D. j. Meyer. Generalized Inverses of Linear Transformations. Dover Publications Inc, New York, Corrected reprint of the 1979 original. edition, 1991. cakuoz00 [848] . Candan, M. A. Kutay, and H. M. Ozaktas. The discrete fractional Fourier transform. IEEE Trans. Signal Process., 48(5):1329–1337, 2000. ca08 [849] E. J. Candès. The restricted isometry property and its implications for compressed sensing. C. R. Acad. Sci. Paris S’er. I Math., 346:589– 592, 2008. cada04 [850] E. J. Candès and David L. Donoho. New tight frames of curvelets and optimal representations of objects with piecewise c2 singularities. Comm. Pure Appl. Math., 57(2):219–266., 2004. cade03 [851] E. J. Candès and L. Demanet. Curvelets and Fourier integral operators. C. R. Math. Acad. Sci. Paris, 336(5):395–398, 2003. 78 cade05 [852] E. J. Candès and L. Demanet. The curvelet representation of wave propagators is optimally sparse. Commun. Pure Appl. Anal., 58(11):1472–1528, 2005. cadedoyi06 [853] E. J. Candès, L. Demanet, D. L. Donoho, and L. Ying. Fast discrete curvelet transforms. SIAM Multiscale Model . Simul., 5:861–899, 2006. cadeyi05 [854] E. J. Candès, L. Demanet, and L. Ying. 3D discrete curvelet transform. 5914:344–354, 2005. cado99 [855] E. J. Candès and D. L. Donoho. Ridgelets: a key to higherdimensional intermittency? Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 357(1760):2495–2509, 1999. cado04 [856] E. J. Candès and D. L. Donoho. New tight frames of curvelets and optimal representations of objects with piecewise c2 singularities. Comm. Pure Appl. Math., 57(2):219–266, 2004. cado05 [857] E. J. Candès and D. L. Donoho. Continuous curvelet transform. I: Resolution of the wavefront set. Appl. Comput. Harmon. Anal., 19(2):162–197, 2005. cado05-1 [858] E. J. Candès and D. L. Donoho. Continuous curvelet transform. II: Discretization and frames. Appl. Comput. Harmon. Anal., 19(2):198– 222, 2005. carota06 [859] E. J. Candès, J., T. Tao, and J. K. Romberg. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory, 52(2):489–509, 2006. caro07 [860] E. J. Candès and J. K. Romberg. Sparsity and incoherence in compressive sampling. Inverse Problems, 23(3):969–985, 2007. carota06-1 [861] E. J. Candès, J. K. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math., 59(8):1207–1223, 2006. cata05 [862] E. J. Candès and T. Tao. Decoding by linear programming. IEEE Trans. Inform. Theory, 51(12):4203–4215, 2005. 79 cata06 [863] E. J. Candès and T. Tao. Near optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory, 52(12):5406–5425, 2006. cacr96 [864] M. Candilera and V. Cristante. Geometric aspects of the complex Heisenberg group. Boll. Un. Mat. Ital. B (7), 10(3):595–623, 1996. cacupo70 [865] M. D. Canon, C. D. j. Cullum, and E. Polak. Theory of Optimal Control and Mathematical Programming. McGraw-Hill Series in Systems Science. New York etc.: McGraw-Hill Book Company. XII, 285 p. 158 s., 1970. cafi05 [866] C. Capone and A. Fiorenza. On small Lebesgue spaces. J. Funct. Spaces Appl., 3(1):73–89, 2005. caro06 [867] M. Cappiello and L. Rodino. SG-pseudodifferential operators and Gelfand-Shilov spaces. Rocky Mountain J. Math., to appear, 2006. ca90 [868] A. S. Carasso. Impulse response acquisition as an inverse heat conduction problem. SIAM J. Appl. Math., 50(1):74–90, 1990. ca97 [869] A. S. Carasso. Error bounds in nonsmooth image deblurring. SIAM J. Math. Anal., 28(3):656–668, 1997. ca99 [870] A. S. Carasso. Linear and nonlinear image deblurring: a documented study. SIAM J. Numer. Anal., 36(6):1659–1689, 1999. ca01 [871] A. S. Carasso. Direct blind deconvolution. SIAM J. Appl. Math., 61(6):1980–2007, 2001. ca91 [872] A. Carbery. The work of Jos’e Luis Rubio de Francia. IV. Publ. Mat., Barc., 35(1):81–93, 1991. ca76 [873] A. L. Carey. Square-integrable representations of non-unimodular groups. Bull. Austral. Math. Soc., 15:1–12, 1976. ca01-1 [874] R. Carles. Remarks on Wigner measures. (Remarques sur les mesures de Wigner.). C. R. Acad. Sci. Paris S’er. I Math., page 981984, 2001. ca66 [875] L. Carleson. On convergence and growth of partial sums of Fourier series. Acta Math., 116:135–157, 1966. 80 ca80 [876] L. Carleson. Some analytic problems related to statistical mechanics. In Euclidean Harmonic Analysis, Proc Semin, Univ Maryland 1979, volume 779 of Lect. Notes Math., pages 5–45. Springer Verlag, 1980. cahwto98 [877] R. Carmona, W.-L. Hwang, and B. Torrésani. Practical Timefrequency Analysis. Gabor and Wavelet Transforms with an Implementation in S. With a Preface by Ingrid Daubechies. Academic Press, San Diego, CA, 1998. cahwto99 [878] R. A. Carmona, W. L. Hwang, and B. Torresani. Multiridge detection and time-frequency reconstruction. IEEE Trans. Signal Process., 47(2):480–492, February 1999. ca94-1 [879] M. J. Carro. Real interpolation for families of Banach spaces. Studia Math., 109(1):1–21, 1994. ca94 [880] M. J. Carro. Real interpolation for families of Banach spaces. II. Collect. Math., 45(1):53–83, 1994. ca06 [881] H. S. Carslaw. Introduction to the Theory of Fourier’s Series and Integrals. Macmillan and Co., London, 1906. camasc03 [882] B. J. Carswell, B. D. MacCluer, and A. P. Schuster. Composition operators on the Fock space. Acta Math. Sci., 69(3-4):871–887, 2003. ca37-1 [883] H. Cartan. Filtres et ultrafiltres. C. R. Acad. Sci., Paris, 205:777–779, 1937. ca37 [884] H. Cartan. Théorie des filtres. C. R. Acad. Sci., Paris, 205:595–598, 1937. ca40 [885] H. Cartan. Sur la mesure de Haar. C. R. Acad. Sci., Paris, 211:759– 762, 1940. ca00 [886] P. G. Casazza. The art of frame theory. Taiwanese J. Math., 4(2):129– 201, 2000. ca04 [887] P. G. Casazza. Custom building finite frames., 2004. cach96 [888] P. G. Casazza and O. Christensen. Hilbert space frames containing a Riesz basis and Banach spaces which have no subspace isomorphic to c0 . J. Math. Anal. Appl., 202(3):940–950, 1996. 81 cach97 [889] P. G. Casazza and O. Christensen. Perturbation of operators and applications to frame theory. J. Fourier Anal. Appl., 3(5):543–557, 1997. cach98-1 [890] P. G. Casazza and O. Christensen. Frames containing a Riesz basis and preservation of this property under perturbations. SIAM J. Math. Anal., 29(1):266–278 (electronic), 1998. cach98 [891] P. G. Casazza and O. Christensen. Riesz frames and approximation of the frame coefficients. Approx. Theory Appl., 14(2):1–11, 1998. cach00 [892] P. G. Casazza and O. Christensen. Approximation of the inverse frame operator and applications to Gabor frames. J. Approx. Theory, 103(2):338–356, 2000. cach01 [893] P. G. Casazza and O. Christensen. Weyl-Heisenberg frames for subspaces of L2 (R). Proc. Amer. Math. Soc., 129(1):145–154 (electronic), 2001. cach03 [894] P. G. Casazza and O. Christensen. Gabor frames over irregular lattices. Adv. Comput. Math., 18(2-4):329–344, 2003. cachja99 [895] P. G. Casazza, O. Christensen, and A. J. E. M. Janssen. Classifying tight Weyl-Heisenberg frames. In The Functional and Harmonic Analysis of Wavelets and Frames, volume 247 of Contemp. Math., pages 131–148. Amer. Math. Soc., Providence, RI, 1999. cachja01 [896] P. G. Casazza, O. Christensen, and A. J. E. M. Janssen. WeylHeisenberg frames, translation invariant systems and the Walnut representation. J. Funct. Anal., 180(1):85–147, 2001. cachla02 [897] P. G. Casazza, O. Christensen, and M. C. Lammers. Perturbations of Weyl-Heisenberg frames. Hokkaido Math. J., 31(3):539–553, 2002. cachlive05 [898] P. G. Casazza, O. Christensen, A. M. Lindner, and R. Vershynin. Frames and the Feichtinger conjecture. Proc. Amer. Math. Soc., 133(4):1025–1033, 2005. caed06 [899] P. G. Casazza and D. Edidin. Equivalents of the Kadison-Singer problem. 2006. 82 cafi06 [900] P. G. Casazza and M. Fickus. Fourier transforms of finite chirps. EURASIP J. Adv. Signal Process., 2006:1–7, 2006. cahala99 [901] P. G. Casazza, D. Han, and D. R. Larson. Frames for Banach spaces. In L. Baggett and D. R. Larson, editors, The Functional and Harmonic Analysis of Wavelets and Frames (San Antonio, TX, 1999)., volume 247 of Contemporary Mathematics, pages 149–182, Providence, RI, 1999. American Mathematical Society (AMS). caka02 [902] P. G. Casazza and N. J. Kalton. Roots of complex polynomials and Weyl-Heisenberg frame sets. Proc. Amer. Math. Soc., 130(8):2313– 2318, 2002. cako03 [903] P. G. Casazza and J. Kovavcevi’c. Equal-norm tight frames with erasures. Adv. Comput. Math., 18(2-4):387–430, 2003. caku04 [904] P. G. Casazza and G. Kutyniok. Frames of subspaces. In Wavelets, Frames and Operator Theory, volume 345 of Contemp. Math., pages 87–113. Amer. Math. Soc., Providence, RI, 2004. caku07 [905] P. G. Casazza and G. Kutyniok. A generalization of Gram-Schmidt orthogonalization generating all Parseval frames. Adv. Comput. Math., 27(1):65–78, July 2007. cakula04 [906] P. G. Casazza, G. Kutyniok, and M. C. Lammers. Duality principles in frame theory. J. Fourier Anal. Appl., 10(4):383–408, 2004. cakula05 [907] P. G. Casazza, G. Kutyniok, and M. C. Lammers. Duality principles, localization of frames, and Gabor theory. In Wavelets XI (San Diego, CA, 2005), volume 5914, pages 389–398. SPIE, 2005. cakuli08 [908] P. G. Casazza, G. Kutyniok, and S. Li. Fusion frames and distributed processing. Appl. Comput. Harmon. Anal., 254(1):114–132, 2008. cakuspXX [909] P. G. Casazza, G. Kutyniok, and D. Speegle. A redundant version of the Rado-Horn Theorem. Linear Algebra Appl., to appear. cakusptr08 [910] P. G. Casazza, G. Kutyniok, D. Speegle, and J. C. Tremain. A decomposition theorem for frames and the Feichtinger conjecture. Proc. Amer. Math. Soc., 136:2043–2053, 2008. 83 cala99 [911] P. G. Casazza and M. Lammers. Analyzing the Weyl-Heisenberg Frame Identity. ArXiv Mathematics e-prints, nov 1999. cala03 [912] P. G. Casazza and M. C. Lammers. Bracket products for WeylHeisenberg frames. In Advances in Gabor Analysis, Appl. Numer. Harmon. Anal., pages 71–98. Birkhäuser Boston, Boston, MA, 2003. cale06 [913] P. G. Casazza and M. T. Leon. Existence and construction of finite tight frames. J. Concr. Appl. Math., 4(3):277–289, 2006. cale06-1 [914] P. G. Casazza and N. Leonhard. Classes of finite equal norm Parsval frames. 2006. catr06 [915] P. G. Casazza and J. C. Tremain. The Kadison-Singer Problem in Mathematics and Engineering. Proc. Nat. Acad. Sci., 103:2032–2039, 2006. cazhzh06 [916] P. G. Casazza, C. Zhao, and P. Zhao. Perturbation of regular sampling in shift-invariant spaces for frames. IEEE Trans. Inform. Theory, 52(10):4643– 4648, 2006. cadami91 [917] A. S. Cavaretta, W. Dahmen, and C. A. Micchelli. Stationary subdivision. Mem. Amer. Math. Soc., 453:186 p., 1991. ca92 [918] T. J. Cavicchi. DFT time-domain interpolation. 139(3):207–211, 1992. ce89 [919] C. Cenker. Die Entwicklung von Distributionen nach kohärenten Funktionensystemen. Master’s thesis, University of Vienna, 1989. ce95 [920] C. Cenker. Frame expansions, contour lines and pattern recognition. PhD thesis, University of Vienna, 1995. cefegr89 [921] C. Cenker, H. G. Feichtinger, and K. Gröchenig. Nonorthogonal expansions of signals and some of their applications. In Proc ECMI Conference, Strobl, May 1989, 1989. cefemastst92 [922] C. Cenker, H. G. Feichtinger, M. Mayer, H. Steier, and T. Strohmer. New variants of the POCS method using affine subspaces of finite codimension, with applications to irregular sampling. In Conf. SPIE 92 Boston, pages 299–310, 1992. 84 IEE Proc. F, ce85 [923] Y. Censor. An automatic relaxation method for solving interval linear inequalities. J. Math. Anal. Appl., 106:19–25, 1985. ceeggo83 [924] Y. Censor, P. P. B. Eggermont, and D. Gordon. Strong underrelaxation in Kaczmarz’s method for inconsistent systems. Numer. Math., 41:83–92, 1983. ceelhe85 [925] Y. Censor, T. Elfving, and G. T. Herman. A method of iterative data refinement and its applications. Math. Methods Appl. Sci., 7:108–123, 1985. celu06 [926] N. Cesa Bianchi and G. Lugosi. Prediction, Learning and Games. Cambridge: Cambridge University Press. xii, 394 p., 2006. ance94 [927] A. E. Cetin and R. Ansari. Signal recovery from wavelet transform maxima. IEEE Trans. Signal Process., 42:194–196, 1994. ceteya94 [928] A. E. Cetin, A. H. Tewfik, and Y. Yardimci. Coding of ECG Signals by Wavelet Transform Extrema. In Proc. IEEE-SP Internat. Symp. on Time-Frequency and Time-Scale Analysis, pages 544–547, Philadelphia, PA, 1994. chpa75 [929] A. N. Chaba and R. K. Pathria. Evaluation of a class of lattice sums in arbitrary dimensions. J. Math. Phys., 16(7):1457–1460, 1975. chpa76 [930] A. N. Chaba and R. K. Pathria. Evaluation of lattice sums using Poisson’s summation formula. II. J. Phys. A, Math. Gen., 9:1411– 1423, 1976. chfrpa06 [931] I. Chalendar, E. Fricain, and J. R. Partington. Overcompleteness of sequences of reproducing kernels in model spaces. Integr. Equ. Oper. Theory, 56(1):45–56, 2006. ch03-2 [932] B. Chalmond. Modeling and Inverse Problems in Image Analysis. Springer, New York, NY, 2003. chdelelu98 [933] A. Chambolle, R. A. DeVore, N.-y. Lee, and B. J. Lucier. Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage. IEEE Trans. Image Process., 7(3):319–335, 1998. 85 chxu84 [934] C. Chamzas and W. Xu. An improved version of Papoulis-Gerchberg algorithm on band-limited extrapolation. IEEE Trans. Acoustics, Speech and Signal Processing, 32(2):437–440, 1984. chchshsh01 [935] R. H. Chan, T. F. Chan, L. Shen, and Z. Shen. A wavelet method for high-resolution image reconstruction with displacement errors. In Proceedings of the 2001 International Symposium of Intelligent Multimedia, Video and Speech Processing., pages 24–27, 2001. chchshsh03 [936] R. H. Chan, T. F. Chan, L. Shen, and Z. Shen. Wavelet algorithms for high-resolution image reconstruction. SIAM J. Sci. Comput., 24(4):1408–1432, 2003. chchshsh03-1 [937] R. H. Chan, T. F. Chan, L. Shen, and Z. Shen. Wavelet deblurring algorithms for spatially varying blur from high-resolution image reconstruction. Linear Algebra Appl., 366:139–155, 2003. chrishsh04-1 [938] R. H. Chan, S. D. Riemenschneider, L. Shen, and Z. Shen. Highresolution image reconstruction with displacement errors: a framelet approach. Int. J. Imaging System and Technology, 14:91–104, 2004. chrishsh04 [939] R. H. Chan, S. D. Riemenschneider, L. Shen, and Z. Shen. Tight frame: an efficient way for high-resolution image reconstruction. Appl. Comput. Harmon. Anal., 17(1):91–115, 2004. chshsh03 [940] R. H. Chan, L. Shen, and Z. Shen. Restoring chopped and nodded images by tight frames. In F. Luk, editor, Proc. SPIE, Advanced Signal Processing: Algorithms, Architectures, and Implementations, volume 5205 of Exploitation of Structures in Imaging and Signal Processing, pages 310–319, San Diego CA, August 2003. chshxi05 [941] R. H. Chan, Z. Shen, and T. Xia. Resolution enhancement for video clips: tight frame approach. In Proceedings of IEEE International Conference on Advanced Video and Signal-Based Surveillance, Como, Italy, Sept. 2005., pages 406–410, 2005. chsh05 [942] T. F. Chan and J. Shen. Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. SIAM, Philadelphia, PA, 2005. 86 chja93 [943] Chang T. and Jay Kuo C. C. Texture analysis and classification with tree-structured wavelettransform. IEEE Trans. Image Process., 2(4):429–441, October 1993. chki05 [944] E. Chang Young and H. Kim. Theta vectors and quantum theta functions. J. Phys. A, 38(19):4255–4263, 2005. chmu93 [945] S. Chanillo and B. Muckenhoupt. Weak type estimates for Cesaro sums of Jacobi polynomial series. Mem. Amer. Math. Soc., 487:90 p., 1993. chwo82 [946] J. A. Chao and W. A. Woyczynski. Martingale Theory in Harmonic Analysis and Banach Spaces. Proceedings of the NSF-CBMS Conference held at the Cleveland State University, Cleveland, Ohio, July 13-17, 1981. Springer, Berlin, Heidelberg, New York, 1982. ch83 [947] A.-M. Charbonnel. Calcul fonctionnel ‘a plusieurs variables pour des op’erateurs pseudodifferentiels dans rspn. Israel J. Math., 45:69–89, 1983. chcofo05 [948] M. Charina, C. Conti, and M. Fornasier. Adaptive frame schemes for magnetohydrodynamic flows. preprint, 2005. chjekekopfzi02 [949] M. Charina, K. Jetter, A. Kehrein, W. Kozek, G. E. Pfander, and G. Zimmermann. ISI/ICI comparison of DMT and wavelet based MCM schemes for time invariant channels. In J. Speidel, editor, Neue Kommunikationsanwendungen in Modernen Netzen ITG-Fachbericht, volume 171, pages 109–115, Berlin, 2002. VDE-Verlag. chpa05 [950] . Chassande Mottin and A. Pai. Discrete time and frequency WignerVille distribution: Moyal’s formula and aliasing. IEEE Signal Proc. Letters, 12(7):508– 511, 2005. ch95-3 [951] S. D. Chatterji. Proceedings of the International Congress of Mathematicians, ICM ’94. Birkhäuser, Basel, 1995. chkasr98 [952] S. Chaturvedi, A. K. Kapoor, and V. Srinivasan. A new orthogonalization procedure with an extremal property. J. Phys. A: Math. Gen., 31:L367–L370, 1998. 87 bachjakomemusr07 [953] A. Chebira, Y. Barbotin, C. Jackson, T. Merryman, G. Srinivasa, R. F. Murphy, and J. Kovacevic. A multiresolution approach to automated classification of protein subcellular location images. BMC Bioinformatics, 8:210, 2007. chko07-1 [954] A. Chebira and J. Kovacevic. Life Beyond Bases: The Advent of Frames (Part I). IEEE Signal Processing Magazine, 24(4):86–104, 2007. chko07-2 [955] A. Chebira and J. Kovacevic. Life Beyond Bases: The Advent of Frames (Part II). IEEE Signal Processing Magazine, 24(5):115–125, 2007. ch77 [956] C.-P. Chen. On a conjective given by R. Larsen. Tankany Math. J., 8(2):199–201, 1977. ch78 [957] C. P. Chen. On the intersection and the unions of Banach algebras. Tankany Math. J., 9(1):21–27, 1978. chqi93 [958] D. Chen and S. Qian. Discrete Gabor transform. IEEE Trans. Signal Process., 41(7):2429–2438, 1993. chhu05 [959] J. Chen and X. Huo. Sparse representations for multiple measurement vectors (MMV) in an over-complete dictionary. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ’05)., volume iv, pages 257–260, 2005. chhu06 [960] J. Chen and X. Huo. Theoretical results on sparse representations of multiple measurement vectors. IEEE Trans. Signal Process., 54(12):4634–4643, 2006. chhurixu06 [961] Q. Chen, N. Huang, S. Riemenschneider, and Y. Xu. A B-spline approach for empirical mode decompositions. Adv. Comput. Math., 24(1-4):171–195, 2006. chdosa98 [962] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis pursuit. SIAM J. Sci. Comput., 20(1):33–61, 1998. ch94-1 [963] V. C. Chen. Radar ambiguity function, time–varying matched filter, and optimum wavelet correlator. Opt. Eng., 33(7):2212–2216, 1994. 88 ch97-1 [964] V. C. Chen. Applications of time-frequency processing to radar imaging. Opt. Eng., 36(4):1152–1161, 1997. chli02 [965] V. C. Chen and H. Ling. Time-frequency Transforms for Radar Imaging and Signal Analysis. With a Foreword by William J. Miceli. Artech House, MA, 2002. ch93-1 [966] W. Chen. A new extrapolation algorithm for band-limited signals using the regularization method. IEEE Trans. Signal Process., 41(3):1048–1060, 1993. ch06-1 [967] W. Chen. An efficient method for an Ill-posed problem –bandlimited extrapolation by regularization. IEEE Trans. Signal Process., 54(12):4611–4618, dec 2006. chhaji05 [968] W. Chen, B. Han, and R.-Q. Jia. On simple oversampled A/D conversion in shift-invariant spaces. IEEE Trans. Inform. Theory, 51(2):648– 657, 2005. chit98 [969] W. Chen and S. Itoh. A sampling theorem for shift-invariant subspace. IEEE Trans. Signal Process., 46(10):2822–2824, 1998. chitsh98 [970] W. Chen, S. Itoh, and J. Shiki. Irregular sampling theorems for wavelet subspaces. IEEE Trans. Inform. Theory, 44(3):1131–1142, 1998. chitsh02 [971] W. Chen, S. Itoh, and J. Shiki. On sampling in shift invariant spaces. IEEE Trans. Inform. Theory, 48(10):2802–2810, 2002. chli06 [972] X. Chen and W. Li. A note on the perturbation bounds of eigenspaces for Hermitian matrices. J. Comput. Appl. Math., 196(1):338–346, 2006. chla89 [973] Y.-Z. Chen and K.-S. Lau. Some new classes of Hardy spaces. J. Funct. Anal., 84(2):255–278, 1989. chniye01 [974] Chen Sagiv, Nir A. Sochen, and Y. Y. Zeevi. Gabor Feature Space Diffusion via the Minimal Weighted Area Method. 2001. chsoze06 [975] Chen Sagiv, N. A. Sochen, and Y. Y. Zeevi. Integrated active contours for texture segmentation. IEEE Trans. Image Process., 15(6):1633– 1646, 2006. 89 ch81 [976] E. Cheney. Approximation Theory. 1981. e.XX [977] E. W. Cheney. Introduction to Approximation Theory (AMS/Chelsea Publication). ch01 [978] W. Cheney. Analysis for Applied Mathematics. Springer, New York, 2001. chhwshxiXX [979] C.-C. Cheng, W.-L. Hwang, Z. Shen, and T. Xia. Advanced motion compensation techniques for blocking artifacts reduction in 3-D video coding systems. In International Conference on Image Processing, Genova, Italy, Sept. 2005., pages 209–212. chhwshxi05-1 [980] C.-C. Cheng, W.-L. Hwang, Z. Shen, and T. Xia. A hybrid motion compensated 3-D video coding system for blocking artifacts. In Proceedings of Pacific Rim Conference on Multimedia, Jeju, Korea, November 2005., pages 535–546, 2005. chhwshxi05 [981] C.-C. Cheng, W.-L. Hwang, Z. Shen, and T. Xia. Advanced motion compensation techniques for blocking artifacts reduction in 3-D video coding systems. In International Conference on Image Processing, Genova, Italy, Sept. 2005., pages 209–212, 2005. chhwshxi06 [982] C.-C. Cheng, W.-L. Hwang, Z. Shen, and T. Xia. Subjective and objective comparison of advanced motion compensation methods for block artifact reduction in a 3-D wavelet coding system. IEEE Trans. Integrated Circuits and Systems for Video Technology, to appear, 2006. ch73 [983] C.-S. Cheng. Segal algebras and the multiplication by continuous characters. Chinese J. Math., 1:175–181, 1973. bechne02 [984] J. B. Cherrie, R. K. Beatson, and G. N. Newsam. Fast evaluation of radial basis functions: Methods for generalized multiquadrics in Rn . SIAM J. Sci. Comput., 23(5):1549–1571, 2002. chfr87 [985] F. Chiarenza and M. Frasca. Morrey spaces and Hardy-Littlewood maximal function. Rend. Mat. Appl. (7), 7:273–279, 1987. chku79 [986] A. K. Chilana and A. Kumar. Spectral synthesis in Segal algebras on hypergroups. Pacific J. Math., 80:59–76, 1979. 90 ch76 [987] A. G. Childs. On the lsp2-boundedness of pseudo-differential operators. Proc. Amer. Math. Soc., 61(2):252–254 (1977), 1976. chwu98 [988] P. Ching and Wu S. Q. On approximated sampling theorem and wavelet denoising for arbitrary waveform restoration. IEEE Trans. Circuits and Systems, 45(8):1102–1106, August 1998. chhoro07 [989] Y. Cho, S. Ro, and D. Hong. A New Channel Estimation Using Data-Dependent Pilot Symbols for MC-CDMA Systems With Chip Interleaving. IEEE Signal Processing Letters, 14(6):385–388, jun 2007. chhemo06 [990] J. Choi, B. Mondal, and R. W. J. Heath. Interpolation based unitary precoding for spatial multiplexing MIMO-OFDM with limited feedback. IEEE Trans. Signal Process., 54(12):4730–4740, 2006. chel90 [991] M. D. Choi and G. A. Elliott. Density of the selfadjoint elements with finite spectrum in an irrational rotation c∗ -algebra. Math. Scand., 67(1):73–86, 1990. chelyu90 [992] M. D. Choi, G. A. Elliott, and N. Yui. Gauss polynomials and the rotation algebra. Invent. Math., 99(2):225–246, 1990. chergaka93 [993] M. G. Choi, O. E. Erdogan, N. P. Galatsanos, and A. K. Katsaggelos. Multichannel regularized iterative restoration of image sequences. In Proc. SPIE, Visual Communications and Image Processing ’93, volume 2094 of Poster Session II, pages 1486–1497, Cambridge, MA, USA, 1993. ch02 [994] T. Chonavel. Statistical Signal Processing. Modelling and Estimation. Transl. from the French by Janet Ormrod. Incl. 1 CD-ROM. Springer, London, 2002. ch86 [995] G. Choquet. Une démonstration du théorème de Bochner-Weil par discrétisation du groupe. (A proof of the Bochner-Weil theorem by discretization of the group). Result. Math., 9:1–9, 1986. chde60 [996] G. Choquet and J. Deny. Sur l équation de convolution µ = µ ∗ σ. C. R. Acad. Sci. Paris S’er. I Math., 250:799–801, 1960. chna89 [997] B. Choudhary and S. Nanda. Functional Analysis with Applications. John Wiley and Sons, New York, 1989. 91 bechvo01 [998] S. Chountasis, A. Vourdas, and C. Bendjaballah. Fractional Fourier transform on the phase-space plane. In Bayesian Inference and Maximum Entropy Methods in Science and, volume 568 of AIP Conf. Proc., pages 468–475. Amer. Inst. Phys., Melville, NY, 2001. chnewa73 [999] J. Chover, P. Ney, and S. Wainger. Functions of probability measures. J. Anal. Math., 26:255–302, 1973. chte78 [1000] Y. S. Chow and H. Teicher. Probability Theory. Independence, Interchangeability, Martingales. Springer, New York, Heidelberg, Berlin, 1978. chte79 [1001] Y. S. Chow and H. Teicher. Representation Theory of Lie Groups. Proceedings of the SRC/LMS Research Symposium on Representations of Lie Groups, Oxford, 28 June - 15 July 1977. With the ed. Assistance of G. L. Luke. Cambridge University Press, Cambridge, 1979. chgrhose05 [1002] M. Christ, L. Grafakos, P. Honzı́k, and A. Seeger. Maximal functions associated with Fourier multipliers of Mikhlin-Hörmander type. Math. Z., 249(1):223–240, 2005. ch93 [1003] O. Christensen. Frame Decompositions in Hilbert Spaces. PhD thesis, Arhus Univ. and Univ. of Vienna, DK/AUSTRIA, 1993. ch93-2 [1004] O. Christensen. Frames and the projection method. Appl. Comput. Harmon. Anal., 1:50–53, 1993. ch95 [1005] O. Christensen. A Paley-Wiener Theorem for frames. Proc. Amer. Math. Soc., (123):2199–2202, 1995. ch95-1 [1006] O. Christensen. Frame perturbations. 123:1217–1220, 1995. ch95-2 [1007] O. Christensen. Frames and pseudo-inverses. J. Math. Anal. Appl., 195:401–414, 1995. ch96-2 [1008] O. Christensen. Atomic decomposition via projective group representations. Rocky Mountain J. Math., 26(4):1289–1312, 1996. ch96-1 [1009] O. Christensen. Frames containing a Riesz basis and approximation of the frame coefficients using finite-dimensional methods. J. Math. Anal. Appl., 199:256–270, 1996. 92 Proc. Amer. Math. Soc., ch96 [1010] O. Christensen. Moment problems and stability sesults for frames with applications to irregular sampling and Gabor frames. Appl. Comput. Harmon. Anal., 3(1):82–86, 1996. ch98 [1011] O. Christensen. Perturbation of frames and applications to Gabor frames. In H. G. Feichtinger and T. Strohmer, editors, Gabor Analysis and Algorithms: Theory and Applications, pages 193–209, 453–488. 1998. ch99 [1012] O. Christensen. Operators with closed range, pseudo-inverses, and perturbation of frames for a subspace. Canad. Math. Bull., 42(1):37– 45, 1999. ch00 [1013] O. Christensen. Finite-dimensional approximation of the inverse frame operator. J. Fourier Anal. Appl., 6(1):79–91, 2000. ch01-2 [1014] O. Christensen. Frames, Riesz bases, and discrete Gabor/wavelet expansions. Bull. Amer. Math. Soc. (N.S.), 38(3):273–291 (electronic), 2001. ch03 [1015] O. Christensen. An Introduction to Frames and Riesz Bases. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, 2003. ch05-1 [1016] O. Christensen. Pairs of dual Gabor frame generators with compact support and desired frequency localization. ESI preprints, 2005. ch06 [1017] O. Christensen. Pairs of dual Gabor frame generators with compact support and desired frequency localization. Appl. Comput. Harmon. Anal., 20(3):403–410, 2006. ch07-2 [1018] O. Christensen. A survey on frame theory, 2007. ch07 [1019] O. Christensen. Frames in general Hilbert spaces, construction of dual Gabor frames, construction of tight wavelet frames. Technical report, 2007. chch04 [1020] O. Christensen and K. L. Christensen. Approximation Theory From Taylor Polynomials to Wavelets. Birkhäuser, 2004. chdele00 [1021] O. Christensen, C. DeFlitch, and C. Lennard. Perturbation of frames for a subspace of a Hilbert space. Rocky Mountain J. Math., 30(4):1237–1249, 2000. 93 chdehe99 [1022] O. Christensen, B. Deng, and C. Heil. Density of Gabor frames. Appl. Comput. Harmon. Anal., 7(3):292–304, 1999. chel04 [1023] O. Christensen and Y. C. Eldar. Oblique dual frames and shiftinvariant spaces. Appl. Comput. Harmon. Anal., 17(1):48–68, 2004. chel05 [1024] O. Christensen and Y. C. Eldar. Generalized shift-invariant systems and frames for subspaces. J. Fourier Anal. Appl., 11(3):299–313, June 2005. chfazo01 [1025] O. Christensen, S. Favier, and F. Zó. Irregular wavelet frames and Gabor frames. Approx. Theory Appl., 17(3):90–101, 2001. chhe97 [1026] O. Christensen and C. Heil. Perturbations of Banach frames and atomic decompositions. Math. Nachr., 185:33–47, December 1997. chkikili05-1 [1027] O. Christensen, H. O. Kim, R. Y. Kim, and J. K. Lim. Perturbation of frame sequences in shift-invariant spaces. J. Geom. Anal., 15(2):181– 192, 2005. chkikili05 [1028] O. Christensen, H. O. Kim, R. Y. Kim, and J. K. Lim. Riesz sequences of translates and generalized duals with support on [0, 1]. ESI preprints, 2005. chli01 [1029] O. Christensen and A. M. Lindner. Lower bounds for finite wavelet and Gabor systems. Approx. Theory Appl., 17(1):18–29, 2001. chst03 [1030] O. Christensen and D. T. Stoeva. p-frames in separable Banach spaces. Adv. Comput. Math., 18(2-4):117–126, 2003. chst05 [1031] O. Christensen and T. Strohmer. The finite section method and problems in frame theory. J. Approx. Theory, 133(2):221–237, 2005. chsu06 [1032] O. Christensen and W. Sun. Stability of wavelet frames with matrix dilations. Proc. Amer. Math. Soc., 2006. ch01-1 [1033] R. Christensen. Advanced Linear Modeling. Multivariate, Time Series, and Spatial Data;nonparametric Regression and Response Surface Maximization. 2nd ed. Springer, New York, 2001. ch02-1 [1034] R. Christensen. Plane Answers to Complex Questions. The Theory of Linear Models. 3rd Edition. Springer, New York, NY, 2002. 94 ch84 [1035] C.-P. Chu. Some properties of potential algebras. Soochow J. Math., 10:11–14, 1984. chXX [1036] C. K. Chui. Wavelets: A Mathematical Tool for Signal Processing. ch88 [1037] C. K. Chui. Multivariate Splines. American Mathematical Society, Providence, RI, 1988. ch92-1 [1038] C. K. Chui. An Introduction to Wavelets. Wavelet Analysis and Its Applications. 1. Academic Press, Boston, MA, 1992. ch92 [1039] C. K. Chui. Wavelets: A Tutorial in Theory and Applications. Academic Press, Boston, 1992. ch94-2 [1040] C. K. Chui. Oversampled frame algorithms for real-time wavelet and wavelet packet frame decompositions and reconstructions. Opt. Eng., Bd.33/7:2108–2110, July 1994. ch97 [1041] C. K. Chui. Wavelets: a Mathematical Tool for Signal Analysis. SIAM, Philadelphia, PA, 1997. chscze89 [1042] C. K. Chui, W. Schempp, and K. Zeller. Multivariate Approximation Theory IV. Proceedings of the Conference at the Mathematical Reseach Institute at Oberwolfach, Black Forest, FRG, February 12-18, 1989. Birkhäuser, Basel, 1989. chsh94 [1043] C. K. Chui and X. Shi. Bessel sequences and affine frames. Appl. Comput. Harmon. Anal., 01.Jän:29–49, 1994. chsh00 [1044] C. K. Chui and X. Shi. Wavelets of Wilson type with arbitrary shapes. Appl. Comput. Harmon. Anal., 8(1):1–23, 2000. chshst98 [1045] C. K. Chui, X. Shi, and J. Stöckler. Affine frames, quasi-affine frames, and their duals. Adv. Comput. Math., 8(1-2):1–17, 1998. chsu06-2 [1046] C. K. Chui and Q. Sun. Affine frame decompositions and shiftinvariant spaces. Appl. Comput. Harmon. Anal., 20(1):74–107, 2006. ch97-2 [1047] F. R. K. Chung. Spectral Graph Theory. Regional Conference Series in Mathematics. 92. Providence, RI: American Mathematical Society (AMS). xi, 1997. 95 chchki96 [1048] J. Chung, S.-Y. Chung, and D. Kim. Characterizations of the Gelfand-Shilov spaces via Fourier transforms. Proc. Amer. Math. Soc., 124(7):2101–2108, 1996. ci02 [1049] P. G. Ciarlet. The Finite Element Methods for Elliptic Problems Repr, Unabridged Republ of the Orig 1978. Classics in Applied Mathematics. 40. Philadelphia, PA: SIAM. xxiv, 2002. civa05 [1050] O. Ciaurri and J. L. Varona. Two-weight norm inequalities for the Cesàro means of generalized Hermite expansions. J. Comput. Appl. Math., 178(1-2):99–110, 2005. ci69 [1051] J. Cigler. Normed ideals in L1 (G). Nederl. Akad. Wetensch. Proc. Ser. A, Ser. A(74):273–282, 1969. ci77 [1052] J. Cigler. Einführung in die Lineare Algebra und Geometrie. 2. Teil. Manzsche Verlags- und Universitätsbuchhandlung, Wien, 1977. cilomi79 [1053] J. Cigler, V. Losert, and P. W. Michor. Banach Modules and Functors on Categories of Banach Spaces, volume 46 of Lect. notes on Pure and Appl. Math. Dekker, Basel - New York, 1979. cire78 [1054] J. Cigler and H.-C. Reichel. Topologie. Eine Grundvorlesung. Bibliographisches Institut, Mannheim, Wien, Zürich, 1978. clme80 [1055] T. A. C. M. Claasen and W. F. Mecklenbräuker. The Wigner distribution - a tool for time-frequency signal analysis. I: Continuous-time signals. Philips J. Res., 35:217–250, 1980. clme80-1 [1056] T. A. C. M. Claasen and W. F. Mecklenbräuker. The Wigner distribution - a tool for time-frequency signal analysis. II: Discrete-time signals. Philips J. Res., 35:276–300, 1980. clme80-2 [1057] T. A. C. M. Claasen and W. F. Mecklenbräuker. The Wigner distribution - a tool for time-frequency signal analysis. III: Relations with other time-frequency signal transformations. Philips J. Res., 35:372– 389, 1980. cl89 [1058] J. J. Clark. Sampling and reconstruction of non-bandlimited signals. In William A. Pearlman, editor, Proc. SPIE, Visual Communications and Image Processing IV, volume 1199, pages 1556–1562, Philadelphia; PA (USA), Nov 1989. 96 cllapa85 [1059] J. J. Clark, M. R. Palmer, and P. D. Lawrence. A transformation method for the reconstruction of functions from nonuniformly spaced samples. IEEE Trans. Acoustics, Speech and Signal Processing, 33(5):1151– 1165, 1985. cleyfarata83 [1060] J. L. Clerc, P. Eymard, J. Faraut, M. Raos, and R. Takahasi. Analyse harmonique. (Icole d’iti d’analyse harmonique, Universiti de Nancy I, Septembre 15 au Octobre 3, 1980). Centre International de Mathematiques Pures et Appliquies, C, Nice, 1983. cofi00 [1061] M. Coates and W. Fitzgerald. Time-frequency signal decomposition using energy mixture models, 2000. co90-1 [1062] L. A. Coburn. Toeplitz operators, quantum mechanics, and mean oscillation in the Bergman metric. In Operator Theory, Operator Algebras and Applications, Proc Summer Res Inst, Durham/NH (USA) 1988, Proc Symp Pure Math 51, Pt 1, 97-104. 1990. co92 [1063] L. A. Coburn. Deformation estimates for the Berezin-Toeplitz quantization. Comm. Math. Phys., 149(2):415–424, 1992. co94 [1064] L. A. Coburn. Berezin-Toeplitz quantization. In Curto, Ral E (ed) et al, Algebraic Methods in Operator Theory Boston, MA: Birkhäuser 101-108. 1994. co99 [1065] L. A. Coburn. The measure algebra of the Heisenberg group. J. Funct. Anal., 161(2):509–525, 1999. co01-1 [1066] L. A. Coburn. On the Berezin-Toeplitz calculus. Proc. Amer. Math. Soc., 129(11):3331–3338, 2001. co01 [1067] L. A. Coburn. The Bargmann isometry and Gabor-Daubechies wavelet localization operators. In A. A. Borichev and Nikolai K. Nikolski, editors, Systems, Approximation, Singular Integral Operators, and related Topics Proceedings of the 11th International Workshop on Operator Theory and Applications, IWOTA 2000, Bordeaux, France, June 13-16, 2000, Operator Theory. Advances and applications. Vol. 129, pages 169–178. Birkhäuser, 2001. co05 [1068] L. A. Coburn. A Lipschitz estimate for Berezin’s operator calculus. Proc. Amer. Math. Soc., 133(1):127–131, 2005. 97 cori98 [1069] L. A. Coburn and M. A. Rieffel. Perspectives on Quantization. Proceedings of a 1996 AMS-IMS-SIAM Joint Summer Research Conference, Mt. Holyoke College, South Hadley, MA, USA, July 7–11, 1996., volume 214 of Contemporary Mathematics. American Mathematical Society (AMS), Providence, RI, 1998. coxi95 [1070] L. A. Coburn and J. Xia. Toeplitz algebras and Rieffel deformations. Comm. Math. Phys., 168(1):23–38, 1995. clco90 [1071] D. Cochran and J. J. Clark. On the sampling and reconstruction of time-warped band-limited signals. In ICASSP’90, pages 1539–1541, 1990. cojaop93 [1072] W. M. J. Coene, A. J. E. M. Janssen, and M. Op de Beeck. Ultraresolution on a FEG-TEM by phase retrieval through focus variation. Inst. Phys. Conf. Ser., 138:225, 1993. cojaopva92 [1073] W. M. J. Coene, A. J. E. M. Janssen, M. Op de Beeck, and D. van Dyck. Improving HRTEM performance by digital processing of focal image series: results from the CM20 FEG- -Super TWIN. Electron Optics Bulletin, 132:15–28, 1992. cojaopva92-2 [1074] W. M. J. Coene, A. J. E. M. Janssen, M. Op de Beeck, and D. van Dyck. Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy. Phys. Rev. Lett., 69:3743–3746, 1992. cojaopva92-1 [1075] W. M. J. Coene, A. J. E. M. Janssen, M. Op de Beeck, and D. van Dyck. Ultra-resolution with a FEG-TEM. Beitr. Elektronenmikroskop. Direktabb. Oberfl., 25:1–4, 1992. cojaopvavaza93 [1076] W. M. J. Coene, A. J. E. M. Janssen, M. Op de Beeck, D. van Dyck, E. J. van Zwet, and H. W. Zandbergen. Focus-variation image reconstruction in field emission TEM. In G. Bailey and C. Rieder, editors, Proc. Microscopy Society of America 51st Annual Meeting, pages 1070–1071, 1993. coopthva96 [1077] W. M. J. Coene, M. Op de Beeck, D. van Dyck, and A. Thust. Maximum-likelihood method for focus-variation image reconstruction in high resolution transmission electron microscopy. Ultramicroscopy, 64:109–135, 1996. 98 co90-2 [1078] A. Cohen. Ondelettes, analyses multirésolutions et filtres miroirs en quadrature. (Wavelets, multiscale analysis and quadrature mirror filters). Ann. Inst. H. Poincar’e Anal. Non Lin’eaire, 7(5):439–459, 1990. co03 [1079] A. Cohen. Numerical Analysis of Wavelet Methods. Studies in Mathematics and its Applications 32. Amsterdam: North-Holland. xviii., 2003. codadade03 [1080] A. Cohen, W. Dahmen, I. Daubechies, and R. A. DeVore. Harmonic analysis of the space BV. Rev. Mat. Iberoam., 19(1):235–263, 2003. codade01 [1081] A. Cohen, W. Dahmen, and R. A. DeVore. Adaptive wavelet methods for elliptic operator equations: convergence rates. Math. Comp., 70(233):27–75 (electronic), 2001. codade02 [1082] A. Cohen, W. Dahmen, and R. A. DeVore. Adaptive wavelet methods. II. Beyond the elliptic case. Found. Comput. Math., 2(3):203–245, 2002. codade07 [1083] A. Cohen, W. Dahmen, and R. A. DeVore. Near optimal approximation of arbitrary vectors from highly incomplete measurements. preprint, 2007. codade09 [1084] A. Cohen, W. Dahmen, and R. A. DeVore. Compressed sensing and best k-term approximation. J. Amer. Math. Soc., 22(1):211–231, 2009. coda93-1 [1085] A. Cohen and I. Daubechies. Non-separable bidimensional wavelet bases. Rev. Mat. Iberoam., 9(1):51–137, 1993. coda93 [1086] A. Cohen and I. Daubechies. Orthonormal bases of compactly supported wavelets. III: Better frequency resolution. SIAM J. Math. Anal., 24(2):520–527, 1993. codagu02 [1087] A. Cohen, I. Daubechies, and O. G. Guleryuz. On the importance of combining wavelet-based nonlinear approximation with coding strategies. IEEE Trans. Inform. Theory, 48(7):1895–1921, 2002. cohore04 [1088] A. Cohen, M. Hoffmann, and M. Reiss. Adaptive wavelet Galerkin methods for linear inverse problems. SIAM J. Numer. Anal., 42(4):1479–1501, 2004. 99 corasc00 [1089] A. Cohen, C. Rabut, and L. L. Schumaker. Curve and Surface Fitting. Saint-Malo Conference, Saint-Malo, France, July 1999. Vol. 2. Vanderbilt University Press, Nashville, TN, 2000. cory95 [1090] A. Cohen and R. D. Ryan. Wavelets and Multiscale Signal Processing. Transl. from the French. Applied Mathematics and Mathematical Computation. 11. London: Chapman & Hall. 232 p., 1995. co89-1 [1091] L. Cohen. Time-frequency distributions - a review. Proc. IEEE, 77(7):941–981, 1989. co95 [1092] L. Cohen. Time-Frequency Analysis: Theory and Applications. Prentice Hall Signal Processing Series. Prentice Hall, 1995. colo98 [1093] L. Cohen and P. Loughlin, editors. Recent Developments in TimeFrequency Analysis. Kluwer Academic Publishers, 1998. co74-1 [1094] R. R. Coifman. A real variable characterization of hp . Studia Math., 51:269–274, 1974. cogohrisro99 [1095] R. R. Coifman, M. Goldberg, T. Hrycak, M. Israeli, and V. Rokhlin. An improved operator expansion algorithm for direct and inverse scattering computations. Waves Random Media, 9(3):441–457, 1999. comame97 [1096] R. R. Coifman, G. Matviyenko, and Y. Meyer. Modulated MalvarWilson bases. Appl. Comput. Harmon. Anal., 4(1):58–61, 1997. come78 [1097] R. R. Coifman and Y. Meyer. Au dela des Opérateurs Pseudodifférentiels. Asterisque 57, 185 p., 1978. come91 [1098] R. R. Coifman and Y. Meyer. Remarques sur l’analyse de Fourier à fentre. (Remarks on windowed Fourier analysis). C. R. Math. Acad. Sci. ParisC. R. Acad. Sci. Paris Sér. I Math., 312:259–261, 1991. comest85 [1099] R. R. Coifman, Y. Meyer, and E. M. Stein. Some new function spaces and their applications to harmonic analysis. J. Funct. Anal., 62:304– 335, 1985. coro79 [1100] R. R. Coifman and R. Rochberg. Representation theorems for holomorphic and harmonic functions. In Harmonic Analysis in Euclidean Spaces, Part 1, Williamstown/ Massachusetts 1978, Proc Symp Pure Math, Vol 35, 459-460. 1979. 100 coro80 [1101] R. R. Coifman and R. Rochberg. Representation theorems for holomorphic and harmonic functions in Lp . Ast’erisque, 77:11–66, 1980. cowe71 [1102] R. R. Coifman and G. Weiss. Analyse harmonique non-commutative sur certains espaces homog‘enes. Etude de certaines int’egrales singuli‘eres. (Non-commutative harmonic analysis on certain homogeneous spaces. Study of certain singular integrals.)., volume 242 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-Heidelberg-New York, 1971. cowe77 [1103] R. R. Coifman and G. Weiss. Extensions of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc., 83(4):569–645, 1977. coze98 [1104] R. R. Coifman and Y. Y. Zeevi, editors. Signal and image representation in combined spaces. Wavelet analysis and its applications. Academic Press, San Diego, CA, 1998. co89 [1105] D. Colella. Contemporary Mathematics Commutative Harmonic Analysis. Proceedings of a SLU-GTE Conference held July 27-29, 1987. American Mathematical Society, Providence, RI, 1989. cohe94 [1106] D. Colella and C. Heil. Characterizations of scaling functions: Continuous solutions. SIAM J. Matrix Anal. Appl., 15(2):496–518, 1994. co82-1 [1107] R. Coleman. Espaces de Lorentz et espaces intersections et unions. volume I of Groupe de travail d’analyse harmonique, pages VII.1– VII.9. Université scientifique et medicale de Grenoble, laboratoire de mathématique pures associé au c.n.r.s., 1982. cosasost04 [1108] F. Colombo, I. Sabadini, F. Sommen, and D. C. Struppa. Analysis of Dirac Systems and Computational Algebra. Birkhäuser, MA, 2004. co82 [1109] L. Colzani. Fourier transform of distributions in Hardy spaces. Boll. Un. Mat. Ital. A (6), 1:403–410, 1982. co93 [1110] P. L. Combettes. The Foundations of Set Theoretic Estimation. Proceedings of the IEEE, 81(2):181–208, 1993. co97 [1111] P. L. Combettes. Convex Set Theoretic Image Recovery by Extrapolated Iterations of. IEEE Trans. Image Process., 6(4):493–506, 1997. 101 cotr90 [1112] P. L. Combettes and H. J. Trussell. Method of successive projections for finding a common point of sets in metric spaces. J. Optim. Theory Appl., 67(3):487–507, 1990. co71 [1113] C. V. Comisky. Multipliers of Banach Modules. Nederl. Akad. Wetensch. Proc. Ser. A, Ser. A(74):32–38, 1971. co73 [1114] A. Connes. Une classification des facteurs de type III. Ann. Sci. École Norm. Sup. (4), 6:133–252, 1973. co80 [1115] A. Connes. c∗ algebres et geometrie differentielle. C. R. Acad. Sci. Paris S’er. A-B, 290(13):A599–A604, 1980. co81-2 [1116] A. Connes. An analogue of the Thom isomorphism for crossed products of a c∗ -algebra by an action of bf r. Adv. Math., 39(1):31–55, 1981. co94-1 [1117] A. Connes. Noncommutative Geometry. Academic Press Inc., San Diego, CA, 1994. coma08 [1118] A. Connes and M. Marcolli. Noncommutative Geometry, Quantum Fields and Motives, volume 55. American Mathematical Society, Providence, RI, 2008. como79 [1119] A. Connes and H. Moscovici. The L2 -index theorem for homogeneous spaces. Bull. Amer. Math. Soc. (N.S.), 1(4):688–690, 1979. cota77 [1120] A. Connes and M. Takesaki. The flow of weights on factors of type III. Tohoku Math. J., 29(4):473–575, 1977. cosc77-1 [1121] W. C. Connett and A. L. Schwartz. A failure of stability under complex interpolation. Canad. J. Math., 29:1167–1170, 1977. cosc77 [1122] W. C. Connett and A. L. Schwartz. The Theory of Ultraspherical Multipliers. Deutscher Taschenbuch Verlag, München, 1977. cowe85 [1123] C. Constantinescu and K. Weber. Integration Theory. Volume 1: Measure and Integral. In collab. with Alexia Sontag. Transl. from the German. John Wiley and Sons, New York etc., 1985. co74 [1124] F. Constantinescu. Distributionen und Ihre Anwendung in der Physik. B. G. Teubner, Stuttgart, 1974. 102 codega03 [1125] E. Conte, A. De Maio, and C. Galdi. CFAR detection of multidimensional signals: an invariant approach. IEEE Trans. Signal Process., 51(1):142– 151, 2003. co69-2 [1126] F. Conti. Su alcuni spazi funzionali e loro applicazioni ad equazioni differenziali di tipo ellittico. Boll. Un. Mat. Ital., 2:554–569, 1969. co78 [1127] J. B. Conway. Functions of One Complex Variable. Springer-Verlag, 1978. co90 [1128] J. B. Conway. A Course in Functional Analysis. 2nd ed. Springer, New York, 1990. co00 [1129] J. B. Conway. A Course in Operator Theory. American Mathematical Society (AMS), RI, 2000. co98 [1130] J. Cooper. Introduction to Partial Differential Equations with MATLAB. Birkhäuser, Boston, 1998. co60 [1131] J. L. B. Cooper. Positive definite functions of a real variable. Proc. Lond. Math. Soc., III. Ser., 10:53–66, 1960. co69 [1132] W. A. Coppel. J. B. Fourier - On the occasion of his two hundredth birthday. Amer. Math. Monthly, 76:468–483, 1969. co92-1 [1133] L. Cordell. A scattered equivalent-source method for interpolation and gridding of potential field data in three dimensions. Geophys. J. Internat., 57(4):629–636, 1992. co05-1 [1134] E. Cordero. m-channel MRA and application to anisotropic Sobolev spaces. Int. J. Wavelets Multiresolut. Inf. Process., 3(2):153–166, 2005. codenota06 [1135] E. Cordero, F. DeMari, K. Nowak, and A. Tabacco. Analytic features of reproducing groups for the metaplectic representation. J. Fourier Anal. Appl., 12(2):157–180, 2006. cofelu08 [1136] E. Cordero, H. G. Feichtinger, and F. Luef. Banach Gelfand triples for Gabor analysis. In Pseudo-differential Operators, volume 1949 of Lecture Notes in Mathematics, pages 1–33. Springer, Berlin, 2008. 103 cogr03-1 [1137] E. Cordero and K. Gröchenig. Time-frequency analysis of localization operators. J. Funct. Anal., 205(1):107–131, 2003. cogr04 [1138] E. Cordero and K. Gröchenig. Localization of frames II. Appl. Comput. Harmon. Anal., 17(1):29–47, 2004. cogr05 [1139] E. Cordero and K. Gröchenig. Necessary conditions for Schatten class localization operators. Proc. Amer. Math. Soc., 133(12):3573–3579, 2005. cogr06 [1140] E. Cordero and K. Gröchenig. Symbolic calculus and Fredholm property for localization operators. J. Fourier Anal. Appl., 12(4):371–392, 2006. cogr07 [1141] E. Cordero and K. Gröchenig. On the product of localization operators. In M. Wong, editor, Modern Trends in Pseudo-differential Operators, volume 172 of Oper. Theory Adv. Appl., pages 279–295. Birkhäuser, Basel, 2007. coni08-1 [1142] E. Cordero and F. Nicola. Strichartz estimates in Wiener amalgam spaces for the Schrödinger equation. Math. Nachr., 281(1):25–41, 2008. cook07 [1143] E. Cordero and K. Okoudjou. Multilinear localization operators. J. Math. Anal. Appl., 325(2):1103–1116, 2007. copirote05 [1144] E. Cordero, S. Pilipovic, L. Rodino, and N. Teofanov. Localization operators and exponential weights for modulation spaces. Mediterr. J. Math., 2(4):381–394, 2005. coro05 [1145] E. Cordero and L. Rodino. Wick calculus: a time-frequency approach. Osaka J. Math., 42(1):43–63, 2005. coro08 [1146] E. Cordero and L. Rodino. Short-time Fourier transform analysis of localization operators. volume 451, pages 47–68. Providence, RI: American Mathematical Society (AMS), 2008. cota04 [1147] E. Cordero and A. Tabacco. Localization operators via time-frequency analysis. In Advances in Pseudo-differential Operators, volume 155 of Oper. Theory Adv. Appl., pages 131–147. Birkhäuser, 2004. 104 co79 [1148] H. O. Cordes. Elliptic Pseudo-Differential Operators - An Abstract Theory, volume 756 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-Heidelberg-New York, 1979. cohe68 [1149] H. O. Cordes and E. A. Herman. Gel’fand theory of pseudo differential operators. Amer. J. Math., 90:681–717, 1968. co81-1 [1150] A. Cordoba. Some remarks on the Littlewood-Paley theory. Rend. Circ. Mat. Palermo (2), Suppl. 1,:75–80, 1981. co88 [1151] A. Cordoba. La formule sommatoire de Poisson. C. R. Acad. Sci. Paris S’er. I Math., 306(8):373–376, 1988. cofe78 [1152] A. Cordoba and C. Fefferman. Wave packets and Fourier integral operators. Comm. Partial Differential Equations, 3:979–1005, 1978. coma93 [1153] G. Cortelazzo and R. Manduchi. On the determination of all the sublattices of preassigned index and its application to multidimensional subsampling. IEEE Trans. Circuits and Systems, 3(4):318–320, August 1993. cova95 [1154] C. Cortes and V. N. Vapnik. Support-vector networks. Mach. Learn., 20(3):273–297, 1995. cosz82 [1155] L. J. Corwin and R. H. Szczarba. Multivariable Calculus. Marcel Dekker, New York, Basel, 1982. co59 [1156] J. P. Costas. Poisson,Shannon, and the Radio Amateur. Proc. IRE, 47:2058–2068, December 1959. comi99 [1157] T. P. Costello and W. B. Mikhael. Asymmetric, space-variant point spread function model for aspherical lens optical system. In Proceedings of the 1999 IEEE International Symposium on Circuits and Systems, 1999. ISCAS ’99., volume 4, pages 64–67, 1999. co72 [1158] M. G. Cowling. Extension of multipliers by periodicity. Bull. Austral. Math. Soc., 6:263–285, 1972. co75 [1159] M. G. Cowling. Functions which are restrictions of Lp -multipliers. Trans. Amer. Math. Soc., 213:35–51, 1975. 105 co76 [1160] M. G. Cowling. Extension of Fourier Lp − Lq multipliers. Trans. Amer. Math. Soc., 213:1–33, 1976. co78-1 [1161] M. G. Cowling. Some applications of Grothendieck’s theory of topological tensor products in harmonic analysis. Math. Ann., 232:273– 285, 1978. co81 [1162] M. G. Cowling. A remark on twisted convolution. Rend. Circ. Mat. Palermo (2) Suppl., 1:203–209, 1981. co83 [1163] M. G. Cowling. Pointwise behaviour of solutions to Schrödinger equations. In Harmonic Analysis, Proc Conf, Cortona/Italy 1982, volume 992 of Lect. Notes Math., pages 83–90. Springer, 1983. cofe84 [1164] M. G. Cowling and G. Fendler. On representations in Banach spaces. Math. Ann., 266:307–315, 1984. cofo76 [1165] M. G. Cowling and J. J. F. Fournier. Inclusions and noninclusion of spaces of convolution operators. Trans. Amer. Math. Soc., 221:59–95, 1976. coko84 [1166] M. G. Cowling and A. Korányi. Harmonic analysis on Heisenberg type groups from a geometric viewpoint. In Lie Group Representations III, Proc Spec Year, College Park/Md 1982- 83, Lect Notes Math 1077, 60-100. 1984. coma82 [1167] M. G. Cowling and A. M. Mantero. Examples of twisted convolution operators. In Harmonic Analysis, Proc Conf, Minneapolis 1981, Lect Notes Math 908, 210-216. 1982. copr83 [1168] M. G. Cowling and J. F. Price. Generalisations of Heisenberg’s inequality. In Harmonic Analysis, Proc Conf, Cortona/Italy 1982, Lect Notes Math 992, 443-449. 1983. copr84 [1169] M. G. Cowling and J. F. Price. Bandwidth versus time concentration: the Heisenberg-Pauli-Weyl inequality. SIAM J. Math. Anal., 15(1):151–165, 1984. cr07 [1170] Craig Larman. Agile and Iterative Development. Addison-Wesley Publishing Company, 2007. 106 crscwi02 [1171] R. J. M. Cramer, R. A. Scholtz, and M. Z. Win. Evaluation of an ultrawide-band propagation channel. IEEE Trans. Antennas and Propagation, 50(5):561–570, 2002. cr85 [1172] B. D. Craven. Generalized functions for applications. J. Austral. Math. Soc. Ser. B, 26:362–374, 1985. crka82 [1173] H. Cremers and D. Kadelka. A note on compactness in Banach spaces. Manuscripta Math., 39:219–231, 1982. crna94 [1174] G. Cristobal and R. Navarro. Space and frequency variant image enhancement based on a Gabor representation. Pattern Recognition Lett., 15(3):273 – 277, 1994. crra83 [1175] R. Crochiere and L. R. Rabiner. Multirate Digital Signal Processing. Prentice–Hall, New Jersey, 1983. crflwe76 [1176] R. Crochiere, S. A. Webber, and J. L. Flanagan. Digital coding of speech in sub-bands. Bell System Tech. J., 55:1069–1085, 1976. cr90 [1177] G. Crombez. Image restoration by convex combinations of convex projections. Glas. Mat. Ser. III, 25 (45):87–93, 1990. cr91 [1178] G. Crombez. Image recovery by convex combinations of projections. J. Math. Anal. Appl., 155(2):413–419, 1991. cr92 [1179] G. Crombez. Parallel methods in image recovery by projections onto convex sets. Czechoslovak Math. J., 42(3):445–450, 1992. cr93-1 [1180] G. Crombez. Parallel methods in image recovery with consistent and inconsistent constraints. Simon Stevin, 67(1-2):133–143, 1993. cr93 [1181] G. Crombez. Weak and norm convergence of a parallel projection method in Hilbert spaces. Appl. Math. Comput., 56(1):35–48, 1993. cr95-2 [1182] G. Crombez. A parallel projection method based on sequential most remote set in convex feasibility problems. Appl. Math. Comput., 72(23):113–124, 1995. cr95-1 [1183] G. Crombez. Finding projections onto the intersection of convex sets in Hilbert spaces. Numer. Funct. Anal. Optimization, 16(5-6):637– 652, 1995. 107 cr95 [1184] G. Crombez. Viewing parallel projection methods as sequential ones in convex feasibility problems. Trans. Amer. Math. Soc., 347(7):2575– 2583, 1995. cr96 [1185] G. Crombez. Solving stochastic convex feasibility problems in Hilbert spaces. Numer. Funct. Anal. Optimization, 17(9-10):877–892, 1996. cr97-1 [1186] G. Crombez. An adaptive parallel projection method for solving convex feasibility problems. J. Appl. Anal., 3(2):269–284, 1997. cr97 [1187] G. Crombez. Finding projections onto the intersection of convex sets in Hilbert spaces. II. Approx. Theory Appl., 13(4):75–87, 1997. cr97-2 [1188] G. Crombez. Solving convex feasibility problems by a parallel projection method with geometrically-defined parameters. Appl. Anal., 64(3-4):277–290, 1997. crgo78 [1189] G. Crombez and W. Govaerts. Compact convolution operators between lp (g)-spaces. Colloq. Math., 39:325–329, 1978. crgo78-1 [1190] G. Crombez and W. Govaerts. Weakly compact convolution operators in l1 (g). Simon Stevin, 52:65–72, 1978. bacrno98 [1191] M. S. Crouse, R. D. Nowak, and R. G. Baraniuk. Wavelet-based statistical signal processing using hidden Markov models. IEEE Trans. Signal Process., 46(4):886–902, 1998. crl.te04 [1192] M. Cruz and G. Teschke. A new method to reconstruct radar reflectivity and Doppler information. Technical report, 2004. csja99 [1193] N. Csizmadia and A. J. E. M. Janssen. Estimating the integral nonlinearity of A/D-converters via the frequency domain. In Proceedings. International Test Conference, 1999., pages 757–762, 1999. cu03 [1194] F. e. . Cucker. Handbook of Numerical Analysis. Vol. XI. Special Volume: Foundations of Computational Mathematics. Handbook of Numerical Analysis 11. Amsterdam: North-Holland. xii, 2003. cush97 [1195] F. e. . Cucker and M. Shub. Foundations of Computational Mathematics Selected Papers Based of A Conference, Held at IMPA in Rio de Janeiro, January 1997, volume 312 of London Mathematical Society Lecture Note Series. Springer, Cambridge, 1997. 108 cu03-1 [1196] Z. Cuckovic. Berezin versus Mellin. J. Math. Anal. Appl., 287(1):234– 243, 2003. cuya05 [1197] L. Cui and Q. Yang. On the generalized Morrey spaces. Siberian Math. J., 46(1):133–141, 2005. cugamape06 [1198] G. P. Curbera, J. Garcı́a Cuerva, J. M. Martell, and C. Pérez. Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals. Adv. Math., 203(1):256–318, 2006. cufi66 [1199] P. C. j. Curtis and A. Figa Talamanca. Factorization theorems for Banach algebras. In Function Algebras, Proc. Int. Symp. Tulane Univ. 1965, pages 169–185, Chicago, IL, 1966. Scott-Foreman. cunava03 [1200] M. Cushman, M. J. Narasimha, and P. P. Vaidyanathan. Finitechannel chromatic derivative filter banks. IEEE Signal Processing Letters, 10(1):15–17, 2003. cv95 [1201] Z. Cvetkovic. Oversampled modulated filter banks and tight Gabor frames in `2 (Z). In ICASSP ’95: Proceedings of the Acoustics, Speech, and Signal Processing, 1995. on International Conference, pages 1456–1459, Washington, DC, USA, 1995. IEEE Computer Society. cv98 [1202] Z. Cvetkovic. Short-time Fourier analysis-a novel window design procedure. IEEE International Conference on Acoustics,Speech and Signal Processing, 3:1773–1776, May 1998. cv00 [1203] Z. Cvetkovic. On discrete short-time Fourier analysis. IEEE Trans. Signal Process., 48(9):2628–2640, 2000. cvda00 [1204] Z. Cvetkovic and I. Daubechies. Single-Bit Oversampled A/D Conversion with Exponential Accuracy in the Bit-Rate. page 343, 2000. cvve98 [1205] Z. Cvetkovic and M. Vetterli. Oversampled filter banks. IEEE Trans. Signal Process., 46(5):1245–1255, May 1998. cvve98-1 [1206] Z. Cvetkovic and M. Vetterli. Tight Weyl-Heisenberg frames in l2(Z). IEEE Trans. Signal Process., 46(5):1256–1259, May 1998. 109 cwenkupesp02 [1207] M. Cwikel, M. Englis, A. Kufner, L.-E. Persson, and G. Sparr. Function Spaces, Interpolation Theory and Related Topics. Walter de Gruyter, Berlin, 2002. cwke01 [1208] M. Cwikel and U. Keich. Optimal decompositions for the k-functional for a couple of Banach lattices. Ark. Mat., 39(1):27–64, 2001. cwnisc03 [1209] M. Cwikel, P. G. Nilsson, and G. Schechtman. Interpolation of weighted Banach lattices. A characterization of relatively decomposable Banach lattices. Mem. Amer. Math. Soc., 787:127 p., 2003. cwpe84 [1210] M. Cwikel and J. Peetre. Interpolation Spaces and Allied Topics in Analysis. Proceedings of the Conference held in Lund, Sweden, August 29 - September 1, 1983. Springer, Berlin, 1984. cwpesawa88 [1211] M. Cwikel, J. Peetre, Y. Sagher, and H. Wallin. Function Spaces and Applications. Proceedings of the US-Swedish Seminar held in Lund, Sweden, June 15-21, 1986. Springer, Berlin, 1988. cy83 [1212] H. L. Cycon. Absence of singular continuous spectrum for two-body Schrödinger operators with long-range potentials (a new proof). Proc. R. Soc. Edinb., Sect. A, 94:61–69, 1983. cy85 [1213] H. L. Cycon. Resonances defined by modified dilations. Helv. Phys. Acta, 58(6):969–981, 1985. cype85 [1214] H. L. Cycon and P. A. Perry. Local time decay of high energy scattering states for the Schrödinger equation. Math. Z., 188:125–142, 1985. cz03 [1215] W. Czaja. Boundedness of pseudodifferential operators on modulation spaces. J. Math. Anal. Appl., 284(1):389–396, 2003. cz08 [1216] W. Czaja. Remarks on Naimark’s duality. Proc. Amer. Math. Soc., 136(3):867–871, 2008. czkusp05-1 [1217] W. Czaja, G. Kutyniok, and D. Speegle. On Beurling dimension. preprint, 2005. czkusp06 [1218] W. Czaja, G. Kutyniok, and D. Speegle. Geometry of sets of parameters of wave packet frames. Appl. Comput. Harmon. Anal., 20(1):108– 125, 2006. 110 czpo06 [1219] W. Czaja and A. M. Powell. Recent developments in the Balian–Low theorem. In C. Heil, editor, Harmonic Analysis and Applications. In Honor of John J. Benedetto, Applied and Numerical Harmonic Analysis. Birkhäuser Boston, 2006. czrz99 [1220] W. Czaja and Z. Rzeszotnik. Two remarks about spectral asymptotics of pseudodifferential operators. Colloq. Math., 80(1):131–145, 1999. czrz02 [1221] W. Czaja and Z. Rzeszotnik. Pseudodifferential operators and Gabor frames: spectral asymptotics. Math. Nachr., 233/234:77–88, 2002. czrz03 [1222] W. Czaja and Z. Rzeszotnik. Function spaces and classes of pseudodifferential operators. Tohoku Math. J., 55(1):131–140, 2003. czzi07 [1223] W. Czaja and J. Zienkiewicz. Atomic characterization of the Hardy space h1l of one dimensional Schroedinger operators. Proc. Amer. Math. Soc., to appear, 2007. da88-2 [1224] R. Dabrowski. On Fourier coefficients of a continuous periodic function of bounded entropy norm. Bull. Amer. Math. Soc. (N.S.), 18(1):49–51, 1988. dake82 [1225] B. E. J. Dahlberg and C. E. Kenig. A note on the almost everywhere behavior of solutions to the Schrödinger equation. In Harmonic Analysis, Proc Conf, Minneapolis 1981, volume 908 of Lect. Notes Math., pages 205–209, 1982. dakumasastteXX [1226] S. Dahlke, G. Kutyniok, P. Maass, C. Sagiv, H.-G. Stark, and G. Teschke. The uncertainty principle associated with the continuous shearlet transform. dakumasastte08 [1227] S. Dahlke, G. Kutyniok, P. Maass, C. Sagiv, H.-G. Stark, and G. Teschke. The uncertainty principle associated with the continuous shearlet transform. Int. J. Wavelets Multiresolut. Inf. Process., 6(2):157–181, 2008. dalete03 [1228] S. Dahlke, V. Lehmann, and G. Teschke. Applications of wavelet methods to the analysis of meteorological radar data - an overview. Arabian J. Sci. Engrg., 28:3–44, 2003. 111 dama02 [1229] S. Dahlke and P. Maaß. An outline of adaptive wavelet Galerkin methods for Tikhonov regularization of inverse parabolic problems. In Proceeding of the International Conference on Inverse Problems, pages 56–66, 2002. damate04 [1230] S. Dahlke, P. Maaß, and G. Teschke. Reconstruction of Reflectivity Densities in a Narrowband Regime. IEEE Trans. Antennas and Propagation, 52(6):1603–1606, 2004. danosi06 [1231] S. Dahlke, E. Novak, and W. Sickel. Optimal approximation of elliptic problems by linear and nonlinear mappings. I. J. Complexity, 22(1):29–49, 2006. danosi06-1 [1232] S. Dahlke, E. Novak, and W. Sickel. Optimal approximation of elliptic problems by linear and nonlinear mappings. II. J. Complexity, 22(4):549–603, 2006. danosi07 [1233] S. Dahlke, E. Novak, and W. Sickel. Optimal approximation of elliptic problems by linear and nonlinear mappings III: Frames. 2007. dastte04-2 [1234] S. Dahlke, G. Steidl, and G. Teschke. Coorbit spaces and Banach frames on homogeneous spaces with applications to the sphere. Adv. Comput. Math., 21(1-2):147–180, 2004. dastte04-1 [1235] S. Dahlke, G. Steidl, and G. Teschke. Weighted coorbit spaces and Banach frames on homogeneous spaces. J. Fourier Anal. Appl., 10(5):507–539, 2004. dawe94 [1236] S. Dahlke and I. Weinreich. Wavelet bases adapted to pseudodifferential operators. Appl. Comput. Harmon. Anal., 1(3):267–283, 1994. da93-2 [1237] G. Dahlquist. A ’multigrid’ extention of the FFT for the numerical inversion of fourier and Laplace transforms. BIT, 33:85–112, 1993. dare06 [1238] W. Dahmen and A. Reusken. Numerik für Ingenieure und Naturwissenschaftler. (Numerical Analysis for Engineers and Natural Scientists.). Springer-Lehrbuch. Springer, Berlin, 2006. dasc99 [1239] W. Dahmen and R. Schneider. Composite wavelet bases for operator equations. Math. Commun., 68(228):1533–1567, 1999. 112 dasc99-1 [1240] W. Dahmen and R. Schneider. Wavelets on manifolds. I: Construction and domain decomposition. SIAM J. Math. Anal., 31(1):184–230, 1999. aidaeslawi03 [1241] H. G. Dales, P. Aiena, J. Eschmeier, K. Laursen, and G. A. Willis. Introduction to Banach Algebras, Operators, and Harmonic Analysis. Cambridge University Press, Cambridge, 2003. daha81 [1242] H. G. Dales and W. K. Hayman. Esterle’s proof of the Tauberian theorem for Beurling algebras. Ann. Inst. Fourier (Grenoble), 31(4):141– 150, 1981. cldajazo05 [1243] A. J. Daley, S. R. Clark, D. Jaksch, and P. Zoller. Numerical analysis of coherent many-body currents in a single atom transistor. Phys. Rev. A, pages 043618 1–9, 2005. da05 [1244] Damian Marelli. A functional analysis approach to subband system approximation and identification. 2005. damamu07 [1245] L. D’Amore, L. Marcellino, and A. Murli. Image sequence inpainting: Towards numerical software for detection and removal of local missing data via motion estimation. J. Comput. Appl. Math., 198(2):396–413, 2007. da69 [1246] C. Dampney. The equivalent source technique. Geophys. J. Internat., 34(1):39–53, 1969. dape01 [1247] S. Dang and L. Peng. Reproducing kernels and time-frequency localization operators. Appl. Anal., 80(3-4):431–447, 2001. dape04 [1248] S. Dang and L. Peng. Reproducing spaces and localization operators. Acta Math. Sin. (Engl. Ser.), 20(2):255–260, 2004. dago92 [1249] E. P. Darbyshire and G. F. Gott. A chirp modem incorporating interference excision. IEE Proc. Commun., 139(4):395–406, August 1992. da82 [1250] C. Datry. Modules de Banach et algebres de Segal du type ∪q D. Bull. Sci. Math. (2), 106:235–258, 1982. da82-1 [1251] C. Datry. Multiplicateurs d’un L1 (g)-module de Banach consideres comme multiplicateurs d’une certaine algebre de Banach. volume I of 113 Groupe de travail d’analyse harmonique, pages IV.1–IV.16. Université scientifique et medicale de Grenoble, laboratoire de mathématique pures associé au c.n.r.s., 1982. damu82 [1252] C. Datry and G. Muraz. Multiplicateurs d’une algebre de Banach commutative semi-simple reguliere. volume I of Groupe de travail d’analyse harmonique, pages II.1–II.15. Université scientifique et medicale de Grenoble, laboratoire de mathématique pures associé au c.n.r.s., 1982. damu95 [1253] C. Datry and G. Muraz. Analyse harmonique dans les modules de Banach. I: Propriétés générales. (Harmonic analysis on Banach modules. I: General properties). Bull. Sci. Math., 119(4):299–337, 1995. damu96 [1254] C. Datry and G. Muraz. Analyse harmonique dans les modules de Banach II: Presque-périodicité et ergodicité. (Harmonic analysis in Banach modules II: Almost-periodicity and ergodicity). Bull. Sci. Math., 120(6):493–536, 1996. daXX [1255] I. Daubechies. Where do wavelets come from? - A personal point of view. da80 [1256] I. Daubechies. On the distributions corresponding to bounded operators in the Weyl quantization. Comm. Math. Phys., 75(3):229–238, 1980. da83 [1257] I. Daubechies. Continuity statements and counterintuitive examples in connection with Weyl quantization. J. Math. Phys., 24(6):1453– 1461, 1983. da88-1 [1258] I. Daubechies. Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math., 41(7):909–996, 1988. da88 [1259] I. Daubechies. Time-frequency localization operators: a geometric phase space approach. IEEE Trans. Inform. Theory, 34(4):605–612, July 1988. da90 [1260] I. Daubechies. The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inform. Theory, 36(5):961–1005, 1990. 114 da92 [1261] I. Daubechies. Ten Lectures on Wavelets, volume 61 of CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, PA, 1992. da93-8 [1262] I. Daubechies. Different Perspectives on Wavelets American Mathematical Society Short Course on Wavelets and Applications, held in San Antonio, TX (USA), January 11-12, 1993. 1993. da93-1 [1263] I. Daubechies. Orthonormal bases of compactly supported wavelets. II: Variations on a theme. SIAM J. Math. Anal., 24(2):499–519, 1993. dadede04 [1264] I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math., 57(11):1413–1457, 2004. dafolo08 [1265] I. Daubechies, M. Fornasier, and I. Loris. Accelerated projected gradient methods for linear inverse problems with sparsity constraints. J. Fourier Anal. Appl., 14(5-6):764–792, 2008. dagr80 [1266] I. Daubechies and A. Grossmann. An integral transform related to quantization. J. Math. Phys., 21:2080–2090, 1980. dagr88 [1267] I. Daubechies and A. Grossmann. Frames in the Bargmann Hilbert space of entire functions. Comm. Pure Appl. Math., 41(2):151–164, 1988. dagrme86 [1268] I. Daubechies, A. Grossmann, and Y. Meyer. Painless nonorthogonal expansions. J. Math. Phys., 27(5):1271–1283, May 1986. daha02 [1269] I. Daubechies and B. Han. The canonical dual frame of a wavelet frame. Appl. Comput. Harmon. Anal., 12(3):269–285, 2002. daharosh03 [1270] I. Daubechies, B. Han, A. Ron, and Z. Shen. Framelets: MRAbased constructions of wavelet frames. Appl. Comput. Harmon. Anal., 14(1):1–46, 2003. dajajo91 [1271] I. Daubechies, S. Jaffard, and J. L. Journé. A simple Wilson orthonormal basis with exponential decay. SIAM J. Math. Anal., 22:554–573, 1991. daja93 [1272] I. Daubechies and A. J. E. M. Janssen. Two theorems on lattice expansions. IEEE Trans. Inform. Theory, 39(1):3–6, January 1993. 115 daklpa87 [1273] I. Daubechies, J. R. Klauder, and T. Paul. Wiener measures for path integrals with affine kinematic variables. J. Math. Phys., 28:85–102, 1987. dala91 [1274] I. Daubechies and J. C. Lagarias. Two-scale difference equations. I: Existence and global regularity of. SIAM J. Math. Anal., 22(5):1388– 1410, 1991. dala92 [1275] I. Daubechies and J. C. Lagarias. Two-scale difference equations. II: Local regularity, infinite products. SIAM J. Math. Anal., 23(4):1031– 1079, 1992. dalala95 [1276] I. Daubechies, H. J. Landau, and Z. Landau. Gabor time-frequency lattices and the Wexler-Raz identity. J. Fourier Anal. Appl., 1(4):437– 478, 1995. dapa88 [1277] I. Daubechies and T. Paul. Time-frequency localisation operators a geometric phase space approach: II. The use of dilations. Inverse Problems, 4(3):661–680, 1988. date05 [1278] I. Daubechies and G. Teschke. Variational image restoration by means of wavelets: simultaneous decomposition, deblurring, and denoising. Appl. Comput. Harmon. Anal., 19(1):1–16, 2005. dato02 [1279] L. Daudet and B. Torrésani. Hybrid representations for audiophonic signal encoding. Signal Process., 82(11):1595–1617, November 2002. da88-3 [1280] J. G. Daugman. Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression. IEEE Trans. Acoustics, Speech and Signal Processing, 36(7):1169–1179, 1988. da41 [1281] David Vernon Widder. The Laplace Transform. 1941. dade02 [1282] J. Davidson and R. M. de Jong. Consistency of kernel variance estimators for sums of semiparametric linear processes. Econom. J., 5(1):160–175, 2002. da96 [1283] K. R. Davidson. C ∗ -algebras by Example. American Mathematical Society (AMS), RI, 1996. 116 daol03 [1284] M. Davidson and G. Olafsson. Differential recursion relations for Laguerre functions on Hermitian matrices. Integral Transforms Spec. Funct., 14(6):469–484, 2003. da78 [1285] B. Davies. Integral Transforms and their Applications. Springer, Berlin, 1978. avdama97 [1286] G. Davis, S. Mallat, and M. Avellaneda. Adaptive greedy approximations. Constr. Approx., 13(1):57–98, 1997. da04 [1287] J. H. Davis. Methods of Applied Mathematics with a MATLAB Overview. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston, MA, 2004. chda87 [1288] K. M. Davis and Y.-C. Chang. Lectures on Bochner-Riesz Means., volume 114 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1987. dahe79 [1289] M. J. Davis and E. J. Heller. Semiclassical Gaussian basis set method for molecular vibrational wave functions. J. Chem. Phys., 71(8):3383– 3395, 1979. da94 [1290] P. J. Davis. Circulant Matrices. AMS and Chelsea Publishing Company, New York, NY, 2nd ed. edition, 1994. dahe82 [1291] P. J. Davis and R. Hersh. The Mathematical Experience. With an Introduction by Gian-Carlo Rota. Reprint. Houghton Mifflin Company, Boston, 1982. da06 [1292] T. A. Davis. Direct Methods for Sparse Linear Systems, volume 2 of Fundamentals of Algorithms. SIAM, Society for Industrial and Applied Mathematics, 2006. dasi04 [1293] T. A. Davis and K. Sigmon. MATLAB Primer. Hall/CRC, Boca Raton, FL, 7th ed. edition, 2004. da90-1 [1294] A. Dax. The convergence of linear stationary iterative processes for solving singular unstructured systems of linear equations. SIAM Rev., 32(4):611–635, 1990. 117 Chapman and deovscva00 [1295] M. De Berg, M. Van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry. Algorithms and Applications. 2nd Rev. ed. Springer, Berlin, 2000. de90-3 [1296] C. de Boor. Quasiinterpolants and approximation power of multivariate splines., 1990. dede85 [1297] C. de Boor and R. A. DeVore. Partitions of unity and approximation. Proc. Amer. Math. Soc., 93(4):705–709, 1985. dedero94 [1298] C. de Boor, R. A. Devore, and A. Ron. Approximation from shiftinvariant subspaces of L2 (Rd ). Trans. Amer. Math. Soc., 341(2):787– 806, 1994. dedero94-1 [1299] C. de Boor, R. A. Devore, and A. Ron. The structure of finitely generated shift-invariant spaces in L2 (Rd ). J. Funct. Anal., 119(1):37– 78, 1994. deho83 [1300] C. de Boor and K. Höllig. Approximation order from bivariate C 1 cubics: A counterexample. Proc. Amer. Math. Soc., 87:649–655, 1983. derosh96 [1301] C. de Boor, A. Ron, and Z. Shen. On ascertaining inductively the dimension of the joint kernel of certain commuting linear operators. Adv. in Appl. Math., 17(3):209–250, 1996. derosh96-1 [1302] C. de Boor, A. Ron, and Z. Shen. On ascertaining inductively the dimension of the joint kernel of certain commuting linear operators. II. Adv. Math., 123(2):223–242, 1996. de73 [1303] N. G. de Bruijn. A theory of generalized functions, with applications to Wigner distribution and Weyl correspondence. Nieuw Arch. Wisk. (3), 21:205–280, 1973. de81 [1304] N. G. de Bruijn. Asymptotic Methods in Analysis. Dover Publications Inc, New York, NY, 1981. deha85 [1305] J. de Canni‘ere and U. Haagerup. Multipliers of the Fourier algebras of some simple Lie groups and their discrete subgroups. Amer. J. Math., 107:455–500, 1985. 118 de80 [1306] M. De Gosson. Hypoellipticite partielle à la frontière des opérateurs pseudo- différentiels de transmission. Ann. Mat. Pura Appl. (4), 123:377–402, 1980. de80-1 [1307] M. De Gosson. Résultats microlocaux en hypoellipticite partielle à la frontière pour les opérateurs pseudo-différentiels de transmission. C. R. Math. Acad. Sci. Paris, 292, 1980. de81-2 [1308] M. De Gosson. Paramètrix de transmission pour des opérateurs de type parabolique et application au problème de Cauchy microlocal. C. R. Math. Acad. Sci. Paris, 292, 1981. de82 [1309] M. De Gosson. Microlocal regularity at the boundary for pseudodifferential operators with the transmission property. I. Ann. Inst. Fourier (Grenoble), 32(3):183–213, 1982. de90-2 [1310] M. De Gosson. La définition de l’indice de Maslov sans hypothèse de transversalité. (The definition of the Maslov index without a transversality assumption). C. R. Acad. Sci. Paris S’er. I Math., 310:279–282, 1990. de90-1 [1311] M. De Gosson. La relation entre sp∞ , revêtement universel du groupe symplectique Sp, et Sp×Z. (The relation between sp∞ , the universal covering of the symplectic group Sp, and Sp×Z). C. R. Acad. Sci. Paris S’er. I Math., 310:245–248, 1990. de90 [1312] M. De Gosson. Maslov indices on the metaplectic group mp(n). Ann. Inst. Fourier (Grenoble), 40(3):537–555, 1990. de92-1 [1313] M. De Gosson. Cocycles de Demazure-Kashiwara et géométrie métaplectique. (Demazure-Kashiwara cocycles and metaplectic geometry). J. Geom. Phys., 9(3):255–280, 1992. de92 [1314] M. De Gosson. The structure of q-symplectic geometry. J. Math. Pures Appl., 71:429–453, 1992. de94 [1315] M. De Gosson. On the Leray-Maslov quantization of Lagrangian submanifolds. J. Geom. Phys., 13(2):158–168, 1994. de97-1 [1316] M. De Gosson. Maslov classes, metaplectic representation and Lagrangian quantization, volume 95 of Research Notes in Mathematics. Wiley-VCH, Berlin, 1997. 119 de97-3 [1317] M. De Gosson. On half-form quantization of Lagrangian manifolds and quantum mechanics in phase space. Bull. Sci. Math., 121(4):301– 322, 1997. de98-1 [1318] M. De Gosson. The quantum motion of half-densities and the derivation of Schrödinger’s equation. J. Phys. A, Math. Gen., 31(18):4239– 4247, 1998. de99-1 [1319] M. De Gosson. On the classical and quantum evolution of Lagrangian half-forms in phase space. Ann. Inst. H. Poincar’e Phys. Th’eor., 70(6):547–573, 1999. de00 [1320] M. De Gosson. Lagrangian path intersections and the Leray index. In et al. and K. Grove, editors, Geometry and Topology, Aarhus Proceedings of the Conference on Geometry and Topology, Aarhus, Denmark, August 10-16, 1998, volume 258 of Contemp. Math., pages 177–184. American Mathematical Society (AMS), Providence, RI, 2000. de01-2 [1321] M. De Gosson. The Principles of Newtonian and Quantum Mechanics. The Need for Planck’s Constant, h. Imperial College Press, London, 2001. de01-1 [1322] M. De Gosson. The symplectic camel and phase space quantization. J. Phys. A, Math. Gen., 34(47):10085–10096, 2001. de02-2 [1323] M. De Gosson. The symplectic camel principle and semiclassical mechanics. J. Phys. A, Math. Gen., 35(32):6825–6851, 2002. de03-4 [1324] M. de Gosson, editor. Jean Leray ’99 Conference Proceedings. The Karlskrona Conference, Sweden, August 1999 in Honor of Jean Leray., volume 24 of Mathematical Physics Studies. Kluwer Academic Publishers, Dordrecht, 2003. de03-2 [1325] M. De Gosson. Phase space quantization and the uncertainty principle. Phys. Lett. A, 317(5-6):365–369, 2003. de03-3 [1326] M. De Gosson. Semiclassical wavefunctions and Schrödinger equation. In et al. and V. Ancona, editors, Hyperbolic Differential Operators and related Problems, volume 233 of Lect. Notes Pure Appl. Math., pages 287–300. Marcel Dekker, New York, NY, 2003. 120 de04-1 [1327] M. De Gosson. On the notion of phase in mechanics. J. Phys. A, Math. Gen., 37(29):7297–7314, 2004. de04-2 [1328] M. De Gosson. The optimal pure Gaussian state canonically associated to a Gaussian quantum state. Phys. Lett. A, 330(3-4):161–167, 2004. de05-4 [1329] M. De Gosson. Extended Weyl calculus and application to the phasespace Schrödinger equation. J. Phys. A, Math. Gen., 38(19):L325– L329, 2005. de05 [1330] M. De Gosson. On the Weyl representation of metaplectic operators. Lett. Math. Phys., 72(2):129–142, 2005. de05-3 [1331] M. De Gosson. Symplectic quantum cells and Husimi-Wigner functions. Bull. Sci. Math., 129(3):211–226, 2005. de05-2 [1332] M. De Gosson. Symplectically covariant Schrödinger equation in phase space. J. Phys. A, Math. Gen., 38(42):9263–9287, 2005. de06 [1333] M. De Gosson. Symplectic Geometry and Quantum Mechanics, volume 166 of Operator Theory: Advances and Applications. Advances in Partial Differential Equations. Birkhäuser, Basel, 2006. de06-3 [1334] M. De Gosson. Uncertainty principle, phase space ellipsoids and Weyl calculus. In P. Boggiatto and et al., editors, Pseudo-differential Operators and related Topics Papers Based on Lectures Given at the International Conference, Växjö University, Sweden, June 22 to June 25, 2005, volume 164 of Operator Theory: Advances and Applications, pages 121–132. Birkhäuser, Basel, 2006. de06-5 [1335] M. De Gosson. Weyl calculus in phase space and the Torres-Vega and Frederick equation, 2006. dego06 [1336] M. De Gosson. Weyl calculus in phase space and the Torres-Vega and Frederick equation., 2006. de07 [1337] M. De Gosson. Metaplectic Representation, Conley-Zehnder Index, and Weyl Calculus on Phase Space. Rev. Math. Phys., (10):1149– 1188, 2007. 121 de07-1 [1338] M. De Gosson. Semi-Classical propagation of wavepackets for the phase space Schrödinger equation; Interpretation in terms of the Feichtinger algebra. J. Phys. A, 41(9):095202, 13, 2007. dede03-1 [1339] M. De Gosson and S. De Gosson. Symplectic path intersections and the Leray index. In et al. and K. Kajitani, editors, Partial Differential Equations and Mathematical Physics In Memory of Jean Leray, volume 52 of Prog. Nonlinear Differ. Equ. Appl., pages 85– 96. Birkhäuser, Basel, 2003. dede03-3 [1340] M. De Gosson and S. De Gosson. The cohomological meaning of Maslov’s Langrangian path intersection index. In M. de Gosson, editor, Jean Leray ’99 Conference Proceedings The Karlskrona Conference, Sweden, August 1999 in Honor of Jean Leray, volume 24 of Math. Phys. Stud., pages 143–162. Kluwer Academic Publishers, Dordrecht, 2003. dede03-2 [1341] M. De Gosson and S. De Gosson. The Maslov indices of Hamiltonian periodic orbits. J. Phys. A, Math. Gen., 36(48):L615–L622, 2003. dede06 [1342] M. De Gosson and S. De Gosson. Extension of the Conley-Zehnder index, a product formula, and an application to the Weyl representation of metaplectic operators. J. Math. Phys., 47(12):123506, 15, 2006. dedrkh01 [1343] M. De Gosson, B. Dragovich, and A. Khrennikov. Some p-adic differential equations. In et al. and A. K. Katsaras, editors, p-adic Functional Analysis Proceedings of the 6th International Conference, Ioannina, Greece, July 3-7, 2000, volume 222 of Lect. Notes Pure Appl. Math., pages 91–102. Marcel Dekker, New York, NY, 2001. delu07 [1344] M. De Gosson and F. Luef. Quantum States and Hardy’s Formulation of the Uncertainty Principle: a Symplectic Approach. Lett. Math. Phys., 80(1):69–82, 2007. delu07-1 [1345] M. De Gosson and F. Luef. Remarks on the fact that the Uncertainty Principle does not determine the Quantum State. Phys. Lett. A, (364):453457, 2007. 122 delu08 [1346] M. De Gosson and F. Luef. Principe d’incertitude et positivité des opérateurs à trace; applications à l’opérateur densité. Ann. Inst. H. Poincar’e, 9(2):329–346, 2008. delu08-4 [1347] M. De Gosson and F. Luef. The multi-dimensional Hardy Uncertainty Principle and its interpretation in terms of the Wigner distribution; relation with the notion of Symplectic Capacity. preprint, 2008. delu10 [1348] M. De Gosson and F. Luef. Spectral and regularity properties of a Weyl calculus related to Landau quantization. Journal of PseudoDifferential Operators and Applications, 1(1):3–34, 2010. de81-1 [1349] M. de Guzman. Real Variable Methods in Fourier Analysis. NorthHolland Publishing Company, Amsterdam, New York, Oxford, 1981. de93 [1350] M. F. E. de Jeu. The Dunkl transform. Invent. Math., 113(1):147–162, 1993. de02-1 [1351] R. de la Madrid. Rigged Hilbert space approach to the Schrödinger equation. J. Phys. A, Math. Gen., 35(2):319–342, 2002. de03-1 [1352] R. de la Madrid. The rigged Hilbert space of the free Hamiltonian. Internat. J. Theoret. Phys., 42(10):2441–2460, 2003. de04 [1353] R. de la Madrid. The rigged Hilbert space of the algebra of the onedimensional rectangular barrier potential. J. Phys. A, Math. Gen., 37(33):8129–8157, 2004. de05-1 [1354] R. de la Madrid. The role of the rigged Hilbert space in quantum mechanics. European J. Phys., 26(2):277–312, 2005. de06-1 [1355] R. de la Madrid. The rigged Hilbert space approach to the Lippmann– Schwinger equation. I. J. Phys. A, Math. Gen., 39(15):3949–3979, 2006. de06-2 [1356] R. de la Madrid. The rigged Hilbert space approach to the Lippmann– Schwinger equation. II: The analytic continuation of the Lippmann– Schwinger bras and kets. J. Phys. A, Math. Gen., 39(15):3981–4009, 2006. 123 bodega02 [1357] R. de la Madrid, A. Bohm, and M. Gadella. Rigged Hilbert space treatment of continuous spectrum. Fortschr. Phys., 50(2):185–216, 2002. de58 [1358] K. de Leeuw. Homogeneous algebras on compact abelian groups. Trans. Amer. Math. Soc., 87:372–386, 1958. de61 [1359] K. de Leeuw. Banach spaces of Lipschitz functions. Studia Math., 21:55–66, 1961. deka63 [1360] K. de Leeuw and Y. Katznelson. Functions that operate on non-selfadjoint algebras. J. Anal. Math., 11:207–219, 1963. dekaka77 [1361] K. de Leeuw, Y. Katznelson, and J.-P. Kahane. Sur les coefficients de Fourier des fonctions continues. C. R. Acad. Sci. Paris S’er. A-B, 285(12):1001–1003, 1977. demi60 [1362] K. de Leeuw and H. Mirkil. Translation-invariant function algebras on abelian groups. Bull. Soc. Math. France, 88:345–370, 1960. demi63 [1363] K. de Leeuw and H. Mirkil. Rotation-invariant algebras on the nsphere. Duke Math. J., 30:667–672, 1963. degh07 [1364] V. de Silva and R. Ghrist. Homological sensor networks. Notices Amer. Math. Soc., 54(1):10–17, 2007. de73-1 [1365] C. L. De Vito. Characterizations of those ideals in l1 (r) which can be synthesized. Math. Ann., 203:171–173, 1973. de97-2 [1366] A. de Vries. Ideax fermes de L1 sans unites approchees. Master’s thesis, Universite de Lausanne, February 1997. de83 [1367] S. R. Deans. The Radon Transform and some of its Applications. A Wiley-Interscience Publication., 1983. de01 [1368] L. Debnath. Wavelet transforms and time-frequency signal analysis. Birkhäuser, Basel, 2001. de03 [1369] L. Debnath. Wavelets and Signal Processing. Birkhäuser, Boston, 2003. 124 de01-5 [1370] L. Debnath and D. Zhou, editors. Wavelet Transforms and TimeFrequency Signal Analysis. 2001. deluqu81 [1371] M. Dechamps Gondim, F. Lust Piquard, and H. Queffelec. La propriete du majorant dans les espaces de Banach. C. R. Acad. Sci. Paris S’er. I Math., 293:117–120, 1981. depe97 [1372] L. Dechevsky and S. Penev. On shape-preserving probabilistic wavelet approximators. Stochastic Anal. Appl., 15(2):187–215, 1997. depe98 [1373] L. Dechevsky and S. Penev. On shape-preserving wavelet estimators of cumulative distribution functions and densities. Stochastic Anal. Appl., 16(3):423–462, 1998. dede03 [1374] J. Dehaene and B. De Moor. Clifford group, stabilizer states, and linear and quadratic operations over gf (2). Phys. Rev. A, 68(4), 2003. demo92 [1375] D. Dehay and R. Moché. Trace measures of a positive definite bimeasure. J. Multivariate Anal., 40(1):115–131, 1992. de02 [1376] A. Deitmar. A First Course in Harmonic Analysis. Universitext. Springer, New York, NY, 2002. dedy02 [1377] S. Dekel and N. Dyn. Poly-scale refinability and subdivision. Appl. Comput. Harmon. Anal., 13(1):35–62, 2002. dejava86 [1378] C. B. Dekker, A. J. E. M. Janssen, and P. J. van Otterloo. Edgepreserving noise reduction in digital video sequences. In Proc. 2nd Int. Conf. on Image Processing,London, 1986. de99 [1379] V. Del Prete. Estimates, decay properties, and computation of the dual function for Gabor frames. J. Fourier Anal. Appl., 5(6):545–562, 1999. de65 [1380] K. DeLeeuw. On Lp multipliers. Ann. Math., 81(2):364–379, 1965. de75 [1381] K. deLeeuw. An harmonic analysis for operators. I: Formal properties. Ill. J. Math., 19:593–606, 1975. de77 [1382] K. DeLeeuw. An harmonic analysis for operators. II: Operators on Hilbert space and analytic operators. Ill. J. Math., 21:164–175, 1977. 125 de91 [1383] P. Deligne. Groupe de Heisenberg et r’ealit’e. J. Amer. Math. Soc., 4(1):197–206, 1991. dehris05 [1384] T. Delillo, T. Hrycak, and V. Isakov. Theory and boundary element methods for near-field acoustic holography. J. Comput. Acoust., 13(1):163–185, 2005. dejavr85 [1385] P. Delsarte, A. J. E. M. Janssen, and L. B. Vries. Discrete prolate spheroidal wave functions and interpolation. SIAM J. Appl. Math., 45(4):641–650, 1985. de97-4 [1386] F.-J. Delvos. Interpolation in harmonic Hilbert spaces. Modél. math. anal. numér., 31(4):435–458, 1997. deju96 [1387] B. Delyon and A. Juditsky. On minimax wavelet estimators. Appl. Comput. Harmon. Anal., 3(3):215–228, 1996. de84 [1388] J. P. Demailly. Sur les transformees de Fourier de fonctions continues et le theoreme de De Leeuw-Katznelson-Kahane. volume III of Groupe de travail d’analyse harmonique, pages II.1–II.18. Université scientifique et medicale de Grenoble, laboratoire de mathématique pures associé au c.n.r.s., 1984. deyi06 [1389] L. Demanet and L. Ying. Wave atoms and sparsity of oscillatory patterns. 2006. de05-5 [1390] B. Demange. Uncertainty principles for the ambiguity function. J. London Math. Soc. (2), 72(3):717–730, 2005. defrfu05 [1391] L. Demaret, H. Führ, and F. Friedrich. A quick guide to wedgelets. page 7, 2005. defeno02 [1392] F. DeMari, H. G. Feichtinger, and K. Nowak. Uniform eigenvalue estimates for time-frequency localization operators. J. London Math. Soc., 65(3):720–732, 2002. deno02 [1393] F. DeMari and K. Nowak. Canonical subgroups of H1 ×SL(2, R). Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), 5(2):405–430, 2002. deno02-1 [1394] F. DeMari and K. Nowak. Localization type Berezin-Toeplitz operators on bounded symmetric domains. J. Geom. Anal., 12(1):9–27, 2002. 126 dede00 [1395] F. Demengel and G. Demengel. Mesures et Distributions Theorie et Illustration par les Exemples. 2000. de97 [1396] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997. dehe00 [1397] B. Deng and C. Heil. Density of Gabor Schauder bases. In A. Aldroubi and et al., editors, Wavelet Applications in Signal and Image Processing VIII (San Diego, CA, 2000), volume 4119 of Proc. SPIE, pages 153–164, Bellingham,WA, 2000. SPIE. deduya05 [1398] D. Deng, X. T. Duong, and L. Yan. A characterization of the MorreyCampanato spaces. Math. Z., 250(3):641–655, 2005. desc96 [1399] J. E. j. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations, volume 16 of Classics in Applied Mathematics. SIAM, Philadelphia, PA, Repr. edition, 1996. dejava05 [1400] D. Denteneer, A. J. E. M. Janssen, and J. S. H. van Leeuwaarden. Moment inequalities for the discrete-time bulk service queue. Math. Methods Oper. Res., 61(1):85–108, 2005. desc88 [1401] J. D. DePree and C. W. Schwartz. Introduction to Real Analysis. Wiley, New York, 1988. defimo04 [1402] A. Derighetti, M. Filali, and M. S. Monfared. On the ideal structure of some Banach algebras related to convolution operators on Lp (G). J. Funct. Anal., 215(2):341–365, 2004. demomo08 [1403] A. Desolneux, Moisan Lionel, and J.-M. Morel. From Gestalt Theory to Image Analysis, A Probabilistic Approach, volume 34. 2008. delamava98 [1404] C. Desset, F. Labeau, L. Vandendorpe, and B. Macq. Recovery of transmission losses by optimal linear filtering in a multiresolution image transmission scheme. In Proc. IEEE Symposium in Communication and Vehicular Technology, SVCT’98, October 1998. deho93 [1405] P. Deuflhard and A. Hohmann. Numerical Mathematics I. An Algorithmically Oriented Introduction. (Numerische Mathematik I. Eine Algorithmisch Orientierte Einführung.) 2., Überarb. Aufl. de Gruyter Lehrbuch. Berlin: Walter de Gruyter, . xv, 1993. 127 deho02 [1406] P. Deuflhard and A. Hohmann. Numerische Mathematik I Eine algorithmisch orientierte Einführung. WdeG, 2002. dehu06 [1407] F. Deutsch and H. Hundal. The rate of convergence for the cyclic projections algorithm I: Angles between convex sets. J. Approx. Theory, 142(1):36–55, 2006. dehu06-1 [1408] F. Deutsch and H. Hundal. The rate of convergence for the cyclic projections algorithm II: Norms of nonlinear operators. J. Approx. Theory, 142(1):56–82, 2006. dehi58 [1409] A. Devinatz and I. I. j. Hirschman. The spectra of multiplier transforms on lp . Amer. J. Math., 80:829–842, 1958. dehi59 [1410] A. Devinatz and I. I. j. Hirschman. Multiplier transformations on l2,α . Ann. of Math. (2), 69(3):575–587, May 1959. de98 [1411] R. A. DeVore. Nonlinear approximation. Acta Numer., 7:51–150, 1998. dejalu92 [1412] R. A. DeVore, B. Jawerth, and B. J. Lucier. Image compression through wavelet transform coding. IEEE Trans. Inform. Theory, 38(2, part 2):719–746, 1992. dejapo92 [1413] R. A. DeVore, B. Jawerth, and V. Popov. Compression of wavelet decompositions. Amer. J. Math., 114(4):737–785, 1992. delo93 [1414] R. A. DeVore and G. G. Lorentz. Constructive Approximation., volume 303 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, 1993. depo87 [1415] R. A. DeVore and V. Popov. Free multivariate splines. Constr. Approx., 3(2):239–248, 1987. depo88 [1416] R. A. DeVore and V. A. Popov. Interpolation of approximation spaces. In Constructive Theory of Functions, Proc Int Conf, Varna/Bulg 1987, 110-119. 1988. desh84 [1417] R. A. DeVore and R. C. C. Sharpley. Maximal functions measuring smoothness. Mem. Amer. Math. Soc., 293:115 p., 1984. 128 dete96 [1418] R. A. DeVore and V. N. Temlyakov. Some remarks on greedy algorithms. Adv. Comput. Math., 5(2-3):173–187, 1996. dhhesttr08 [1419] I. S. Dhillon, R. W. J. Heath, T. Strohmer, and J. A. Tropp. Constructing packings in Grassmannian manifolds via alternating projection. Experiment. Math., 17(1):9–35, 2008. dist82 [1420] B. W. Dickinson and K. Steiglitz. Eigenvectors and functions of the discrete Fourier transform. IEEE Trans. Acoustics, Speech and Signal Processing, 30(1):25–31, 1982. dilerosi07 [1421] V. Didenko, S. L. Lee, S. Roch, and B. Silbermann. Approximate foveated images and reconstruction of their uniform pre-images. J. Approx. Theory, 147(1):11–27, July 2007. diuh77 [1422] J. Diestel and J. J. j. Uhl. Vector Measures., volume 15 of Mathematical Surveys. Mathematical Surveys. No.15. Providence, R.I.: American Mathematical Society (AMS). XIII, Providence, R.I., 1977. di68 [1423] J. Dieudonné. Elements d’analyse. Tome II: Chapitres XII a XV. Gauthier-Villars, Paris, 1968. di70 [1424] J. Dieudonné. Elements d’analyse Tome III Chap XVI et XVII. Gauthier-Villars, Paris, 1970. di76 [1425] J. Dieudonné. Grundzüge der Modernen Analysis. Band 4. Übersetzung Aus dem Französischen von H. Kurke, G. Pfister und M. Roczen. VEB Deutscher Verlag der Wissenschaften, Berlin, 1976. di77 [1426] J. Dieudonné. Panorama des mathematiques pures. Le choix bourbachique. Gauthier-Villars, Paris, 1977. di79 [1427] J. Dieudonné. Grundzüge der Modernen Analysis. Band 5/6. Übersetzung Aus dem Französischen: Ludwig Boll. Vieweg, Wiesbaden, 1979. di82 [1428] J. Dieudonné. Grundzüge der Modernen Analysis. 7. Übers. Aus dem Französischen von Ludwig Boll. Lizenzausg. VEB Deutscher Verlag der Wissenschaften, Berlin, 1982. di83 [1429] J. Dieudonné. Grundzüge der modernen Analysis. Bd. 8. übers. aus dem Franzoesischen: Ludwig Boll. Vieweg, Wiesbaden, 1983. 129 dihuva99 [1430] T. Digernes, E. Husstad, and V. S. Varadarajan. Finite approximation of Weyl systems. Math. Scand., 84(2):261–283, 1999. diva04 [1431] T. Digernes and V. S. Varadarajan. Models for the irreducible representation of a Heisenberg group. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 7(4):527–546, 2004. divava94 [1432] T. Digernes, V. S. Varadarajan, and S. R. S. Varadhan. Finite approximations to quantum systems. Rev. Math. Phys., 6(4):621–648, 1994. di89 [1433] Dinh Dung. Mulitvariate Band-limited Functions:Sampling Representation and Approximation, volume 90, pages 123–133. Birkhäuser Boston, 1989. di95 [1434] P. Dintelmann. Classes of Fourier multipliers and Besov-Nikolskij spaces. Math. Nachr., 173:115–130, 1995. di97 [1435] P. Dintelmann. On the boundedness of pseudo-differential operators on weighted Besov-Triebel spaces. Math. Nachr., 183:43–53, 1997. codiga01 [1436] F. Dios, A. Comerón, and D. Garcı́a Vizcaı́no. On the choice of the number of samples in laser Doppler anemometry signal processing. 40(5):774–782, 2001. di39 [1437] V. A. Ditkin. Study of the structure of ideals in certain normed rings. Ucenye Zapinski Moskov Gos. Unive. Mathenmatika, 30:83–130, 1939. di80 [1438] Z. Ditzian. Some remarks on approximation theorems on various Banach spaces. J. Math. Anal. Appl., 77(2):567–576, 1980. di98 [1439] Z. Ditzian. Fractional derivatives and best approximation. Acta Math. Hungar., 81(4):323–348, 1998. di99 [1440] Z. Ditzian. A modulus of smoothness on the unit sphere. J. Anal. Math., 79:189–200, 1999. di04 [1441] Z. Ditzian. Jackson-type inequality on the sphere. Acta Math. Hungar., 102(1-2):1–35, 2004. di06 [1442] Z. Ditzian. Approximation on Banach spaces of functions on the sphere. J. Approx. Theory, 140(1):31–45, 2006. 130 di96 [1443] J. Dixmier. Enveloping Algebras, volume 11 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 1996. di73 [1444] P. G. Dixon. Approximate identities in normed algebras. Proc. Lond. Math. Soc., III. Ser., 26:485–496, 1973. di78 [1445] P. G. Dixon. Approximate identities in normed algebras. II. J. Lond. Math. Soc. (2), 17:141–151, 1978. di79-1 [1446] P. G. Dixon. Approximate identities in normed algebras I,II. Addenda et corrigenda. 1979. di79-2 [1447] P. G. Dixon. Spectra of approximate identities in Banach algebras. Math. Proc. Cambridge Philos. Soc., 86:271–278, 1979. di81 [1448] P. G. Dixon. Automatic continuity of positive functionals on topological involution algebras. Bull. Austral. Math. Soc., 23:265–281, 1981. di82-1 [1449] P. G. Dixon. An example for factorization theory in Banach algebras. Proc. Amer. Math. Soc., 86:65–66, 1982. di83-1 [1450] P. G. Dixon. On the intersection of the principal ideals generated by powers in a Banach algebra. In Radical Banach Algebras and Automatic Continuity, Proc Conf, Long Beach 1981, volume 975 of Lecture Notes in Mathematics, pages 340–341. Springer-Verlag, 1983. di86 [1451] P. G. Dixon. Left approximate identities in algebras of compact operators on Banach spaces. Proc. R. Soc. Edinb., Sect. A, 104:169–175, 1986. dove05 [1452] M. N. Do and M. Vetterli. The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process., 14:2091–2106, 2005. do89 [1453] T. Dobler. Wiener Amalgam Spaces on Locally Compact Groups. Master’s thesis, University of Vienna, 1989. do02-1 [1454] M. M. Dodson. Shannon’s sampling theorem, incongruent residue classes and Plancherel’s theorem. J. Théor. Nombres Bordx., 14(2):425–437, 2002. 131 do07 [1455] M. M. Dodson. Groups and the sampling theorem. Sampl. Theory Signal Image Process., 6(1):1–27, 2007. do81 [1456] G. Doetsch. Anleitung zum Praktischen Gebrauch der LaplaceTransformation und der Z- Transformation. Oldenbourg, MuenchenWien, 1981. dogu01 [1457] M. Dogan and A. T. Gürkanli. Multipliers of the space sw (g). Math. Balkanica (N.S.), 15(3-4):199–212, 2001. dopesa00 [1458] K. Doksum, D. Peterson, and A. Samarov. On variable bandwidth selection in local polynomial regression. J. R. Stat. Soc., Ser. B, Stat. Methodol., 62(3):431–448, 2000. do70-1 [1459] V. Dolezal. A representation of linear continuous operators on testing functions and distributions. SIAM J. Math. Anal., 1:491–506, 1970. do86 [1460] M. Dolson. The phase vocoder: a tutorial. Computer Musical Journal, 10(4):11–27, 1986. do56 [1461] Y. Domar. Harmonic analysis based on certain commutative Banach algebras. Acta Math., 96:1–66, 1956. do83 [1462] Y. Domar. Bilaterally translation invariant subspaces of weighted lspp(R)., 1983. dowa06 [1463] G. W. Don and J. S. Walker. Music: A time-frequency approach. J. Math. Music, page to appear, 2006. dosh06-2 [1464] B. Dong and Z. Shen. Construction of biorthogonal wavelets from pseudo-splines. J. Approx. Theory, 138(2):211–231, 2006. dosh06-1 [1465] B. Dong and Z. Shen. Linear independence of pseudo-splines. Proc. Amer. Math. Soc., 134(9):2685–2694, 2006. doma93 [1466] C. Dong and T. Matsuzawa. s-spaces of Gel’fand-Shilov and differential equations. Japan. J. Math. (N.S.), 19(2):227–239, 1993. dosato07 [1467] M. Dong, L. Tong, and B. M. Sadler. Information Retrieval and Processing in Sensor Networks: Deterministic Scheduling Versus Random Access. IEEE Trans. Signal Process., 55(12):5806–5820, 2007. 132 dodusova98 [1468] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. Van der Vorst. Numerical Linear Algebra for High-performance Computers. SIAM, Philadelphia, PA, 1998. do69 [1469] W. F. j. Donoghue. Distributions and Fourier Transforms. Pure and Applied Mathematics, 32. New York-London: Academic Press. VIII, 1969. do92 [1470] D. L. Donoho. Interpolating wavelet transforms. 1992. do94 [1471] D. L. Donoho. Unconditional bases are optimal bases for data compression and for statistical estimation. Appl. Comput. Harmon. Anal., 1(1):100–115, 1994. do05 [1472] D. L. Donoho. Neighborly Polytopes and Sparse solutions of underdetermined linear equations. preprint, 2005. do06-2 [1473] D. L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52(4):1289–1306, 2006. do06 [1474] D. L. Donoho. For most large underdetermined systems of linear equations the minimal l1 solution is also the sparsest solution. Commun. Pure Appl. Anal., 59(6):797–829, 2006. do06-1 [1475] D. L. Donoho. High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension. Discr. Comput. Geom., 35(4):617–652, 2006. dots06 [1476] D. L. Donoho, I. Drori, J.-L. Starck, and Y. Tsaig. Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit. preprint, 2006. doel02 [1477] D. L. Donoho and M. Elad. Optimally sparse representations in general (non-orthogonal) dictionaries via ell1 minimization. Proc. Nat. Acad. Sci., 100:2197–2202, 2002. doel03 [1478] D. L. Donoho and M. Elad. Maximal sparsity representation via l1 minimization. Proc. Nat. Acad. Sci., 100(4):369–388, 2003. doelte06 [1479] D. L. Donoho, M. Elad, and V. N. Temlyakov. Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inform. Theory, 52(1):6–18, 2006. 133 doelte07 [1480] D. L. Donoho, M. Elad, and V. N. Temlyakov. On Lebesgue-type inequalities for greedy approximation. J. Approx. Theory, 147(2):185– 195, 2007. dohu01 [1481] D. L. Donoho and X. Huo. Uncertainty principles and ideal atomic decompositions. IEEE Trans. Inform. Theory, 47(7):2845–2862, 2001. dohu02 [1482] D. L. Donoho and X. Huo. Beamlets and multiscale image analysis. In et al. and T. J. Barth, editors, Multiscale and Multiresolution Methods Theory and Applications, volume 20 of Lect. Notes Comput. Sci. Eng., pages 149–196. Springer, Berlin, 2002. dojo95 [1483] D. L. Donoho and I. M. Johnstone. Adapting to unknown smoothness via wavelet shrinkage. J. Amer. Statist. Assoc., 90(432):1200–1224, 1995. dojo98 [1484] D. L. Donoho and I. M. Johnstone. Minimax estimation via wavelet shrinkage. Ann. Statist., 26(3):879–921, 1998. dami06 [1485] D. L. Donoho and Michael Elad. On the stability of the basis pursuit in the presence of noise. Signal Process., 86(3):511–532, 2006. dora04 [1486] D. L. Donoho and M. E. Raimondo. Translation invariant deconvolution in a periodic setting. Int. J. Wavelets Multiresolut. Inf. Process., 2(4):415–431, 2004. cadost02 [1487] D. L. Donoho, J.-L. Starck, and E. J. Candès. The curvelet transform for image denoising. IEEE Trans. Image Process., 11(6):670–684, 2002. doelst05 [1488] D. L. Donoho, J.-L. Starck, and M. Elad. Image decomposition via the combination of sparse representations and a variational approach. IEEE Trans. Image Process., 14(10):1570– 1582, 2005. dost89-1 [1489] D. L. Donoho and P. B. Stark. Recovery of a sparse signal when the low frequency information is missing. Technical report, Dept. Stat., UCB., June 1989. dost89 [1490] D. L. Donoho and P. B. Stark. Uncertainty principles and signal recovery. SIAM J. Appl. Math., 48(3):906–931, 1989. 134 dost93 [1491] D. L. Donoho and P. B. Stark. A note on rearrangements, spectral concentration, and the zero-order prolate spheroidal wavefunction. IEEE Trans. Inform. Theory, 39(1):257–260, 1993. dota05-1 [1492] D. L. Donoho and J. Tanner. Neighborliness of randomly projected simplices in high dimensions. Proc. Natl. Acad. Sci. USA, 102(27):9452–9457, 2005. dota05 [1493] D. L. Donoho and J. Tanner. Sparse nonnegative solutions of underdetermined linear equations by linear programming. Proc. Nat. Acad. Sci., 102(27):9446–9451, 2005. dota09 [1494] D. L. Donoho and J. Tanner. Counting faces of randomly-projected polytopes when the projection radically lowers dimension. J. Amer. Math. Soc., 22(1):1–53, 2009. dots08 [1495] D. L. Donoho and Y. Tsaig. Fast solution of l1-norm minimization problems when the solution may be sparse. IEEE Trans. Inform. Theory, 54(11):4789–4812, 2008. dadedove98 [1496] D. L. Donoho, M. Vetterli, R. A. DeVore, and I. Daubechies. Data compression and harmonic analysis. IEEE Trans. Inform. Theory, 44(6):2435–2476, 1998. do84 [1497] J. L. Doob. Classical Potential Theory and Its Probabilistic Counterpart. Springer, New York, 1984. do90 [1498] J. L. Doob. Stochastic processes. Wiley Classics Library. Wiley, New York, Paperback edition edition, 1990. do83-1 [1499] A. Dooley. Contractions of Lie groups and applications to analysis. In Topics in Modern Harmonic Analysis, Proc Semin, Torino and Milano 1982, Vol I, pages 483–515, Roma, 1983. Instituto Nazionale di Alta Matematica Francesco Severi. dori83 [1500] A. Dooley and J. W. Rice. Contractions of rotation groups and their representations. Math. Proc. Cambridge Philos. Soc., 94:509–517, 1983. dori85 [1501] A. Dooley and J. W. Rice. On contractions of semisimple Lie groups. Trans. Amer. Math. Soc., 289:185–202, 1985. 135 dowi79 [1502] R. S. Doran and J. Wichmann. Approximate Identities and Factorization in Banach Modules., volume 768 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, Heidelberg, New York, 1979. do96 [1503] M. Dörfler. Analyzing Music - Mathematical Tools and a Case Study. Master’s thesis, University of Vienna, 1996. do01 [1504] M. Dörfler. Time-frequency Analysis for Music Signals. A Mathematical Approach. Journal of New Music Research, 30(1):3–12, 2001. do02 [1505] M. Dörfler. Gabor Analysis for a Class of Signals called Music. PhD thesis, 2002. do03 [1506] M. Dörfler. What time-frequency analysis can do to Music Signals. In M. Emmer, editor, Matematica e Cultura 2003. Springer Italia., 2003. dedo98 [1507] M. Dörfler and M. Deistler. A Structure Theory for Identification of Recurrent Neural Nets, Part 1. In H. Huijberts, H. Nijmeijer, A. Van der Schaft, and J. Scherpen, editors, IFAC, NoLCos, pages 459–464, Enschede, The Netherlands, July 1998. dofe99 [1508] M. Dörfler and H. G. Feichtinger. Diderot Forum on Mathematics and Music. Computational and Mathematical Methods in Music. 1999. dofe04-1 [1509] M. Dörfler and H. G. Feichtinger. Orthogonal projections derived from localization operators. In Proc. Conf. EUSIPCO (Sept. 2004, TU Vienna), pages 1195—1198, 2004. dofegr02 [1510] M. Dörfler, H. G. Feichtinger, and K. Gröchenig. Compactness criteria in function spaces. Colloq. Math., 94(1):37–50, 2002. dofegr06 [1511] M. Dörfler, H. G. Feichtinger, and K. Gröchenig. Time-frequency partitions for the Gelfand triple (S0 , L2 , S0 0 ). Math. Scand., 98(1):81– 96, 2006. dogowo01 [1512] M. Dörfler, S. J. Godsill, and P. J. Wolfe. Multi-Gabor dictionaries for audio time-frequency analysis. In Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, pages 43–46, Mohonk, NY, Oct. 2001. 136 doto07-1 [1513] M. Dörfler and B. Torrésani. Spreading function representation of operators and Gabor multiplier approximation. In Proceedings of SAMPTA07, Thessaloniki, June 2007. doto07 [1514] M. Dörfler and B. Torrésani. On the time-frequency representation of operators and generalized Gabor multiplier approximations. J. Fourier Anal. Appl., 16:261–293, 2010. dofa92 [1515] M. Doroslovacki and H. Fan. Discrete-time wavelets: time-frequency localization, shift-invariance, 1992. do85-1 [1516] J. R. Dorronsoro. A characterization of potential spaces. Proc. Amer. Math. Soc., 95:21–31, 1985. do85 [1517] J. R. Dorronsoro. Mean oscillation and Besov spaces. Canad. Math. Bull., 28:474–480, 1985. do49 [1518] R. Doss. On the multiplicators of some classes of Fourier Transforms. Proc. London Math. Soc., 50:169–195, 1949. do70 [1519] R. Doss. Some inclusions in multipliers. Pacific J. Math., 32:643–646, 1970. do99 [1520] E. R. Dougherty. Random Processes for Image and Signal Processing. (English). SPIE Optical Engineering Press, Bellingham, WA, 1999. do98 [1521] R. G. Douglas. Banach Algebra Techniques in Operator Theory. 2nd ed. Graduate Texts in Mathematics. 179. New York NY: Springer. xvi, 194 p., 1998. drsc76 [1522] B. Dreseler and W. Schempp. On some applications of BochnerSchoenberg-Eberlein type theorems., 1976. dr06 [1523] I. Drori. Fast l1-minimization by iterative thresholding for multidimensional NMR spectroscopy. preprint, 2006. codrjaleva94 [1524] H. Drucker, C. Cortes, L. D. Jackel, Y. LeCun, and V. N. Vapnik. Boosting and other machine learning algorithms. In Proc. 11th International Conference on Machine Learning, pages 53–61. Morgan Kaufmann, 1994. 137 budrkasmva97 [1525] H. Drucker, L. Kaufman, A. Smola, V. N. Vapnik, and C. J. C. Burges. Support vector regression machines. In M. Mozer, M. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 155–161, Cambridge, MA, 1997. MIT Press. duwo00 [1526] J. Du and M. Wong. A product formula for localization operators. Bull. Korean Math. Soc., 37(1):77–84, 2000. duwozh07 [1527] J. Du, M. Wong, and H. Zhu. Continuous and discrete inversion formulas for the Stockwell transform. Integral Transforms Spec. Funct., 18(8):537–543, 2007. baduwa05 [1528] M. F. Duarte, M. B. Wakin, and R. G. Baraniuk. Fast reconstruction of piecewise smooth signals from random projections. In Proc. SPARS Workshop, 2005. du82-1 [1529] Y. A. Dubinskij. The algebra of pseudodifferential operators with analytic symbols and its applications to mathematical physics. Russian Math. Surveys, 37(5):109–153, 1982. du79 [1530] M. Duchon. Fourier coefficients of continuous linear mappings on homogeneous Banach spaces. Math. Slovaca, 29:321–331, 1979. dume84 [1531] D. E. Dudgeon and R. M. Mersereau. Multidimensional Digital Signal Processing. Prentice Hall, Englewood Cliffs, New Jersey, 1984. du45 [1532] R. J. Duffin. Representation of Fourier integrals as sums. I. Bull. Amer. Math. Soc., 51:447–455, 1945. du50 [1533] R. J. Duffin. Representation of Fourier integrals as sums. II. Proc. Amer. Math. Soc., 1:250–255, 1950. du57 [1534] R. J. Duffin. Representation of Fourier integrals as sums. III. Proc. Amer. Math. Soc., 8:272–277, 1957. dusc52 [1535] R. J. Duffin and A. C. Schaeffer. A class of nonharmonic Fourier series. Trans. Amer. Math. Soc., 72:341–366, 1952. duwe91 [1536] R. J. Duffin and H. F. Weinberger. Dualizing the Poisson summation formula. Proc. Natl. Acad. Sci. USA, 88(16):7348–7350, 1991. 138 duwe97 [1537] R. J. Duffin and H. F. Weinberger. On dualizing a multivariable Poisson summation formula. J. Fourier Anal. Appl., 3(5):487–497, 1997. dumo76 [1538] M. Duflo and C. C. Moore. On the regular representation of a nonunimodular locally compact group. J. Funct. Anal., 21:209–243, 1976. dung05 [1539] J.-P. Dufour and Nguyen Tien Zung. Poisson Structures and their Normal Forms., volume 242 of Progress in Mathematics. Birkhäuser, Basel, 2005. du79-1 [1540] B. P. Duggal. Stability of Lebesgue spaces. Period. Math. Hungar., 10:9–13, 1979. duve90 [1541] P. Duhamel and M. Vetterli. Fast Fourier transforms: A tutorial review and a state of the art. Signal Process., 19:259–299, 1990. dusc99 [1542] A. J. W. Duijndam and M. A. Schonewille. Nonuniform fast Fourier transform. Geophys. J. Internat., 64(2):539–551, 1999. du73 [1543] J. J. Duistermaat. Fourier Integral Operators. Technical report, Courant Institute of Mathematical Science, New York University. III, New York, 1973. du96-1 [1544] J. J. Duistermaat. Fourier Integral Operators., volume 130 of Progress in Mathematics. Birkhäuser, Boston, MA, 1996. du96 [1545] G. E. Dullerud. Birkhäuser, 1996. Control of Uncertain Sampled-data Systems. du74 [1546] D. H. Dunford. Segal algebras and left normed ideals. J. Lond. Math. Soc. (2), 8:514–516, 1974. dusc58 [1547] N. Dunford and J. T. Schwartz. Linear Operators. I. General Theory. Interscience Publishers, New York, London, 1958. dusc88 [1548] N. Dunford and J. T. Schwartz. Linear Operators. Part I: General Theory. With the Assistance of William G. Bade and Robert G. Bartle. (Repr. of the orig., publ. 1959 by John Wiley and Sons Ltd.). Paperback ed. Wiley Classics Library. New York etc.: John Wiley and Sons Ltd. xiv,, 1988. 139 dusc88-1 [1549] N. Dunford and J. T. Schwartz. Linear Operators. Part II: Spectral Theory, Self Adjoint Operators in Hilbert Space. With the Assistance of William G. Bade and Robert G. Bartle. (Repr. of the orig., publ. 1963 by John Wiley and Sons Ltd.). Paperback ed. Wiley Classics Library. New York etc.: John Wiley and Sons Ltd. Interscience Publishers, Inc. ix, 1988. dusc88-2 [1550] N. Dunford and J. T. Schwartz. Linear Operators. Part III: Spectral Operators. With the Assistance of William G. Bade and Robert G. Bartle. (Repr. of the orig., publ. 1971 by John Wiley and Sons Ltd.). Paperback ed. Wiley Classics Library. New York etc.: John Wiley and Sons Ltd. Interscience Publishers, Inc.. xix, 1988. dura71 [1551] C. F. Dunkl and D. E. Ramirez. Multipliers on compact groups. Proc. Amer. Math. Soc., 28:456–460, 1971. dura72 [1552] C. F. Dunkl and D. E. Ramirez. Multipliers on modules over the Fourier algebra, October 1972. du91 [1553] J. Duoandikoetxea. The work of Jose Luis Rubio de Francia. III. Publ. Mat., Barc., 35(1):65–80, 1991. du81 [1554] C. Dupuis. Quasimesures de type positif. 105:169–180, 1981. du82 [1555] C. Dupuis. Un example d’utilisation du theoreme d’Orlicz-PaleySidon. volume I of Groupe de travail d’analyse harmonique, pages VI.1–VI.3. Université scientifique et medicale de Grenoble, laboratoire de mathématique pures associé au c.n.r.s., 1982. du84 [1556] C. Dupuis. Proprietes locales des quasimesures de type positif. volume II of Groupe de travail d’analyse harmonique, pages I.1– I.5. Université scientifique et medicale de Grenoble, laboratoire de mathématique pures associé au c.n.r.s., 1984. du93 [1557] C. Dupuis. Classes de resonance de quasimesures. L’Institut Fourier, Laboratoire de Mathematiques, 234, 1993. du01-2 [1558] C. Dupuis. Resonance classes of quasimeasures and Fourier transform spaces. Matimyás Mat., 24(3):9–25, 2001. 140 Bull. Sci. Math. (2), dueska98 [1559] A. L. Durán, R. Estrada, and R. P. Kanwal. Extensions of the Poisson summation formula. J. Math. Anal. Appl., 218(2):581–606, 1998. dusc04 [1560] P. Duren and A. Schuster. Bergman Spaces, volume 100 of Mathematical Surveys and Monographs. American Mathematical Society (AMS), Providence, RI, 2004. duscvu05 [1561] P. Duren, A. Schuster, and D. Vukotic. On uniformly discrete sequences in the disk. In Ebenfelt, Peter (ed) et al, Quadrature Domains and their Applications The Harold S Shapiro Anniversary Volume Expanded Version of Talks and Papers Presented at a Conference on the Occasion of the 75th Birthday of Harold S Shapiro, Santa Barbara, CA,. 2005. dusc02 [1562] P. Duren and A. P. Schuster. Finite unions of interpolation sequences. Proc. Amer. Math. Soc., 130(9):2609–2615, 2002. duscse00 [1563] P. Duren, A. P. Schuster, and K. Seip. Uniform densities of regular sequences in the unit disk. Trans. Amer. Math. Soc., 352(9):3971– 3980, 2000. du69 [1564] P. L. Duren. Extension of a theorem of Carleson. Bull. Amer. Math. Soc., 75:143–146, 1969. duro93 [1565] A. Dutt and V. Rokhlin. Fast Fourier transforms for nonequispaced data. SIAM J. Sci. Comput., 14:1368 – 1393, 1993. dute78 [1566] M. Dutta and U. B. Tewari. On multipliers of Segal algebras. Proc. Amer. Math. Soc., 72:121–124, 1978. dugu03 [1567] C. Duyar and A. T. Gürkanli. Multipliers and relative completion in weighted Lorentz spaces. Acta Math. Sci. Ser. B Engl. Ed., 23(4):467– 476, 2003. dy00 [1568] P. P. G. Dyke. An Introduction to Laplace Transforms and Fourier Series. Springer, London, 2000. dy06 [1569] H. Dym. Linear Algebra in Action, volume 78 of Graduate Studies in Mathematics. American Mathematical Society (AMS), 2006. dymc85 [1570] H. Dym and H. P. McKean. Fourier Series and Integrals. (Paperback Ed.). Academic Press, 1975. 141 dy87 [1571] N. Dyn. Interpolation of Scattered Data by Radial Functions, pages 47–61. Academic Press, 1987. dygrle91 [1572] N. Dyn, J. A. Gregory, and D. Levin. Analysis of uniform binary subdivision schemes for curve design. Constr. Approx., 7:127–147, 1991. dylelepi01 [1573] N. Dyn, D. Leviatan, D. Levin, and A. Pinkus. Multivariate Approximation and Applications. Cambridge University Press, Cambridge, 2001. dyro95 [1574] N. Dyn and A. Ron. Radial basis function approximation: From gridded centres to scattered centres. Proc. Lond. Math. Soc., III. Ser., 71:76–108, 1995. dzje03 [1575] K. Dziedziul and K. Jetter. Asymptotic error expansions for Schoenberg type operators., 2003. dz97 [1576] J. Dziubanski. Triebel-Lizorkin spaces associated with Laguerre and Hermite expansions. Proc. Amer. Math. Soc., 125(12):3547–3554, 1997. ealali08 [1577] G. Easley, D. Labate, and W.-Q. Lim. Sparse directional image representations using the discrete shearlet transform. 25(1):25–46, 2008. ebegkoku06 [1578] M. Ebata, M. Eguchi, S. Koizumi, and K. Kumahara. Analogues of sampling theorems for some homogeneous spaces. Hiroshima Math. J., 36(1):125–140, 2006. ebegkoku06-1 [1579] M. Ebata, M. Eguchi, S. Koizumi, and K. Kumahara. On sampling formulas on symmetric spaces. J. Fourier Anal. Appl., 12(1):1–15, 2006. eb92 [1580] T. Ebrahimi. Perceptually derived localized linear operators - Application to image sequence compression. PhD thesis, EPFL Lausanne, 1992. ebkure90-1 [1581] T. Ebrahimi, M. Kunt, and T. R. Reed. Sequence coding by Gabor decomposition. In L. Torres, E. Masgrau, and M. Lagunas, editors, Signal Processing V: Theories and Applications, Proceedings of EUSIPCO-90, pages 769–772. Elsevier, 1990. 142 ebkure91 [1582] T. Ebrahimi, M. Kunt, and T. R. Reed. Low Bit Rate Coding of Image Sequences Using a Pyramidal Gabor Expansion. In Proceedings of the 1991 Picture Coding Symposium ,1991,September 2-4, pages 205–206, 1991. ebkure90 [1583] T. Ebrahimi, T. R. Reed, and M. Kunt. Video Coding Using a Pyramidal Gabor Expansion. In Proceedings of Visual Communications and Image Processing ’90, volume 1360, pages 489–502. SPIE, 1990. boedsavawi98 [1584] O. Edfors, M. Sandell, J.-J. van de Beek, S. K. Wilson, and P. O. Börjesson. OFDM channel estimation by singular value decomposition. IEEE Trans. Comm., 46(7):931–939, 1998. edtr96 [1585] D. E. Edmunds and H. Triebel. Function Spaces, Entropy Numbers, Differential Operators. Cambridge University Press, Cambridge, 1996. ed95 [1586] H. M. Edwards. Linear Algebra. Birkhäuser, Basel, 1995. ed49 [1587] R. E. Edwards. A Tauberian theorem. J. London Math. Soc., 24, pages, 1949. ed55 [1588] R. E. Edwards. On factor functions. Pacific J. Math., 5:367–378, 1955. ed58 [1589] R. E. Edwards. Comments on Wieners Tauberian theorems. J. London Math. Soc., (33):462–466, 1958. ed59 [1590] R. E. Edwards. The stability of weighted Lebesgue spaces. Trans. Amer. Math. Soc., 93:369–394, 1959. ed64-2 [1591] R. E. Edwards. Convolutions as bilinear and linear operators. Canad. J. Math., 16:275–285, 1964. ed64-1 [1592] R. E. Edwards. Parseval’s formula and its converse. Approximationstheorie. Abh. z. Tagung Oberwolfach, 4.-10. Aug. 1963, 220-226 (1964)., 1964. ed64 [1593] R. E. Edwards. Translates of L∞ functions and of bounded measures. J. Aust. Math. Soc., 4:403–409, 1964. ed65-2 [1594] R. E. Edwards. Approximation by convolutions. Pacific J. Math., 15:85–95, 1965. 143 ed65-3 [1595] R. E. Edwards. Bipositive and isometric isomorphisms of some convolution algebras. Canad. J. Math., 17:839–846, 1965. ed65 [1596] R. E. Edwards. Changing signs of Fourier coefficients. Pacific J. Math., 15:463–475, 1965. ed65-4 [1597] R. E. Edwards. Functional Analysis. Theory and Applications. New York-Chicago-San Francisco-Toronto-London: Holt Rinehart and Winston. XIII, 781 p., 1965. ed65-1 [1598] R. E. Edwards. Spans of translates in Lp (G). J. Aust. Math. Soc., 5:216–233, 1965. ed66 [1599] R. E. Edwards. Operators commuting with translations. Pacific J. Math., 16:259–265, 1966. ed66-1 [1600] R. E. Edwards. Supports and singular supports of pseudomeasures. J. Aust. Math. Soc., 6(1):65–75, 1966. ed67 [1601] R. E. Edwards. Fourier Series: A Modern Introduction. Vol. 1. New York-Chicago-San Francisco-Atlanta-Dallas-Montreal-TorontoLondon: Holt, Rinehart and Winston, 1967. ed68 [1602] R. E. Edwards. A class of multipliers. J. Aust. Math. Soc., 8:584–590, 1968. ed70 [1603] R. E. Edwards. Integration and Harmonic Analysis on Compact Groups. Australian National University Press, Canberra, Australia, 1970. ed82 [1604] R. E. Edwards. Fourier Series. A Modern Introduction. Vol. 2. 2nd ed. Springer, New York, 1982. edga77 [1605] R. E. Edwards and G. I. Gaudry. Littlewood-Paley and Multiplier Theory, volume 90 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, 1977. edhe65 [1606] R. E. Edwards and E. Hewitt. Pointwise limits for sequences of convolution operators. Acta Math., 113:181–218, 1965. 144 edheri77 [1607] R. E. Edwards, E. Hewitt, and G. Ritter. Fourier multipliers for certain spaces of functions with compact supports. Invent. Math., 40:37–57, 1977. efru90 [1608] E. G. Effros and Z.-J. Ruan. Multivariable multipliers for groups and their operator algebras. In Operator Theory: Operator Algebras and Applications, Part 1, volume 51 of Proc. Sympos. Pure Math., pages 197–218. Amer. Math. Soc., Providence, RI, 1990. efru00 [1609] E. G. Effros and Z.-J. Ruan. Operator Spaces. Oxford University Press, 2000. efhajoti04 [1610] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Ann. Statist., 32(2):407–499, 2004. aaefhustsu01 [1611] T. Eftestol, K. Sunde, S. O. Aase, J. Husoy, and P. A. Steen. ’Probability of Successful Defibrillation’ as a Monitor During CPR in Out-ofHospital Cardiac Arrested Patients. Resuscitation, 48:245–254, 2001. efhuolstsu00 [1612] T. Eftestol, K. Sunde, S. Ole Aase, J. H. Husoy, and P. A. Steen. Predicting outcome of defibrillation by spectral characterization and nonparametric classification of ventricular fibrillation in patients with out-of-hospital cardiac arrest. Circulation, 102(13):1523–9, 2000. efstsu02 [1613] T. Eftestol, K. Sunde, and P. A. Steen. Effects of Interrupting Precordial Compressions on the Calculated Probability of Defibrillation Success During Out-of-Hospital Cardiac Arrest. Circulation, 105:2270– 2273, 2002. ef90 [1614] C. Eftimiu. Scattering by a rough dielectric interface: a modified Wiener-Hermite expansion approach. J. Opt. Soc. Amer. A, 7(5):875– , 1990. egsc97 [1615] Y. V. Egorov and B.-W. Schulze. Pseudo-differential Operators, Singularities, Applications., volume 93 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 1997. eh56 [1616] L. Ehrenpreis. On the theory of kernels of Schwartz. Proc. Amer. Math. Soc., 7:713–718, 1956. 145 eimits04 [1617] Y. Eidelman, V. Milman, and A. Tsolomitis. Functional Analysis. An Introduction. Graduate Studies in Mathematics 66. Providence, RI: American Mathematical Society (AMS). xv, 2004. ei05 [1618] B. Einarsson. Accuracy and Reliability in Scientific Computing., volume 18 of Software - Environments - Tools. SIAM, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2005. ei92 [1619] T. Eirola. Sobolev characterization of solutions of dilation equations. SIAM J. Math. Anal., 23(4):1015–1030, 1992,. ekho89 [1620] I. Ekeland and H. Hofer. Symplectic topology and Hamiltonian dynamics. Math. Z., 200:355–378, 1989. ekho90 [1621] I. Ekeland and H. Hofer. Symplectic topology and Hamiltonian dynamics. II. Math. Z., 203(4):553–567, 1990. ekt99 [1622] I. Ekeland and R. Témam. Convex Analysis and Variational Problems. SIAM, 1999. elniza98 [1623] O. El Fallah, N. K. Nikolskij, and M. Zarrabi. Resolvent estimates in Beurling-Sobolev algebras. St. Petersburg Math. J., 10(6):901–964, 1998. el82 [1624] A. El Kohen. On Fourier integral operators. Proc. Amer. Math. Soc., 85:567–571, 1982. el02 [1625] M. El Rhabi. Analyse numérique et discrétisation par éléments spectraux avec joints des équations tridimensionelles de l’électromagnétisme. PhD thesis, 2002. el05-1 [1626] M. Elad. Shrinkage for redundant representations. In Proc. SPARS’05, IRISA, Rennes, France, November 2005., 2005. el07 [1627] M. Elad. Optimized Projections for Compressed Sensing. IEEE Trans. Signal Process., 55(12):5695–5702, 2007. brel02 [1628] M. Elad and A. M. Bruckstein. A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Trans. Inform. Theory, 48(9):2558–2567, 2002. 146 elfe97 [1629] M. Elad and A. Feuer. Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images. IEEE Trans. Image Process., 6(12):1646–1657, 1997. ellipoze97 [1630] Y. Eldar, M. Lindenbaum, M. Porat, and Y. Y. Zeevi. The farthest point strategy for progressive image sampling. IEEE Trans. Image Process., 6(9):1305–1315, 1997. el06 [1631] Y. C. Eldar. Mean-squared error sampling and reconstruction in the presence of noise. IEEE Trans. Signal Process., 54(12):4619–4633, 2006. dvel06 [1632] Y. C. Eldar and T. G. Dvorkind. A minimum squared-error framework for generalized sampling. IEEE Trans. Signal Process., 54(6):2155– 2167, 2006. elfo02 [1633] Y. C. Eldar and G. D. j. Forney. Optimal tight frames and quantum measurement. IEEE Trans. Inform. Theory, 48(3):599–610, 2002. elmawe07 [1634] Y. C. Eldar, E. Matusiak, and T. Werther. A constructive inversion framework for twisted convolution. Monatsh. Math., 150(4):297–308, 2007. elwe05 [1635] Y. C. Eldar and T. Werther. General framework for consistent sampling in Hilbert spaces. Int. J. Wavelets Multiresolut. Inf. Process., 3(3):347–359, 2005. elkipo06 [1636] Y. Eliashberg, S. S. Kim, and L. Polterovich. Geometry of contact transformations and domains: orderability versus squeezing. Geom. Topol., 10:1635–1747 (electronic), 2006. elmi02 [1637] Y. Eliashberg and N. Mishachev. Introduction to the h-principle, volume 48 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2002. el02-1 [1638] B. L. Ellerbroek. Efficient computation of minimum-variance wavefront reconstructors with sparse matrix techniques. J. Opt. Soc. Amer. A, 19(9):1803–1816, 2002. elgivo03 [1639] B. L. Ellerbroek, L. Gilles, and C. R. Vogel. Numerical Simulations of Multiconjugate Adaptive Optics. Appl. Opt., 42(24):4811–4818, 2003. 147 el86 [1640] G. A. Elliott. Gaps in the spectrum of an almost periodic Schrödinger operator. II. In Geometric Methods in Operator Algebras, volume 123 of Pitman Res. Notes Math. Ser., pages 181–191. Longman Sci. Tech., Harlow, 1986. el87 [1641] G. A. Elliott. The ideal structure of the multiplier algebra of an AFalgebra. C. R. Math. Rep. Acad. Sci. Canada, 9(5):225–230, 1987. elev93 [1642] G. A. Elliott and D. E. Evans. The structure of the irrational rotation c∗ -algebra. Ann. of Math. (2), 138(3):477–501, 1993. elgo96 [1643] G. A. Elliott and G. Gong. On inductive limits of matrix algebras over the two-torus. Amer. J. Math., 118(2):263–290, 1996. elli96 [1644] G. A. Elliott and Q. Lin. Cut-down method in the inductive limit decomposition of non-commutative tori. J. London Math. Soc. (2), 54(1):121–134, 1996. elli97 [1645] G. A. Elliott and Q. Lin. Cut-down method in the inductive limit decomposition of non-commutative tori. II. The degenerate case. In Operator Algebras and their Applications, volume 13 of Fields Inst. Commun., pages 91–123. Amer. Math. Soc., Providence, RI, 1997. ello92 [1646] G. A. Elliott and T. A. Loring. AF embeddings of C(T2 ) with a prescribed K-theory. J. Funct. Anal., 103(1):1–25, 1992. elna87 [1647] G. A. Elliott and T. Natsume. A Bott periodicity map for crossed products of c∗ -algebras by discrete groups. K-Theory, 1(4):423–435, 1987. elnane88 [1648] G. A. Elliott, T. Natsume, and R. Nest. Cyclic cohomology for oneparameter smooth crossed products. Acta Math., 160(3-4):285–305, 1988. elnane93 [1649] G. A. Elliott, T. Natsume, and R. Nest. The Heisenberg group and k-theory. K-Theory, 7(5):409–428, 1993. elnane96 [1650] G. A. Elliott, T. Natsume, and R. Nest. The Atiyah-Singer index theorem as passage to the classical limit in quantum mechanics. Comm. Math. Phys., 182(3):505–533, 1996. 148 elro93 [1651] G. A. Elliott and M. Rordam. The automorphism group of the irrational rotation c∗ -algebra. Comm. Math. Phys., 155(1):3–26, 1993. el05-2 [1652] J. Elstrodt. Maß- und Integrationstheorie 4., korrigierte Auflage. Springer-Verlag, Berlin, 2005. en07 [1653] F. Eng. Non-Uniform Sampling in Statistical Signal Processing. PhD thesis, 2007. en06 [1654] S. Engelberg. Random Signals and Noise: A Mathematical Introduction. CRC Press, 2006. enhane96 [1655] H. W. Engl, M. Hanke, and A. Neubauer. Regularization of Inverse Problems. Springer-Verlag, 1996. en96 [1656] M. Englis. Berezin quantization and reproducing kernels on complex domains. Trans. Amer. Math. Soc., 348(2):411–479, 1996. en99 [1657] M. Englis. Compact Toeplitz operators via the Berezin transform on bounded symmetric domains. Integr. Equ. Oper. Theory, 33(4):426– 455, 1999. en99-1 [1658] M. Englis. Erratum to ’Compact Toeplitz operators via the Berezin transform on bounded symmetric domains’. Integr. Equ. Oper. Theory, 34(4):500–501, 1999. en06-1 [1659] M. Englis. Berezin and Berezin-Toeplitz quantizations for general function spaces. Rev. Mat. Complut., 19(2):385–430, 2006. ep06 [1660] S. A. Episkoposian. On the existence of universal series by trigonometric system. J. Funct. Anal., 230(1):169–183, 2006. ep95 [1661] J. Epperson. Triebel-Lizorkin spaces for Hermite expansions. Studia Math., 114(1):87–103, 1995. ep96 [1662] J. Epperson. Hermite multipliers and pseudo-multipliers. Proc. Amer. Math. Soc., 124(7):2061–2068, 1996. ep98 [1663] J. Epperson. Hermite and Laguerre wave packet expansions. Studia Math., 126(3):199–217, 1998. 149 ep98-1 [1664] J. Epperson. Some estimates for radial Fourier multiplier operators with slowly decaying kernels. Math. Nachr., 191:109–121, 1998. ermaobtr53 [1665] A. Erd’elyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi. Higher Transcendental Functions. Vol. I. Bateman Manuscript Project. McGraw-Hill Book Company, New York, 1953. ermaobtr53-1 [1666] A. Erd’elyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi. Higher Transcendental Functions. Vol. II. Bateman Manuscript Project. McGraw-Hill Book Company, New York-Toronto-London, 1953. ergr05 [1667] S. Ericsson and N. Grip. An analysis method for sampling in shiftinvariant spaces. Int. J. Wavelets Multiresolut. Inf. Process., 3(3):301– 319, 2005. eresjo04 [1668] K. Eriksson, D. Estep, and C. Johnson. Angewandte Mathematik: Body and Soul [Band 3[3]]. Springer, Berlin, Heidelberg, 2004. er64 [1669] J. Ernest. A new group algebra for locally compact groups I. Amer. J. Math., 87:467–492, 1964. er65 [1670] J. Ernest. A new group algebra for locally compact groups II. Canad. J. Math., 17:604–615, 1965. es64 [1671] M. Essén. Studies on a convolution inequality. Ark. Mat., 5:113–152, 1964. es73 [1672] M. Essen. Banach algebra methods in renewal theory. J. Anal. Math., 26(1):303–336, 1973. esrosh93 [1673] M. Essén, J. Rossi, and D. Shea. A convolution inequality with applications to function theory. II. J. Anal. Math., 61:339–366, 1993. esrosh83 [1674] M. R. Essen, J. F. Rossi, and D. F. Shea. A convolution inequality with applications in function theory. Contemp. Math., 25:141–147, 1983. esga77 [1675] D. Esteban and C. Galand. Application of quadrature mirror filters to split-band voice coding schemes. In ICASSP ’77, IEEE Internat. Conf. on Acoustics, Speech, and Signal Processing, volume 2, pages 191–195, 1977. 150 esgrv89 [1676] R. Estrada, J. M. Gracia Bondia, and J. C. Varilly. On asymptotic expansions of twisted products. J. Math. Phys., 30(12):2789–2796, 1989. evga92 [1677] L. C. Evans and R. F. Gariepy. Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, 1992. ex87 [1678] R. Exel. Rotation numbers for automorphisms of c∗ algebras. Pacific J. Math., 127(1):31–89, 1987. ex90 [1679] R. Exel. Hankel matrices over right ordered amenable groups. Canad. Math. Bull., 33(4):404–415, 1990. ex93 [1680] R. Exel. A Fredholm operator approach to Morita equivalence. KTheory, 7(3):285–308, 1993. ex97 [1681] R. Exel. Amenability for Fell bundles. J. Reine Angew. Math., 492:41– 73, 1997. ex99 [1682] R. Exel. Unconditional integrability for dual actions. Bol. Soc. Brasil. Mat. (N.S.), 30(1):99–124, 1999. ex00 [1683] R. Exel. Morita-Rieffel equivalence and spectral theory for integrable automorphism groups of C ∗ -algebras. J. Funct. Anal., 172(2):404– 465, 2000. ey64 [1684] P. Eymard. L’algèbre de Fourier d’un groupe localement compact. Bull. Soc. Math. France, 92:181–236, 1964. ey70 [1685] P. Eymard. Algebres Ap et Convoluteur de Lp , volume 180 of Lect. Notes in Math. Springer-Verlag, 1970. ey79 [1686] P. Eymard. On the Fourier transform for the ax+b group. In Harmonic Analysis in Euclidean Spaces, Part 2, Williamstown/Massachusetts 1978, volume 35 of Proc. Symp. Pure Math., pages 379–386, 1979. ey82 [1687] P. Eymard. Analyse harmonique Euclidienne. In J. L. Clerc, editor, Analyse Harmonique, Les Cours du CIMPA, Nice, 1982. 151 eyfascta79 [1688] P. Eymard, J. Faraut, G. Schiffmann, and R. Takahashi. Analyse Harmonique Sur Les Groupes de Lie II. Seminaire Nancy-Strasbourg 1976-78. Springer, Berlin, Heidelberg, New York, 1979. eyte79 [1689] P. Eymard and M. Terp. La transformation de Fourier et son inverse sur le groupe des ax+b d’un corps local. In Analyse Harmonique sur les Groupes de Lie II, Semin Nancy-Strasbourg 1976-78, volume 739 of Lect. Notes Math., pages 207–248. 1979. fa80 [1690] V. M. Fajvyshevskij. Structure of ideals in some Banach algebras satisfying a generalized Ditkin condition. Trans. Amer. Math. Soc., 115:93–102, 1980. fape94 [1691] D. D. Falconer and B. R. Petersen. Suppression of adjacent-channel, cochannel, and intersymbolinterference by equalizers and linear combiners. IEEE Trans. Comm., 42(12):3109–3118, 1994. fako02 [1692] J. Fan and J.-Y. Koo. Wavelet deconvolution. IEEE Trans. Inform. Theory, 48(3):734–747, 2002. fa96 [1693] G. Fang. Whittaker-Kotelnikov-Shannon sampling theorem and aliasing error. J. Approx. Theory, 85(2):115–131, 1996. fakakoluro00 [1694] J. Faraut, S. Kaneyuki, A. Koranyi, Q.-k. Lu, and G. Roos. Analysis and Geometry on Complex Homogeneous Domains. Birkhäuser, Boston, 2000. fape05 [1695] J. Faraut and M. Pevzner. Berezin kernels and analysis on Makarevich spaces. Indag. Math. (N.S.), 16(3-4):461–486, 2005. fasc04 [1696] D. C. Farden and L. L. Scharf. Estimating time-frequency distributions and scattering functions using the Rihaczek distribution. In Proc. Sensor Array and Multichannel Signal Processing Workshop, Sitges, Spain, July 18-21, 2004, pages 470–474, 2004. fasc06 [1697] D. C. Farden and L. L. Scharf. A unified framework for the Sussman, Moyal, and Janssen formulas. IEEE Signal Processing Magazine, pages 124–125, May 2006. fa01 [1698] D. R. Farenick. Algebras of Linear Transformations. Springer, New York, NY, 2001. 152 fa94 [1699] A. Faridani. A generalized sampling theorem for locally compact abelian groups. J. Comput. Math., 63(207):307–327, 1994. faha03 [1700] G. Farin and D. Hansford. Lineare Algebra: Ein Geometrischer Zugang. bersetzt von Guido Brunnett. (The Geometry Toolbox for Graphics and Modeling). Springer-Lehrbuch. Berlin: Springer. xiii, 322 S. EUR 24.95 (D), 2003. faha04 [1701] G. Farin and D. Hansford. Practical Linear Algebra. A Geometry Toolbox. Wellesley, MA: A K Peters. xvi, 2004. fa02 [1702] E. W. Farkas. Function spaces of generalised smoothness and pseudodifferential operators associated to a continuous negative definite function, 2002. fa93 [1703] H. Fassbender. Numerische Verfahren zur diskreten trigonometrischen Polynomapproximation. PhD thesis, Universität Bremen, October 1993. fa97 [1704] H. Fassbender. On numerical methods for discrete least-squares approximation by trigonometric polynomials. Math. Comp., 66(218):719–741, 1997. fa02-1 [1705] G. E. Fasshauer. Approximate moving least-squares approximation for time-dependent PDEs. In H. Mang, F. Rammestorfer, and J. Eberhardsteiner, editors, WCCM V Fifth World Congress on Computational Mechanics, July 7-12, 2002, Vienna, Austria, 2002. fa04 [1706] G. E. Fasshauer. Toward approximate moving least squares approximation with irregularly spaced centers. Comput. Methods Appl. Mech. Engrg., 193(12-14):1231–1243, 2004. fa07 [1707] G. E. Fasshauer. Meshfree Approximation Methods with MATLAB, volume 6 of Interdisciplinary Mathematical Sciences. World Scientific, 2007. faza95 [1708] S. J. Favier and R. A. Zalik. On the stability of frames and Riesz bases. Appl. Comput. Harmon. Anal., 2(2):160–173, 1995. fetu06 [1709] Federico Rosei and Tudor Johnston. Survival Skills for Scientists. July 2006. 153 feph81 [1710] C. Fefferman and D. H. Phong. The uncertainty principle and sharp Garding inequalities. Commun. Pure Appl. Anal., 34:285–331, 1981. feph82 [1711] C. Fefferman and D. H. Phong. Symplectic geometry and positivity of pseudo-differential operators. Proc. Natl. Acad. Sci. USA, 79:710–713, 1982. fe74-1 [1712] F. Feher. Approximationssätze auf rearrangement-invarianten Banach-Räumen, 1974. fe77-5 [1713] F. Feher. Interpolation und Indexbedingungen auf rearrangementinvarianten. J. Funct. Anal., 25:147–161, 1977. fe79-2 [1714] H. G. Feichtinger. English translation of: Gewichtsfunktionen auf lokalkompakten Gruppen. Sitzungsber.d.österr. Akad.Wiss., 188. feXX [1715] H. G. Feichtinger. Multipliers from L1 (g) to spaces of Lipschitz type. feXX-2 [1716] H. G. Feichtinger. Signal processing algorithms. fe73 [1717] H. G. Feichtinger. Zur Idealtheorie von Segal-algebren. Manuscripta Math., 10:307–312, 1973. fe74 [1718] H. G. Feichtinger. Some new subalgebras of L1 (G). Indag. Math., 36:44–47, 1974. fe76 [1719] H. G. Feichtinger. Multipliers of Banach spaces of functions on groups. Math. Z., 152:47–58, 1976. fe76-1 [1720] H. G. Feichtinger. Some remarks on a class of convolution algebras. In Symposia Math., volume XXII, pages 453–455, Rome, 1976. fe77-3 [1721] H. G. Feichtinger. A characterization of Wiener’s algebra on locally compact groups. Arch. Math. (Basel), 29:136–140, 1977. fe77-2 [1722] H. G. Feichtinger. Multipliers from L1 (G) to a homogeneous Banach space. J. Math. Anal. Appl., 61:341–356, 1977. fe77-1 [1723] H. G. Feichtinger. On a class of convolution algebras of functions. Ann. Inst. Fourier (Grenoble), 27:135–162, 1977. fe77 [1724] H. G. Feichtinger. Results on Banach ideals and spaces of multipliers. Math. Scand., 41(2):315–324, 1977. 154 fe77-4 [1725] H. G. Feichtinger. Some remarks on Banach convolution algebras of functions. In Symposia Math., volume XXII, pages 453–455, 1977. fe79-1 [1726] H. G. Feichtinger. Banach convolution algebras of functions II. Monatsh. Math., 87:181–207, 1979. fe79-5 [1727] H. G. Feichtinger. Eine neue Segalalgebra mit Anwendungen in der Harmonischen Analyse. In Winterschule 1979, Internationale Arbeitstagung über Topologische Gruppen und Gruppenalgebren, pages 23– 25, 1979. fe79 [1728] H. G. Feichtinger. Gewichtsfunktionen auf lokalkompakten Gruppen. Sitzungsber.d.österr. Akad.Wiss., 188:451–471, 1979. fe79-3 [1729] H. G. Feichtinger. Konvolutoren von L1 (G) nach Lipschitz-Räumen. Anz. sterreich. Akad. Wiss. Math.-Naturwiss. Kl., 6:148–153, 1979. fe79-7 [1730] H. G. Feichtinger. Segal algebras that are not character invariant. Chinese J. Math., 7:55–59, 1979. fe79-4 [1731] H. G. Feichtinger. Weighted Lp -spaces and the canonical mapping TH : L1 (G) → L1 (G/H). Boll. Un. Mat. Ital., 15 B/3:989–999, 1979. fe80-2 [1732] H. G. Feichtinger. The Banach space of translation bounded quasimeasures. 1980. fe80-1 [1733] H. G. Feichtinger. The minimal strongly character invariant Segal algebra, II, 1980. fe80 [1734] H. G. Feichtinger. Un espace de Banach de distributions tempérées sur les groupes localement compacts abéliens. C. R. Acad. Sci. Paris S’er. A-B, 290(17):791–794, 1980. fe81 [1735] H. G. Feichtinger. A characterization of minimal homogeneous Banach spaces. Proc. Amer. Math. Soc., 81(1):55–61, 1981. fe81-1 [1736] H. G. Feichtinger. Banach spaces of distributions of Wiener’s type and interpolation. In P. Butzer, S. Nagy, and E. Görlich, editors, Proc. Conf. Functional Analysis and Approximation, Oberwolfach August 1980, number 69 in Internat. Ser. Numer. Math., pages 153–165. Birkhäuser Boston, Basel, 1981. 155 fe81-2 [1737] H. G. Feichtinger. On a new Segal algebra. Monatsh. Math., 92:269– 289, 1981. fe82-1 [1738] H. G. Feichtinger. A compactness criterion for translation invariant Banach spaces of functions. Analysis Mathematica, 8:165–172, 1982. fe82 [1739] H. G. Feichtinger. Banach spaces of distributions defined by decomposition methods and some of their applications. In Recent Trends in Mathematics, volume 50 of Teubner Texte zur Mathematik, pages 123–132, Reinhardsbrunn, 1982, 1982. fe83-1 [1740] H. G. Feichtinger. A new family of functional spaces on the Euclidean n-space. In Proc.Conf. on Theory of Approximation of Functions, Teor. Priblizh., 1983. fe83 [1741] H. G. Feichtinger. Banach convolution algebras of Wiener type. In Proc. Conf. on Functions, Series, Operators, Budapest 1980, volume 35 of Colloq. Math. Soc. Janos Bolyai, pages 509–524. NorthHolland, Amsterdam, Eds. B. Sz.-Nagy and J. Szabados. edition, 1983. fe83-2 [1742] H. G. Feichtinger. Banach spaces of distributions having a pointwise and a convolutive module structure. In Proc. Conf. on Topics in Modern Analysis, Ist. Naz. Alta Mat. Francesco Severi, pages 1039– 1054, Torino/Milano, 1983. fe83-4 [1743] H. G. Feichtinger. Modulation spaces on locally compact Abelian groups. Technical report, January 1983. fe83-3 [1744] H. G. Feichtinger. Strong almost periodicity and Wiener type spaces. In Proc. Conf. Constructive Function Theory, pages 321–327, Varna, 1983. fe84 [1745] H. G. Feichtinger. Compactness in translation invariant Banach spaces of distributions and compact multipliers. J. Math. Anal. Appl., 102:289–327, 1984. fe84-1 [1746] H. G. Feichtinger. Tauberian theorems on groups and Banach modules. In Proc. Conf. on Constructive Function Theory, pages 334–345, Varna, 1984. 156 fe87 [1747] H. G. Feichtinger. Banach spaces of distributions defined by decomposition methods. II. Math. Nachr., 132:207–237, 1987. fe87-1 [1748] H. G. Feichtinger. Minimal Banach spaces and atomic representations. Publ. Math. Debrecen, 34(3-4):231–240, 1987. fe88-1 [1749] H. G. Feichtinger. An elementary approach to Wiener’s third Tauberian theorem for the Euclidean n-space. In Symposia Math., volume XXIX of Analisa Armonica, pages 267–301, Cortona, 1988. fe88-2 [1750] H. G. Feichtinger. Nonorthogonal expansions using the Heisenberg group, with applications to Fourier and signal analysis. 1988. fe89-2 [1751] H. G. Feichtinger. An elementary approach to the generalized Fourier transform. In T. Rassias, editor, Topics in Mathematical Analysis, Ser. Pure Math. 11, pages 246–272. World Sci.Pub., 1989. fe89-1 [1752] H. G. Feichtinger. Atomic characterizations of modulation spaces through Gabor-type representations. In Proc. Conf. Constructive Function Theory, volume 19 of Rocky Mountain J. Math., pages 113– 126, 1989. fe89 [1753] H. G. Feichtinger. Coherent frames and irregular sampling. In J. Byrnes and J. Byrnes, editors, Recent Advances in Fourier Analysis and its Applications, Proc NATO/ASI, IL Ciocco/Italy 1989, volume 315 of NATO ASI Ser., Ser. C, pages 427–440. Kluwer Acad. Publ., 1989. fe90 [1754] H. G. Feichtinger. Generalized amalgams, with applications to Fourier transform. Canad. J. Math., 42(3):395–409, 1990. fe91-1 [1755] H. G. Feichtinger. Discretization of convolution and reconstruction of band-limited functions from irregular sampling. pages 333–345. Academic Press, Boston, MA, 1991. fe91 [1756] H. G. Feichtinger. New mathematical tools in digital signal processing. In Operations Research, Proc 15th Symp, Vienna/Austria 1990, volume 64 of Methods Oper. Res., pages 633–641, 1991. fe91-3 [1757] H. G. Feichtinger. Pseudo-inverse matrix methods for signal reconstruction from partial data. In SPIE-Conf., Visual Comm. and Image Proc., Boston, pages 766–772, 1991. 157 fe91-2 [1758] H. G. Feichtinger. Reconstruction of band-limited signals from irregular samples, a short summary. In 2. International Workshop on Digital Image Processing and Computer Graphics with Applications, pages 52–60, Austrian Academy of Sciences, 1991. fe92 [1759] H. G. Feichtinger. New results on regular and irregular sampling based on Wiener amalgams. In K. Jarosz, editor, Function Spaces, Proc Conf, Edwardsville/IL (USA) 1990, volume 136 of Lect. Notes Pure Appl. Math., pages 107–121, New York, 1992. Marcel Dekker. fe92-1 [1760] H. G. Feichtinger. Parseval’s relationship for nonuniform samples of signals with several variables. IEEE Trans. Acoust. Speech Signal Process., 40(5):1262–1266, 1992. fe94 [1761] H. G. Feichtinger. Coherent non-orthogonal expansions reencouraged. In N. Sheppard, E. M., and G. Kantor, editors, Proceedings of the 16th Annual International Conference of the IEEE Engineering in Medicine and Biology, Nov. 3-6,1994, Baltimore, Maryland, volume 1, pages 16a–17a, November 1994. fe94-1 [1762] H. G. Feichtinger. Optimal iterative algorithms in Gabor analysis. pages 44–47, October 1994. fe95 [1763] H. G. Feichtinger. Iterative methods for scattered data approximation of smooth signals. In SampTA - Sampling Theory and Applications, pages 16–31, Riga/Latvia, 1995. fe97 [1764] H. G. Feichtinger. Amalgam spaces and generalized harmonic analysis. In V. Mendrekar et al., editors, Proceedings of the Norbert Wiener Centenary Congress, East Lansing, MI, USA, November 27-December 3, 1994, volume 52 of Proc. Symp. Appl. Math., pages 141–150, Providence, R, 1997. American Mathematical Society. fe02 [1765] H. G. Feichtinger. Spline-type spaces in Gabor analysis. In D. X. Zhou, editor, Wavelet Analysis: Twenty Years Developments Proceedings of the International Conference of Computational Harmonic Analysis, Hong Kong, China, June 4–8, 2001, volume 1 of Ser. Anal., pages 100–122. World Sci.Pub., River Edge, NJ, 2002. fe03 [1766] H. G. Feichtinger. Gabor multipliers with varying lattices. In Proc. SPIE Conf., page 14, August 2003. 158 fe03-1 [1767] H. G. Feichtinger. Modulation spaces of locally compact Abelian groups. In R. Radha, M. Krishna, and S. Thangavelu, editors, Proc. Internat. Conf. on Wavelets and Applications, pages 1–56, Chennai, January 2002, 2003. New Delhi Allied Publishers. fe06-1 [1768] H. G. Feichtinger. Fundamental Papers in Wavelet Theory. Princeton University Press, Princeton, NJ, 2006. fe06 [1769] H. G. Feichtinger. Modulation Spaces: Looking Back and Ahead. Sampl. Theory Signal Image Process., 5(2):109–140, 2006. brfe85 [1770] H. G. Feichtinger and W. Braun. Banach spaces of distributions with double module structure and twisted convolution. In Proc. Alfred Haar Memorial Conf., Coll. J. Bolyai Soc. North Holland Publ. Comp., 1985. cefe91 [1771] H. G. Feichtinger and C. Cenker. Reconstruction algorithms for discrete nonuniform sampled band-limited signals. In 15.OEAGM Conf.,OECG, volume 56, pages 51–61, May 1991. cefehe91 [1772] H. G. Feichtinger, C. Cenker, and M. Herrmann. Iterative algorithms in irregular sampling: A first comparison of methods. In Conf. ICCCP‘91, March 1991, Phoenix/Az, pages 483–489, 1991. cefest91 [1773] H. G. Feichtinger, C. Cenker, and H. Steier. Fast iterative and noniterative reconstruction of band-limited functions from irregular sampling values. Conf. ICASSP‘91, May, Toronto, pages 1773–1776, 1991. chfe93 [1774] H. G. Feichtinger and O. Christensen. New efficient methods for Gabor analysis. In SPIE Conf. Vis. Comm., volume SPIE 2904, pages 987–998, Boston, 1993. dofe01 [1775] H. G. Feichtinger and M. Dörfler, editors. Special Issue: Music and Mathematics, volume 30. 2001. fefo06 [1776] H. G. Feichtinger and M. Fornasier. Flexible Gabor-wavelet atomic decompositions for L2 Sobolev spaces. Ann. Mat. Pura Appl., 185(1):105–131, 2006. 159 fefugrka06 [1777] H. G. Feichtinger, H. Führ, K. Gröchenig, and N. Kaiblinger. Operators commuting with a discrete subgroup of translations. J. Geom. Anal., 16(1):53–67, 2006. fegrla79 [1778] H. G. Feichtinger, C. C. Graham, and E. H. Lakien. Nonfactorization in commutative, weakly self-adjoint Banach algebras. Pacific J. Math., 80:117–125, 1979. fegr85 [1779] H. G. Feichtinger and P. Gröbner. Banach spaces of distributions defined by decomposition methods. I. Math. Nachr., 123:97–120, 1985. fegr88 [1780] H. G. Feichtinger and K. Gröchenig. A unified approach to atomic decompositions via integrable group representations. Lect. Notes in Math., 1302:52–73, 1988. fegr89 [1781] H. G. Feichtinger and K. Gröchenig. Banach spaces related to integrable group representations and their atomic decompositions, I. J. Funct. Anal., 86(2):307–340, 1989. fegr89-1 [1782] H. G. Feichtinger and K. Gröchenig. Banach spaces related to integrable group representations and their atomic decompositions, II. Monatsh. Math., 108(2-3):129–148, 1989. fegr89-2 [1783] H. G. Feichtinger and K. Gröchenig. Multidimensional irregular sampling of band-limited functions in Lp -spaces. Conf. Oberwolfach Feb. 1989, pages 135–142, 1989. fegr92-1 [1784] H. G. Feichtinger and K. Gröchenig. Gabor wavelets and the Heisenberg group: Gabor expansions and short time Fourier transform from the group theoretical point of view. In C. K. Chui, editor, Wavelets :a tutorial in theory and applications, volume 2 of Wavelet Anal. Appl., pages 359–397. Academic Press, Boston, 1992. fegr92 [1785] H. G. Feichtinger and K. Gröchenig. Irregular sampling theorems and series expansions of band-limited functions. J. Math. Anal. Appl., 167(2):530–556, 1992. fegr92-3 [1786] H. G. Feichtinger and K. Gröchenig. Iterative reconstruction of multivariate band-limited functions from irregular sampling values. SIAM J. Math. Anal., 23(1):244–261, 1992. 160 fegr92-2 [1787] H. G. Feichtinger and K. Gröchenig. Non-orthogonal wavelet and Gabor expansions, and group representations. In G. Beylkin, R. Coifman, and I. Daubechies, editors, Wavelets and their Applications, pages 353–376. Jones and Bartlett, 20 Park Plaza, Boston, MA 02116, USA, 1992. fegr93 [1788] H. G. Feichtinger and K. Gröchenig. Error analysis in regular and irregular sampling theory. Applicable Analysis, 50(3-4):167–189, 1993. fegr94 [1789] H. G. Feichtinger and K. Gröchenig. Theory and practice of irregular sampling. In J. Benedetto and M. Frazier, editors, Wavelets: Mathematics and Applications, Studies in Advanced Mathematics, pages 305–363, Boca Raton, FL, 1994. CRC Press. fegr97 [1790] H. G. Feichtinger and K. Gröchenig. Gabor frames and time-frequency analysis of distributions. J. Funct. Anal., 146(2):464–495, 1997. fegrhe90 [1791] H. G. Feichtinger, K. Gröchenig, and M. Hermann. Iterative methods in irregular sampling theory: Numerical Results. In 7. Aachener Symposium für ASST 1990, Aachen, Informatik Fachber. 253, pages 160–166. Springer-Verlag, 1990. fegrst95 [1792] H. G. Feichtinger, K. Gröchenig, and T. Strohmer. Efficient numerical methods in non-uniform sampling theory. Numer. Math., 69(4):423– 440, 1995. fegrwa92 [1793] H. G. Feichtinger, K. Gröchenig, and D. F. Walnut. Wilson bases and modulation spaces. Math. Nachr., 155:7–17, 1992. fegu90 [1794] H. G. Feichtinger and A. T. Gürkanli. On a family of weighted convolution algebras. Int. J. Math. Math. Sci., 13(3):517–526, 1990. fehakr04 [1795] H. G. Feichtinger, M. Hampejs, and G. Kracher. Approximation of matrices by Gabor multipliers. IEEE Signal Proc. Letters, 11(11):883– 886, November 2004. fehakamane08 [1796] H. G. Feichtinger, M. Hazewinkel, N. Kaiblinger, E. Matusiak, and M. Neuhauser. Metaplectic operators on C n . Quart. J. Math. Oxford Ser., 59(1):15–28, 2008. 161 feja00 [1797] H. G. Feichtinger and A. J. E. M. Janssen. Validity of WH-frame bound conditions depends on lattice parameters. Appl. Comput. Harmon. Anal., 8(1):104–112, 2000. feka97 [1798] H. G. Feichtinger and N. Kaiblinger. 2D-Gabor analysis based on 1D algorithms. In Proc. OEAGM-97 (Hallstatt, Austria), 1997. feka04 [1799] H. G. Feichtinger and N. Kaiblinger. Varying the time-frequency lattice of Gabor frames. Trans. Amer. Math. Soc., 356(5):2001–2023, 2004. feka07 [1800] H. G. Feichtinger and N. Kaiblinger. Quasi-interpolation in the Fourier algebra. J. Approx. Theory, 144(1):103–118, 2007. fekapr97 [1801] H. G. Feichtinger, N. Kaiblinger, and P. Prinz. A POCS approach to Gabor analysis. In DIP-97 (Vienna, Austria), volume 3346 of SPIE, pages 18–29, October 1997. feka95 [1802] H. G. Feichtinger and S. Kanjo. Best approximation of smooth signals by linear combinations of translates. In F. Solina et al., editors, Proc. of OEAGM-95, pages 205–212, Maribor, May 1995. feko98 [1803] H. G. Feichtinger and W. Kozek. Quantization of TF lattice-invariant operators on elementary LCA groups. In H. G. Feichtinger and T. Strohmer, editors, Gabor analysis and algorithms, Appl. Numer. Harmon. Anal., pages 233–266. Birkhäuser Boston, Boston, MA, 1998. fekolu09 [1804] H. G. Feichtinger, W. Kozek, and F. Luef. Gabor Analysis over finite Abelian groups. Appl. Comput. Harmon. Anal., 26(2):230–248, 2009. fekopr96 [1805] H. G. Feichtinger, W. Kozek, and P. Prinz. Gabor systems with good TF-localization and applications to image processing. In Proc. ICIP96, volume 1, pages 249 – 252. IEEE, 1996. fekoprst96 [1806] H. G. Feichtinger, W. Kozek, P. Prinz, and T. Strohmer. On multidimensional non-separable Gabor expansions. In Proc. SPIE: Wavelet Applications in Signal and Image Processing IV, August 1996. fekosc96 [1807] H. G. Feichtinger, W. Kozek, and J. Scharinger. Gabor analysis and linear system identification. In Proc.Int.Conf. on System Identification in Engineering Systems, pages 560–569, March 1996. 162 fekosc96-1 [1808] H. G. Feichtinger, W. Kozek, and J. Scharinger. Matched multiwindow methods for the estimation and filtering of nonstationary processes. In Proc. ISCAS ’96, volume 2, pages 509 – 512. IEEE, 1996. fekost95 [1809] H. G. Feichtinger, W. Kozek, and T. Strohmer. Reconstruction of signals from irregular samples of its short time Fourier transform. In SPIE95 Conference, San Diego, July 1995. fele87 [1810] H. G. Feichtinger and M. Leinert. Individual factorization in Banach modules. Colloq. Math., 51:107–117, 1987. felu06 [1811] H. G. Feichtinger and F. Luef. Wiener amalgam spaces for the Fundamental Identity of Gabor Analysis. Collect. Math., 57(Extra Volume (2006)):233–253, 2006. feluwe07 [1812] H. G. Feichtinger, F. Luef, and T. Werther. A guided tour from linear algebra to the foundations of Gabor analysis. In Gabor and Wavelet Frames, volume 10 of Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., pages 1–49. World Sci. Publ., Hackensack, 2007. fena06 [1813] H. G. Feichtinger and G. Narimani. Fourier multipliers of classical modulation spaces. Appl. Comput. Harmon. Anal., 21(3):349–359, 2006. feno01 [1814] H. G. Feichtinger and K. Nowak. A Szegö-type theorem for GaborToeplitz localization operators. Michigan Math. J., 49(1):13–21, 2001. feno03 [1815] H. G. Feichtinger and K. Nowak. A first survey of Gabor multipliers. In H. G. Feichtinger and T. Strohmer, editors, Advances in Gabor Analysis, Appl. Numer. Harmon. Anal., pages 99–128. Birkhäuser, 2003. fepa03-2 [1816] H. G. Feichtinger and S. S. Pandey. Error estimates for irregular sampling of band-limited functions on a locally compact Abelian group. J. Math. Anal. Appl., 279(2):380–397, 2003. fepa03 [1817] H. G. Feichtinger and S. S. Pandey. Recovery of band-limited functions on locally compact Abelian groups from irregular samples. Czechoslovak Math. J., 53(128)(2):249–264, 2003. 163 fepawe07 [1818] H. G. Feichtinger, S. S. Pandey, and T. Werther. Minimal norm interpolation in harmonic Hilbert spaces and Wiener amalgam spaces on locally compact abelian groups. J. Math. Kyoto Univ., 47(1):65–78, 2007. fepe04-1 [1819] H. G. Feichtinger and I. Pesenson. Recovery of band-limited functions on manifolds by an iterative algorithm. In AMS Contemp. Math., Wavelets frames and operator theory, volume 345, pages 137–152, Baltimore, 2004. AMS. fepe05 [1820] H. G. Feichtinger and I. Pesenson. A reconstruction method for bandlimited signals on the hyperbolic plane. Sampl. Theory Signal Image Process., 4(2):107–119, 2005. feqi95-1 [1821] H. G. Feichtinger and S. Qiu. Gabor-type matrices and discrete huge Gabor transforms. In Proc. ICASSP’95, volume 2, pages 1089–1092. IEEE, 1995. feri77 [1822] H. G. Feichtinger and H. Rindler. Symmetrie der Wienerschen Algebra und Gruppenstruktur. Anz. d. österr. Akad. Wiss., 6:89–91, 1977. fesc87 [1823] H. G. Feichtinger and W. Schachermayer. Local nonfactorization of functions on locally compact groups. Arch. Math. (Basel), 49:72–78, 1987. fesc86 [1824] H. G. Feichtinger and H.-J. Schmeisser. Weighted versions of Beurling’s Tauberian Theorem. Math. Ann., 275(3):353–363, 1986. fest92 [1825] H. G. Feichtinger and T. Strohmer. IRSATOL - Irregular Sampling of Band-limited Signals TOOLBOX. In K. Dette, D. Haupt, and C. Polze, editors, Conf. Computers for Teaching, Berlin, pages 277– 284, 1992. fest93 [1826] H. G. Feichtinger and T. Strohmer. Fast iterative reconstruction of band-limited images from irregular sampling values. In D. Chetverikov and W. Kropatsch, editors, Computer Analysis of Images and Patterns, pages 82–91. Conf. CAIP Budapest 93, 1993. 164 fest94 [1827] H. G. Feichtinger and T. Strohmer. Recovery of missing segments and lines in images. In P. Idell, editor, Digital Image Recovery and Synthesis, volume 33/10 of Optical Engineering, pages 3283–3289. SPIE, 1994. fest95 [1828] H. G. Feichtinger and T. Strohmer. A Kaczmarz-based approach to nonperiodic sampling on unions of rectangular lattices. In SampTA Sampling Theory and Applications, pages 32–37, Riga/Latvia, 1995. fest98 [1829] H. G. Feichtinger and T. Strohmer. Gabor Analysis and Algorithms. Theory and Applications. Birkhäuser, Boston, 1998. fest98-1 [1830] H. G. Feichtinger and T. Strohmer. Introduction. In H. G. Feichtinger and T. Strohmer, editors, Gabor Analysis and Algorithms Theory and Applications, Applied and Numerical Harmonic Analysis, pages 1–31, 453–488, Boston, MA, 1998. Birkhäuser Boston. fest03 [1831] H. G. Feichtinger and T. Strohmer. Advances in Gabor Analysis. Birkhäuser, Basel, 2003. festch95 [1832] H. G. Feichtinger, T. Strohmer, and O. Christensen. A grouptheoretical approach to Gabor analysis. Opt. Eng., 34:1697–1704, 1995. fegrst05 [1833] H. G. Feichtinger, T. Strohmer, and K. Gröchenig, editors. Special Issue: Frame Theory and Sampling Problems in Time-Frequency Analysis and Wavelet Theory (Part II), volume 3. World Sci.Pub., 5 Toh Tuck Link 01-01, Singapore 569224, Singapore, September 2005. fesu06 [1834] H. G. Feichtinger and W. Sun. Stability of Gabor frames with arbitrary sampling points. Acta Math. Hungar., 113(3):169–195, 2006. fesu07 [1835] H. G. Feichtinger and W. Sun. Sufficient conditions for irregular Gabor frames. Adv. Comput. Math., 26(4):403–430, April 2007. fesuzh07 [1836] H. G. Feichtinger, W. Sun, and X. Zhou. Two Banach spaces of atoms for stable wavelet frame expansions. J. Approx. Theory, 146(1):28–70, 2007. festtu94 [1837] H. G. Feichtinger, A. Türk, and T. Strohmer. Hierarchical parallel matching pursuit. In Proc. SPIE’94, San Diego, 1994. 165 fewe06-3 [1838] H. G. Feichtinger and F. Weisz. Inversion formulas for the short-time Fourier transform. J. Geom. Anal., 16(3):507–521, 2006. fewe06 [1839] H. G. Feichtinger and F. Weisz. The Segal algebra S0 (Rd ) and norm summability of Fourier series and Fourier transforms. Monatsh. Math., 148:333–349, 2006. fewe06-1 [1840] H. G. Feichtinger and F. Weisz. Wiener amalgams and pointwise summability of Fourier transforms and Fourier series. Math. Proc. Cambridge Philos. Soc., 140(3):509–536, 2006. fewe07 [1841] H. G. Feichtinger and F. Weisz. Gabor analysis on Wiener amalgams. Sampl. Theory Signal Image Process., 6(2):129–150, May 2007. fewe08 [1842] H. G. Feichtinger and F. Weisz. Herz spaces and summability of Fourier transforms. Math. Nachr., 281(3):1–16, 2008. fewe01 [1843] H. G. Feichtinger and T. Werther. Atomic systems for subspaces. In Proceedings SampTA, volume 2001, pages 163–165, Orlando, 2001. fewe04 [1844] H. G. Feichtinger and T. Werther. Robustness of regular sampling in Sobolev algebras. In J. Benedetto, editor, Sampling, Wavelets and Tomography, pages 83–113. Birkhäuser, 2004. fezi98 [1845] H. G. Feichtinger and G. Zimmermann. A Banach space of test functions for Gabor analysis. In H. G. Feichtinger and T. Strohmer, editors, Gabor Analysis and Algorithms: Theory and Applications, Applied and Numerical Harmonic Analysis, pages 123–170, Boston, MA, 1998. Birkhäuser Boston. fezi02 [1846] H. G. Feichtinger and G. Zimmermann. An exotic minimal Banach space of functions. Math. Nachr., 239-240:42–61, 2002. fene74 [1847] R. P. Feinerman and D. J. Newman. Polynomial Approximation. The Williams&Wilkins Company, Baltimore, Md., 1974. fe23 [1848] M. Fekete. Ueber die Faktorenfolgen welche die Klasse einer Fourierschen Reihe unveraendert lassen. Acta Math. Sci., I:148–166, 1923. fe68 [1849] J. Feldman and F. P. Greenleaf. Existence of Borel transversals in groups, 1968. 166 fekawa05 [1850] J. Feldman, M. J. Wainwright, and D. R. Karger. Using Linear Programming to Decode Binary Linear Codes, March 2005. fegrle06 [1851] G. Fendler, K. Gröchenig, and M. Leinert. Symmetry of weighted L1 algebras and the GRS-condition. Bull. Lond. Math. Soc., 38(4):625– 635, 2006. fegrlelumo03 [1852] G. Fendler, K. Gröchenig, M. Leinert, J. Ludwig, and C. Molitor Braun. Weighted group algebras on groups of polynomial growth. Math. Z., 245(4):791–821, 2003. feklst94 [1853] D. Feng, J. Klauder, and M. Strayer, editors. Coherent States: Past, Present, and Future. World Scientific, Singapore, 1994. fest83 [1854] Fenyö S. and H. W. Stolle. Theorie und Praxis der Linearen Integralgleichungen. 3. VEB Deutscher Verlag der Wissenschaften, Berlin, 1983. fega06 [1855] C. Fernandez and A. Galbis. Compactness of time-frequency localization operators on L2 (R). J. Funct. Anal., 233(2):335–350, 2006. dafe97 [1856] E. M. Fernandez Berdaguer, G. De, and C. Dattellis. Wavelet Theory and Harmonic Analysis in Applied Sciences. Based on the 1st Latinamerican Conference on Mathematics in Industry and Medicine, Buenos Aires, Argentina, November 27–December 1, 1995. Birkhäuser, Boston, 1997. fero99 [1857] E. Ferreira and J. M. Rodriguez Poo. Variable bandwidth kernel estimators of the spectral density. J. Time Ser. Anal., 20(3):271–288, 1999. fe94-2 [1858] P. J. Ferreira. Interpolation and the discrete Papoulis-Gerchberg algorithm. IEEE Trans. Signal Process., 42(10):2596–2606, 1994. fe94-3 [1859] P. J. Ferreira. Noniterative and fast iterative methods for interpolation and extrapolation. IEEE Trans. Signal Process., 42(11):3278– 3282, 1994. dafegoto06 [1860] C. Févotte, L. Daudet, S. J. Godsill, and B. Torrésani. Sparse regression with structured priors: application to audio denoising. In Proc. ICASSP, 2006. 167 fi64 [1861] A. Figa Talamanca. Multipliers of p-integrable functions. Bull. Amer. Math. Soc., 70:666–669, 1964. fi65 [1862] A. Figa Talamanca. Translation invariant operators in Lp . Duke Math. J., 32:495–501, 1965. figa67 [1863] A. Figa Talamanca and G. I. Gaudry. Density and representation theorems for multipliers of type (p, q). J. Aust. Math. Soc., 7:1–6, 1967. figa71 [1864] A. Figà Talamanca and G. I. Gaudry. Multipliers of Lp which vanish at infinity. J. Funct. Anal., 7:475–486, 1971. finowr07 [1865] M. Figueiredo, R. D. Nowak, and S. Wright. Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Sel. Topics Sig. Process., 1(4):586–598, 2007. fino03 [1866] M. A. Figueiredo and R. D. Nowak. An EM algorithm for waveletbased image restoration. IEEE Trans. Image Process., 12(8):906–916, 2003. figrva06 [1867] R. M. Figueras i Ventura, R. Gribonval, and P. Vandergheynst. A simple test to check the optimality of a sparse signal approximation. Signal Process., 86(3):496–510, 2006. figrva90 [1868] H. Figueroa, J. M. Gracia Bondia, and J. C. Varilly. Moyal quantization with compact symmetry groups and noncommutative harmonic analysis. J. Math. Phys., 31(11):2664–2671, 1990. fimi97 [1869] P. A. Fillmore and J. A. Mingo. Operator Algebras and their Applications. American Mathematical Society, Providence, RI, 1997. fi05 [1870] G. Fischer. Linear Algebra. An Introduction for Beginners. (Lineare Algebra. Eine Einführung für Studienanfänger.). Vieweg Studium: Grundkurs Mathematik. Vieweg, Wiesbaden, 15th revised ed. edition, 2005. figuli96 [1871] R. H. Fischer, A. T. Gürkanli, and T. S. Liu. On a family of weighted spaces. Math. Slovaca, 46(1):71–82, 1996. 168 crfi01 [1872] S. Fischer and G. Cristobal. Minimum entropy transform using Gabor wavelets for image compression. In Proceedings. 11th International Conference on Image Analysis and Processing, 2001., pages 428 – 433, Palermo , Italy, 2001. crfire06 [1873] S. Fischer, G. Cristobal, and R. Redondo. Sparse overcomplete Gabor wavelet representation based on local competitions. IEEE Trans. Image Process., 15(2):265 – 272, 2006. fi73 [1874] M. J. Fisher. Functions on multipliers of p-Fourier algebras. Bull. Amer. Math. Soc., 79:1039–1042, 1973. fi74 [1875] M. J. Fisher. Properties of three algebras related to Lp -multipliers. Bull. Amer. Math. Soc., 80:262–265, 1974. fi75 [1876] M. J. Fisher. Multipliers on p-Fourier algebras. Studia Math., 54:109– 116, 1975. fl99 [1877] P. Flandrin. Time-frequency/time-scale Analysis (Wavelet Analysis and Its Applications). Academic Press, San Diego, CA, 1999. fl01 [1878] P. Flandrin. Inequalities in Mellin-Fourier signal analysis. In L. Debnath, editor, Wavelet Transforms and Time-frequency Signal Analysis, Applied and Numerical Harmonic Analysis, pages 289–319. Birkhäuser, Boston, MA, 2001. flgo04 [1879] P. Flandrin and P. Goncalves. Empirical mode decompositions as data-driven wavelet-like expansions. Int. J. Wavelets Multiresolut. Inf. Process., 2(4):477–496, 2004. flsazu85 [1880] M. Flato, P. Sally, and G. Zuckermann. Applications of Group Theory in Physics and Mathematical Physics. (Proceedings of the Summer Seminar on Applications of Group Theory in Physics and Mathematical Physics). American Mathematical Society, Providence, RI, 1985. fl77 [1881] W. Fleming. Functions of Several Variables. 2nd ed. Springer, New York, Heidelberg, Berlin, 1977. fl74 [1882] T. M. Flett. Some elementary inequalities for integrals with applications to Fourier. Proc. Lond. Math. Soc., III. Ser., 29:538–556, 1974. 169 fl90 [1883] B. Fleury. Charakterisierung von Mobil- und Richtfunkkanälen mit schwach stationären Fluktuationen und unkorrelierter Streuung (WSSUS). PhD thesis, ETH Zürich, 1990. flis96 [1884] M. S. Floater and A. Iske. Multistep scattered data interpolation using compactly supported radial basis functions. J. Comput. Appl. Math., 73(1-2):65–78, 1996. flwl68 [1885] K. Floret and J. Wloka. Einführung in die Theorie der Lokalkonvexen Räume. Berlin-Heidelberg-New York: Springer-Verlag. VII, 194 S., 1968. flXX [1886] B. H. Floyd. Applied Stochastic Processes and Control for Jump Diffusions: Modeling, Analyis, and Computation. fo99-1 [1887] C. Foias. Is mathematics a human creation?, 1999. fo89 [1888] G. B. Folland. Harmonic Analysis in Phase Space. Princeton University Press, Princeton, N.J., 1989. fo92 [1889] G. B. Folland. Fourier Analysis and its Applications. Wadsworth and Brooks, CA, 1992. fo94 [1890] G. B. Folland. A Course in Abstract Harmonic Analysis. CRC Press, 1994. fo95 [1891] G. B. Folland. A Course in Abstract Harmonic Analysis. Studies in Advanced Mathematics. Boca Raton, FL: CRC Press. viii, Boca Raton, FL, 1995. fo99 [1892] G. B. Folland. Real Analysis. Modern Techniques and their Applications. 2nd ed. Wiley, New York, NY, 1999. fo06-1 [1893] G. B. Folland. The abstruse meets the applicable: some aspects of time-frequency analysis. Proc. Indian Acad. Sci. Math. Sci., 116:121– 136, 2006. fosi97 [1894] G. B. Folland and A. Sitaram. The uncertainty principle: A mathematical survey. J. Fourier Anal. Appl., 3(3):207–238, 1997. fost82 [1895] G. B. Folland and E. M. Stein. Hardy Spaces on Homogeneous Groups. Princeton University Press, Princeton, NJ, 1982. 170 fo03-4 [1896] O. Föllinger. Laplace-, Fourier- und Z-Transformation. Hüthig, Heidelberg, 8., überarbeitete Auflage, bearbeitet von Mathias Kluwe edition, 2003. fojela96 [1897] F. Fontanella, K. Jetter, and P.-J. Laurent. Proceedings of the International Workshop on Advanced Topics in Multivariate Approximation, Montecatini Terme, Italy, September 27–October 3, 1995. World Scientific, Singapore, 1996. fo03 [1898] M. Fornasier. Constructive Methods for Numerical Applications in Signal Processing and Homogenization Problems. PhD thesis, University of Padova, 2003. fo03-1 [1899] M. Fornasier. Decompositions of Hilbert spaces: local construction of global frames. In Constructive Theory of Functions, pages 275–281. DARBA, Sofia, 2003. fo03-2 [1900] M. Fornasier. Function spaces inclusions and rate of convergence of Riemann-type sums in numerical integration. Numer. Funct. Anal. Optimization, 24(1-2):45–57, 2003. fo04-3 [1901] M. Fornasier. Nonlinear projection digital image inpainting and restoration methods. 2004. fo04 [1902] M. Fornasier. Quasi-orthogonal decompositions of structured frames. J. Math. Anal. Appl., 289(1):180–199, 2004. fo05-2 [1903] M. Fornasier. Nonlinear projection recovery on digital inpainting for color image restoration. J. Math. Imaging Vision, 2005. fo05 [1904] M. Fornasier. On some stability results of localized atomic decompositions. 2005. fo06-2 [1905] M. Fornasier. Andrea Mantegna e i Maestri Della Cappella Ovetari. First edition, 2006. fo06 [1906] M. Fornasier. On some stability results of frame atomic decompositions. Rendiconti di Matematica e delle sue Applicazioni, 2006. fo07 [1907] M. Fornasier. Banach frames for α-modulation spaces. Appl. Comput. Harmon. Anal., 22(2):157–175, 2007. 171 chcofo05-2 [1908] M. Fornasier, M. Charina, and C. Conti. Adaptive frame methods for MHD flows. May 2005. fogo06 [1909] M. Fornasier and L. Gori. Sampling theorems on bounded domains. 2006. fogr05 [1910] M. Fornasier and K. Gröchenig. Intrinsic localization of frames. Constr. Approx., 22(3):395–415, 2005. fora05 [1911] M. Fornasier and H. Rauhut. Continuous frames, function spaces, and the discretization problem. J. Fourier Anal. Appl., 11(3):245– 287, 2005. fora08-1 [1912] M. Fornasier and H. Rauhut. Iterative thresholding algorithms. Appl. Comput. Harmon. Anal., 25(2):187 – 208, 2008. fora08 [1913] M. Fornasier and H. Rauhut. Recovery algorithms for vector valued data with joint sparsity constraints. SIAM J. Numer. Anal., 46(2):577–613, 2008. foto03 [1914] M. Fornasier and D. Toniolo. Computer-based Recomposition of the Frescoes in the Ovetari Chapel in the Church of the Eremitani in Padua. Methodology and Initial Results, (English/Italian). in “Mantegna nella chiesa degli Eremitani a Padova., 2003. foto05 [1915] M. Fornasier and D. Toniolo. Fast, robust, and efficient 2D pattern recognition for re-assembling fragmented digital images. Pattern Recognition, 38(11):2074–2087, 2005. fokalasp03 [1916] B. Forrest, E. Kaniuth, A. T.-M. Lau, and N. Spronk. Ideals with bounded approximate identities in Fourier algebras. J. Funct. Anal., 203(1):286–304, 2003. fosp06 [1917] B. Forrest and N. Spronk. Best bounds for approximate identities in ideals of the Fourier algebra vanishing on subgroups. Proc. Amer. Math. Soc., 134(1):111–116, 2006. foga98 [1918] G. J. Foschini and M. J. Gans. On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas. Wireless Personal Communications, 6(3):311 – 335, March 1998. 172 fo73 [1919] J. J. F. Fournier. Local complements to the Hausdorff-Young theorem. Michigan Math. J., 20:263–276, 1973. fo74 [1920] J. J. F. Fournier. Majorants and Lp norms. Israel J. Math., 18:157– 166, 1974. fo83 [1921] J. J. F. Fournier. On the Hausdorff-Young theorem for amalgams. Monatsh. Math., 95:117–135, 1983. fo87 [1922] J. J. F. Fournier. Lacunarity for amalgams. Rocky Mountain J. Math., 17:277–294, 1987. fo97 [1923] J. J. F. Fournier. Local and global properties of functions and their Fourier transforms. 1997. fost85 [1924] J. J. F. Fournier and J. Stewart. Amalgams of Lp and `q . Bull. Amer. Math. Soc. (N.S.), 13:1–21, 1985. frla02 [1925] M. Frank and D. R. Larson. Frames in Hilbert C ∗ -modules and C ∗ algebras. J. Operator Theory, 48(2):273–314, 2002. fr28 [1926] P. Franklin. A set of continuous orthogonal functions. Math. Ann., 100:522–529, 1928. fr08 [1927] Franz Hlawatsch, editor. Tools. April 2008. fr87 [1928] Franz-Jürgen Delvos. Periodic interpolation on uniform meshes. J. Approx. Theory, 51(1):71–80, 1987. frhajawe89 [1929] M. Frazier, Y. S. Han, B. D. Jawerth, and G. Weiss. The T1 theorem for Triebel-Lizorkin spaces. In Harmonic Analysis and Partial Differential Equations, Proc Int Conf, El Escorial/Spain 1987, Lect Notes Math 1384, 168-181. 1989. frja85 [1930] M. Frazier and B. Jawerth. Decomposition of Besov spaces. Indiana Univ. Math. J., 34:777–799, 1985. frja88 [1931] M. Frazier and B. Jawerth. The ϕ-transform and applications to distribution spaces. In Function Spaces and Applications, Proc. USSwed. Seminar, Lund/Swed, Lect. Notes Math. 1302, pages 223–246. 1988. Time-Frequency Analysis Concepts and 173 frja90 [1932] M. Frazier and B. Jawerth. A discrete transform and decompositions of distribution spaces. J. Funct. Anal., 93(1):34–170, 1990. frja92 [1933] M. Frazier and B. Jawerth. Applications of the ϕ and wavelet transforms to the theory of function spaces. In Ruskai, Mary Beth (ed) et al, Wavelets and their Applications Boston, MA Etc: Jones and Bartlett Publishers 377-417. 1992. fr99 [1934] M. W. Frazier. An Introduction to Wavelets through Linear Algebra. Springer, New York, NY, 1999. frjawe91 [1935] M. W. Frazier, B. D. Jawerth, and G. Weiss. Littlewood-Paley Theory and the Study of Function Spaces. Amer. Math. Soc., Providence, RI, 1991. frto90 [1936] J. H. Frederick and G. Torres Vega. Quantum Mechanics in Phase Space: New approaches to the correspondence principle. J. Chem. Phys., 93(12):8862–8874, 1990. frmi04 [1937] W. Freeden and V. Michel. Multiscale Potential Theory. With Applications to Geoscience. Applied and Numerical Harmonic Analysis. Boston, MA: Birkhäuser. xviii, 2004. fr79 [1938] S. H. Friedberg. Compact multipliers on Banach algebras. Proc. Amer. Math. Soc., 77(2):210, 1979. frze95 [1939] B. Friedlander and A. Zeira. Oversampled Gabor representation for transient signals. IEEE Trans. Signal Process., 43(9):2088–2094, sep 1995. fr98 [1940] F. G. Friedlander. Introduction of the Theory of Distributions. With Additional Material by M. Joshi. Cambridge University Press, Cambridge, 2nd ed. edition, 1998. fu04 [1941] J. J. Fuchs. On sparse representations in arbitrary redundant bases. IEEE Trans. Inform. Theory, 50(6):1341–1344, 2004. fu05 [1942] H. Führ. Abstract Harmonic Analysis of Continuous Wavelet Transforms, volume 1863 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2005. 174 fu08 [1943] H. Führ. Simultaneous estimates for vector-valued Gabor frames of Hermite functions. Adv. Comput. Math., 29(4):357–373, November 2008. fuwi06 [1944] H. Führ and M. Wild. Characterizing wavelet coefficient decay of discrete-time signals. Appl. Comput. Harmon. Anal., 20(2):184–201, March 2006. fuha91 [1945] W. Fulton and J. Harris. Representation Theory. A First Course. Graduate Texts in Mathematics. 129. New York etc.: Springer-Verlag, . xv, 1991. fu07 [1946] F. Futamura. Symmetrically localized frames and the removal of subsets of positive density. J. Math. Anal. Appl., 326(2):1225–1235, 2007. ga93-1 [1947] J.-P. Gabardo. Extension of Positive-definite Distributions and Maximum Entropy. The University of Chicago Press, Chicago, London, 1993. gaha03 [1948] J. P. Gabardo and D. Han. Frame representations for group-like unitary operator systems. J. Operator Theory, 49(2):223–244, 2003. gaha03-1 [1949] J.-P. Gabardo and D. Han. Frames associated with measurable spaces. Adv. Comput. Math., 18(2-4):127–147, 2003. gaha04 [1950] J.-P. Gabardo and D. Han. Balian-Low phenomenon for subspace Gabor frames. J. Math. Phys., 45(8):3362–3378, 2004. gayu04 [1951] J.-P. Gabardo and X. Yu. Construction of wavelet sets with certain self-similarity properties. J. Geom. Anal., 14(4):629–651, 2004. ga46 [1952] D. Gabor. Theory of communication. J. IEE, 93(26):429–457, 1946. gaga54 [1953] D. Gabor and A. Gabor. An essay on the mathematical theory of freedom. J. Roy. Statist. Soc. Ser. A, 117:31–60; discussion, 60–72, 1954. ga96 [1954] P. Gabriel. Matrizen, Geometrie, Lineare Algebra. (Matrices, Geometry, Linear Algebra). Birkhäuser, Basel, 1996. ga95-1 [1955] M. Gadella. Moyal Formulation of Quantum Mechanics. Fortschr. Phys., 43(3):229–264, 1995. 175 gag02 [1956] M. Gadella and F. Gómez. The Lippmann-Schwinger equations in the rigged Hilbert space. J. Phys. A, Math. Gen., 35(40):8505–8511, 2002. gagr89 [1957] M. Gadella and J. M. Gracia Bondia. Quadratic Hamiltonians in phase-space quantum mechanics. J. Phys. A, 22(14):2709–2738, 1989. gagrniv89 [1958] M. Gadella, J. M. Gracia Bondia, L. M. Nieto, and J. C. Varilly. Quadratic Hamiltonians in phase-space quantum mechanics. J. Phys. A, 22(14):2709–2738, 1989. ga61 [1959] E. Gagliardo. A unified structure in various families of function spaces. Compactness and closure theorems. In Proc Int Symp Linear Spaces, Jerusalem 1960, 237-241. 1961. gaXX [1960] S. G. Gal. Global Smoothness and Shape Preserving Interpolation by Classical Operators. Birkhäuser. gasa01 [1961] F. Galindo and J. Sanz. Multiresolution analysis and Radon measures on a locally compact Abelian group. Czechoslovak Math. J., 51(4):859–871, 2001. gasc07-1 [1962] J. Gallart and M. Schimmel. Frequency-dependent phase coherence for noise-suppression in seismic array data. J. Geophys. Res., 112:B04303 1–14, 2007. gagr02 [1963] Y. V. Galperin and K. Gröchenig. Uncertainty principles as embeddings of modulation spaces. J. Math. Anal. Appl., 274(1):181–202, 2002. gasa04 [1964] Y. V. Galperin and S. Samarah. Time-frequency analysis on modulation spaces mp,q m , 0 < p, q ≤ ∞. Appl. Comput. Harmon. Anal., 16(1):1–18, 2004. ga06-2 [1965] T. Gantumur. Adaptive Wavelet Algorithms for Solving Operator Equations. PhD thesis, Utrecht University, 2006. gamupo05 [1966] A. Garcia, M. Munoz Bouzo, and A. Portal. Irregular sampling of generalized harmonizable processes. Stochastic Anal. Appl., 22(5):1327– 1339, January 2005. 176 gahemo98 [1967] A. G. Garcı́a, J. Moro, and M. . Hernández Medina. On the distributional Fourier duality and its applications. J. Math. Anal. Appl., 227(1):43–54, 1998. gape07 [1968] A. G. Garcı́a and G. Perez Villalón. Generalized irregular sampling in shift-invariant spaces. Int. J. Wavelets Multiresolut. Inf. Process., 5(3):369–387, 2007. dogama96 [1969] J. Garcı́a, D. Mas, and R. G. Dorsch. Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm. Appl. Opt., 35:7013–7018, 1996. ga89 [1970] J. Garcia Cuerva. Hardy spaces and Beurling algebras. J. London Math. Soc., 39 (2):499–513, 1989. ga91 [1971] J. Garc’ia Cuerva. The work of Jos’e Luis Rubio de Francia. II. Publ. Mat., Barc., 35(1):27–63, 1991. gakakoto98 [1972] J. Garcia Cuerva, K. S. Kazarian, V. I. Kolyada, and J.-L. Torrea. Vector-valued Hausdorff-Young inequality and applications. Russian Math. Surveys, 53(3):435–513, 1998. gamasjto99 [1973] J. Garcı́a Cuerva, G. Mauceri, P. Sjögren, and J.-L. Torrea. Higherorder Riesz operators for the Ornstein-Uhlenbeck semigroup. Potential Anal., 10(4):379–407, 1999. ga93 [1974] U. Garcia Palomares. Parallel projected aggregation methods for solving the convex feasibility problem. SIAM J. Opti., Soc. Indust. and App. Math., 3/Nr.4:882–901, 1993. ga81 [1975] L. Garding. Microlocal analysis of distributions. Jahresber. Deutsch. Math.-Verein., 83(1):32–44, 1981. ga66-2 [1976] L. T. Gardner. Square roots in Banach algebras. Proc. Amer. Math. Soc., 17(1):132–134, 1966. ga95 [1977] R. J. Gardner. Geometric Tomography. Cambridge University Press, Cambridge, 1995. ga88 [1978] W. A. Gardner. Statistical Spectral Analysis. A Nonprobabilistic Theory. Prentice Hall, Englewood Cliffs, NJ, 1988. 177 ga98 [1979] H. K. Garg. Digital Signal Processing Algorithms. Number Theory, Convolution, Fast Fourier Transforms, and Applications. CRC Press, Boca Raton, FL, 1998. gamo91 [1980] D. J. H. Garling and S. J. Montgomery Smith. Complemented subspaces of spaces obtained by interpolation. J. Lond. Math. Soc. (2), 44(3):503–513, 1991. ga06-1 [1981] J. B. Garnett. Bounded Analytic Functions. Revised 1st ed., volume 236 of Graduate Texts in Mathematics. Springer, New York, NY, 2006. gama05 [1982] J. B. Garnett and D. E. Marshall. Harmonic Measure. New Mathematical Monographs 2. Cambridge University Press, 2005. gahe04 [1983] G. Garrigós and E. Hernandez. Sharp Jackson and Bernstein inequalities for n-term approximation in sequence spaces with applications. Indiana Univ. Math. J., 53(6):1739–1762, 2004. gata02 [1984] G. Garrigós and A. Tabacco. Wavelet decompositions of anisotropic Besov spaces. Math. Nachr., 239-240:80–102, 2002. gasttr95 [1985] G. Gasper, K. Stempak, and W. Trebels. Fractional integration for Laguerre expansions. Methods Appl. Anal., 2(1):67–75, 1995. gatr79 [1986] G. Gasper and W. Trebels. A characterization of localized Bessel potential spaces and applications to Jacobi and Hankel multipliers. Studia Math., 65:243–278, 1979. gatr79-1 [1987] G. Gasper and W. Trebels. Multiplier criteria of Hörmander type for Fourier series and. Math. Ann., 242:225–240, 1979. ga66-1 [1988] G. I. Gaudry. Multipliers of type (p, q). Pacific J. Math., 18:477–488, 1966. ga66 [1989] G. I. Gaudry. Quasimeasures and operators commuting with convolution. Pacific J. Math., 18:461–476, 1966. ga69 [1990] G. I. Gaudry. Multipliers of weighted Lebesgue and measure spaces. Proc. Lond. Math. Soc., III. Ser., 19:327–340, 1969. 178 ga70 [1991] G. I. Gaudry. Bad behavior and inclusion results for multipliers of type (p,q). Pacific J. Math., 35:83–94, 1970. ga72 [1992] G. I. Gaudry. Restrictions of multipliers to closed subgroups. Math. Ann., 197:171–179, 1972. gain74 [1993] G. I. Gaudry and I. R. Inglis. Approximation of multipliers. Proc. Amer. Math. Soc., 44:381–384, 1974. ga94 [1994] E. Gauß. WALSH-Funktionen für Ingeieure und Naturwissenschaftler. Teubner (Stuttgart), 1994. gamare01 [1995] W. Gautschi, F. Marcellan, and L. Reichel. Numerical Analysis 2000. (In 7 Vols.) Vol. 5: Quadrature and Orthogonal Polynomials. Repr. from the Journal of Computational and Applied Mathematics 127, No. 1-2 (2000). North-Holland/ Elsevier, Amsterdam, 2001. ga78 [1996] P. Gavruta. On a class of homogeneous Banach spaces. An. Univ. Timic soara Ser. c Stiinc t. Mat., 16:149–156, 1978. ga06 [1997] P. Gavruta. On some identities and inequalities for frames in Hilbert spaces. J. Math. Anal. Appl., 321(1):469–478, 2006. gu07 [1998] P. Gavruta. On the duality of fusion frames. J. Math. Anal. Appl., 333(2):871–879, 2007. geta07 [1999] D.-A. Geba and D. Tataru. A phase space transform adapted to the wave equation. Comm. Partial Differential Equations, 32(7):1065– 1101, 2007. geta06 [2000] A. Gelb and J. Tanner. Robust reprojection methods for the resolution of the Gibbs phenomenon. Appl. Comput. Harmon. Anal., 20(1):3–25, 2006. ge75 [2001] S. S. Gelbart. Automorphic Forms on Adele Groups. Princeton University Press, Princeton, N.J., 1975. ge65 [2002] B. R. Gelbaum. Tensor products over Banach algebras. Trans. Amer. Math. Soc., 118:131–149, 1965. ge67 [2003] B. R. Gelbaum. Tensor products of group algebras. Pacific J. Math., 22:241–250, 1967. 179 gesc69 [2004] I. Gelfand and G. Schilow. Verallgemeinerte Funktionen (Distributionen), Band I und II. VEB Deutscher Verlag der Wissenschaften, 1969. ge50 [2005] I. M. Gelfand. Eigenfunction expansions for equations with periodic coefficients. Dokl. Akad. Nauk SSSR, 73(6):1117–1120, 1950. ge55 [2006] I. M. Gelfand. Generalized random processes. Dokl. Akad. Nauk SSSR, (100):853–856, 1955. gesh64 [2007] I. M. Gel’fand and G. E. Shilov. Generalized Functions. Vol. 1: Properties and Operations. Translated by E.Saletan. Academic Press, New York and London, 1964. gesh68 [2008] I. M. Gel’fand and G. E. Shilov. Generalized Functions. Vol. 2: Spaces of Fundamental and Generalized Functions. Translated by Morris D. Friedman, Amiel Feinstein and Christian P. Peltzer. New York and London: Academic Press. X, 1968. gerash64 [2009] I. M. Gelfand, G. E. Shilov, and D. A. Raikov. Commutative Normed Rings. Chelsea Publishing Company, Bronx, New York, 1964. gevi64 [2010] I. M. Gelfand and N. Y. Vilenkin. Generalized Functions, Vol. 4: Applications of Harmonic Analysis. Academic Press, New York and London, 1964. gewi64 [2011] I. M. Gelfand and J. Wilenkin. Verallgemeinerte Funktionen Distributionen IV. Number 50 in Hochschulbücher f. Math. VEB Deutscher Verlag der Wissenschaften, Berlin, 1964. gesewh02 [2012] R. Genc cay, F. Selc cuk, and B. Whitcher. An Introduction to Wavelets and Other Filtering Methods in Finance and. San Diego, CA: Academic Press. xxii, 2002. gepo92 [2013] T. Genossar and M. Porat. Can one evaluate the Gabor expansion using Gabor’s iterative algorithm? IEEE Trans. Signal Process., 40(8):1852–1861, 1992. ge98 [2014] J. E. Gentle. Numerical Linear Algebra for Applications in Statistics. Statistics and Computing. Springer, New York, NY, 1998. 180 ge70 [2015] C. Georgakis. On the uniform convergence of Fourier transforms on groups. Acta Math. Sci., 31:359–362, 1970. ge74 [2016] R. W. Gerchberg. Super-resolution through error energy reduction. J. Modern Opt., 21(9):709 – 720, 1974. ghla05 [2017] F. Ghahramani and A. T.-M. Lau. Approximate weak amenability, derivations and Arens regularity of Segal algebras. Studia Math., 169(2):189–205, 2005. ghmaye08 [2018] M. Ghandi, M. M. J. Yekta, and F. Marvasti. Some nonlinear/adaptive methods for fast recovery of the missing samples of signals. Signal Process., 88(3):624–638, 2008. gila04-1 [2019] P. C. Gibson and M. P. Lamoureux. Maximally symmetric, minimally redundant partitions of unity in the plane. C. R. Math. Acad. Sci., Soc. R. Can., 26(3):65–72, 2004. gilama03 [2020] P. C. Gibson, M. P. Lamoureux, and G. F. Margrave. Representation of linear operators by Gabor multipliers. 2003. gilama06 [2021] P. C. Gibson, M. P. Lamoureux, and G. F. Margrave. Letter to the editor: Stockwell and wavelet transforms. J. Fourier Anal. Appl., 12(6):713–721, 2006. gisk04 [2022] I. I. Gikhman and A. V. Skorokhod. The Theory of Stochastic Processes. I. Translated from the Russian by S. Kotz. Corrected Printing of the First Edition. Classics in Mathematics. Berlin: Springer. viii, 574 p., 2004. gi83 [2023] J. Gil de Lamadrid. Application d’une forme generale de la formule de Poisson ‘a l”etude des mesures transformables. Publ. Math. Univ. Pierre Marie Curie 22e Ann’ee: 1982/83, 59:unklar “Exp. No.5, 8 p.”, 1983. argi90 [2024] J. Gil de Lamadrid and L. N. Argabright. Almost Periodic Measures. Deutscher Taschenbuch Verlag, München, 1990. giguinmust02 [2025] A. C. Gilbert, S. Muthukrishnan, S. Guha, P. Indyk, and M. Strauss. Near-Optimal Sparse Fourier Representations via Sampling. In Proc. STOC’02, pages 152 – 161, New York, NY, USA, 2002. Association for Computing Machinery. 181 gimust03 [2026] A. C. Gilbert, S. Muthukrishnan, and M. J. Strauss. Approximation of functions over redundant dictionaries using coherence. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Baltimore, MD, USA, January 12-14, 2003, pages 243– 252. SIAM and Association for Computing Machinery, New York, NY; Philadelphia, PA, 2003. gisttrve06 [2027] A. C. Gilbert, M. Strauss, J. A. Tropp, and R. Vershynin. One sketch for all: Fast algorithms for compressed sensing. In Proc. 39th ACM Symp. Theory of Computing (STOC), 2007. gitr07 [2028] A. C. Gilbert and J. A. Tropp. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inform. Theory, 53(12):4655–4666, 2007. gi68 [2029] J. E. Gilbert. Convolution operators on Lp (G) and properties of locally compact groups. Pacific J. Math., 24(2):257–268, 1968. gi69 [2030] J. E. Gilbert. On a strong form of spectral synthesis. Ark. Mat., 7:571–575, 1969. gi72 [2031] J. E. Gilbert. Interpolation between weighted Lp -spaces. Ark. Mat., 10:235–249, 1972. gi74-2 [2032] J. E. Gilbert. Lp -convolution operators and tensor products of Banach spaces. Bull. Amer. Math. Soc., 80:1127–1132, 1974. gihaholawewe02 [2033] J. E. Gilbert, Y. S. Han, J. A. Hogan, J. D. Lakey, D. Weiland, and G. Weiss. Smooth Molecular Decompositions of Functions and Singular Integral Operators, volume 742. 2002. gihola97 [2034] J. E. Gilbert, J. A. Hogan, and J. D. Lakey. Atomic decomposition of divergence-free Hardy spaces. In Proceedings of the Fifth International Workshop on Analysis and Applications, Math. Moravica, Special Volume, pages 33–52, 1997. gihola00 [2035] J. E. Gilbert, J. A. Hogan, and J. D. Lakey. Characterization of Hardy spaces by singular integrals and “divergence-free” wavelets. Pacific J. Math., 193(1):79–105, 2000. 182 gihola05 [2036] J. E. Gilbert, J. A. Hogan, and J. D. Lakey. BMO, boundedness of affine operators, and frames. Appl. Comput. Harmon. Anal., 18(1):3– 24, 2005. giitsc85 [2037] J. E. Gilbert, T. Ito, and B. M. Schreiber. Bimeasure algebras on locally compact groups. J. Funct. Anal., 64:40, 1985. gila04 [2038] J. E. Gilbert and J. D. Lakey. On a characterization of the local Hardy space by Gabor frames. In Wavelets, Frames and Operator Theory Papers from the Focused Research Group Workshop, University Of Maryland, College Park, MD, USA, January 15–21, 2003, volume 345 of Contemporary Mathematics, pages 153–161. American Mathematical Society (AMS), Providence, RI, 2004. gimu91 [2039] J. E. Gilbert and M. A. M. Murray. Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambridge University Press, (UK), 1991. girz10 [2040] J. E. Gilbert and Z. Rzeszotnik. The norm of the Fourier transform on finite abelian groups. Ann. Inst. Fourier (Grenoble), 2010. elgivo03-1 [2041] L. Gilles, B. L. Ellerbroek, and C. R. Vogel. Preconditioned Conjugate Gradient Wave-front Reconstructors for MultiConjugate Adaptive Optics. Appl. Opt., 42(26):5233–5250, 2003. elgivo02 [2042] L. Gilles, C. R. Vogel, and B. L. Ellerbroek. Multigrid preconditioned conjugate-gradient method for large-scale wave-front reconstruction. J. Opt. Soc. Amer. A, 19(9):1817–1822, 2002. gipi04 [2043] Gilles Aubert and Pierre Kornprobst. Mathematical Problems in Image Processing. 2004. gi74 [2044] R. Gilmore. Lie Groups, Lie Algebras, and some of their Applications. Wiley-Interscience Publication. John Wiley and Sons, New York, 1974. gi74-1 [2045] R. Gilmore. On properties of coherent states. Rev. Mex. Fis., 23(12):143–187, 1974. bogina75 [2046] R. Gilmore, C. M. Bowden, and L. M. Narducci. Classical-quantum correspondence for multilevel systems. Phys. Rev. A, 12(3):1019 – 1031, 1975. 183 giwe03-1 [2047] M. Girardi and L. Weis. Operator-valued Fourier multiplier theorems on Besov spaces. Math. Nachr., 251:34–51, 2003. giwe03 [2048] M. Girardi and L. Weis. Vector-valued extentions of some classical theorems in harmonic analysis. In et al. and H. G. W. Begehr, editors, Analysis and Applications-ISAAC 2001 Proceedings of the 3rd International Congress, Berlin, Germany, August 20-25, 2001, volume 10 of Int. Soc. Anal. Appl. Comput., pages 171–185. Kluwer Academic Publishers, Dordrecht, 2003. gi98 [2049] F. Girosi. An equivalence between sparse approximation and Support Vector Machines. Neural Comput., 10(6):1455–1480, 1998. glprsk06 [2050] H. J. Glaeske, A. P. Prudnikov, and K. A. Sk‘ornik. Operational Calculus and related Topics. Analytical Methods and Special Functions 10. Chapman & Hall/ CRC, 2006. gl82 [2051] P. Glowacki. A calculus of symbols and convolution semigroups on the Heisenberg group. Studia Math., 72:291–321, 1982. goro05 [2052] C. Godsil and A. Roy. Equiangular lines, mutually unbiased bases, and spin models. 2005. gora98 [2053] S. J. Godsill and P. J. W. Rayner. Digital Audio Restoration. Springer, Berlin, 1998. gowo03 [2054] S. J. Godsill and P. J. Wolfe. Bayesian estimation of time-frequency coefficients for audio signal enhancement. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems, volume 15. MIT Press, Cambridge, MA, 2003. go98 [2055] S. K. Godunov. Modern Aspects of Linear Algebra, volume 175 of Translations of Mathematical Monographs. American Mathematical Society, Providence, RI, 1998. gowe70 [2056] S. Goes and R. Welland. Compactness criteria for Köthe spaces. Math. Ann., 188:251–269, 1970. gowo06 [2057] S. Gogyan and P. Wojtaszczyk. On weak non-equivalence of waveletlike systems in l1 . Math. Proc. Cambridge Philos. Soc., page submitted, 2006. 184 gogo06-1 [2058] S. S. Goh and T. Goodman. Uncertainty principles in Banach spaces and signal recovery. J. Approx. Theory, Volume 143(Issue 1):26–35, 2006. gogo06 [2059] S. S. Goh and T. N. T. Goodman. Inequalities on time-concentrated or frequency-concentrated. Adv. Comput. Math., 24(1-4):333–351, 2006. goleshta98 [2060] S. S. Goh, S. L. Lee, Z. Shen, and W. S. Tang. Construction of Schauder decomposition on Banach spaces of periodic functions. Proc. Edinburgh Math. Soc. (2), 41(1):61–91, 1998. goleshta98-1 [2061] S. S. Goh, S. L. Lee, Z. Shen, and W. S. Tang. Multilevel projections on spaces of periodic functions. In et al. and E. Tangmanee, editors, Proceedings of the second Asian Mathematical Conference 1995, Nakhon Ratchasima, Thailand, October 17-20, 1995, pages 22–29. World Scientific, Singapore, 1998. golish06 [2062] S. S. Goh, Z. Y. Lim, and Z. Shen. Symmetric and antisymmetric tight wavelet frames. Appl. Comput. Harmon. Anal., 20(3):411–421, 2006. go92 [2063] I. Gohberg. Time-variant Systems and Interpolation. Birkhäuser, Basel, 1992. go00 [2064] I. Gohberg. Traces and Determinants of Linear Operators., volume 116 of Operator Theory. Advances and Applications. Birkhäuser, 2000. gogoka03 [2065] I. Gohberg, S. Goldberg, and M. A. Kaashoek. Basic Classes of Linear Operators. Birkhäuser, Basel, Switzerland, 2003. gokawo89 [2066] I. Gohberg, M. A. Kaashoek, and H. J. Woerdeman. The band method for positive and contractive extension problems. J. Operator Theory, 22(1):109–155, 1989. golaro86 [2067] I. Gohberg, P. Lancaster, and L. Rodman. Invariant Subspaces of Matrices with Applications. Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. John Wiley and Sons, New York etc., 1986. golaro00 [2068] I. Gohberg, P. Lancaster, and L. Rodman. Indefinite Linear Algebra and Applications. Birkhäuser, 2000. 185 golaro06 [2069] I. Gohberg, P. Lancaster, and L. Rodman. Invariant Subspaces of Matrices with Applications. SIAM, Society for Industrial and Applied Mathematics, 2006. gohehohakrrascud05 [2070] C. Gohle, T. Udem, J. Rauschenberger, R. Holzwarth, M. Herrmann, H. A. Schuessler, F. Krausz, and T. W. Hänsch. A frequency comb in the extreme ultraviolet. Nature, 436:234–237, 2005. gokr68 [2071] I. T. Gokhberg and N. Y. Krupnik. Norm of the Hilbert transformation in the lsbp-space. Funkts. Anal. Prilozh., 2(2):91–92, 1968. gohrki03 [2072] M. J. Goldberg, T. Hrycak, and S. Kim. A fast numerical method for evaluation of Calderón commutators. J. Comput. Appl. Math., 158(2):473–484, 2003. go61 [2073] R. R. Goldberg. Fourier Transforms. Cambridge University Press, Cambridge, 1961. go67 [2074] R. R. Goldberg. On a space of functions of Wiener. Duke Math. J., 34:683–691, 1967. gosi66 [2075] R. R. Goldberg and A. B. Simon. The Riemann–Lebesque theorem on groups. Acta Math. Sci., (27):35–39, 1966. goma85 [2076] M. Goldburg and R. J. Marks II. Signal synthesis in the presence of an inconsistent set of constraints. IEEE Trans. Circuits Syst., 32(7):647– 663, 1985. go80 [2077] M. L. Gol’dman. Covering methods for the description of general spaces of Besov type. Tr. Mat. Inst. Steklova, 156:47–81, 1980. gole91 [2078] J. A. Goldstein and M. Levy. Linear algebra and quantum chemistry. Amer. Math. Monthly, 98(8):710–718, 1991. goka65 [2079] G. Golub and W. Kahan. Calculating the singular values and pseudoinverse of a matrix. J. Soc. Ind. Appl. Math., Ser. B, Numer. Anal., 2:205–224, 1965. gova96 [2080] G. Golub and C. F. van Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore, MD, 3rd ed. edition, 1996. 186 go68 [2081] G. H. Golub. Least squares, singular values and matrix approximations. Apl. Mat., 13:44–51, 1968. go73 [2082] G. H. Golub. Some modified matrix eigenvalue problems. SIAM Rev., 15:318–334, 1973. gore70 [2083] G. H. Golub and C. Reinsch. Singular value decomposition and least squares solutions. Numer. Math., 14:403–420, 1970. gova89 [2084] G. H. Golub and C. F. van Loan. Matrix Computations. The Johns Hopkins University Press, Baltimore, 1989. go04 [2085] J. W. Goodman. Introduction to Fourier Optics. Roberts & Company Publishers, 3rd edition, 2004. gomish01 [2086] T. Goodman, C. A. Micchelli, and Z. Shen. Riesz bases in subspaces of l2 (R+ ). Constr. Approx., 17(1):39–46, 2001. gori91 [2087] A. Göpfert and T. Riedrich. Funktionalanalysis. 3., Überarb. Aufl. B. G. Teubner, Stuttgart, 1991. go97 [2088] E. I. Gordon. Nonstandard Methods in Commutative Harmonic Analysis. American Mathematical Society, Providence, RI, 1997. goli04 [2089] A. Gorokhov and J. P. Linnartz. Robust OFDM receivers for dispersive time-varying channels: equalization and channel acquisition. IEEE Transactions on Communications, 52(4):572 – 583, April 2004. gost94 [2090] J. Gosselin and K. Stempak. Conjugate expansions for Hermite functions. Ill. J. Math., 38(2):177–197, 1994. go63 [2091] R. P. Gosselin. On the Lp -theory of cardinal series. Ann. of Math., 78:567–581, 1963. gois92 [2092] M. J. Gotay and J. A. Isenberg. La symplectification de la science (la g’eom’etrie. Gaz. Math., (54):59–79, 1992. chgohe05 [2093] D. Gottlieb, J. S. Hesthaven, and Q. Chen. Spectral methods based on prolate spheroidal wave functions for hyperbolic PDEs. SIAM J. Numer. Anal., 43(5):1912–1933, 2005. 187 gosh97 [2094] D. Gottlieb and Shu Chi Wang. On the Gibbs phenomenon and its resolution. SIAM Rev., 39(4):644–668, December 1997. go72 [2095] S. H. Gould. Russian for the Mathematician. Springer, Berlin, Heidelberg, New York, 1972. gokeko02 [2096] V. K. Goyal, J. A. Kelner, and J. Kovacevic. Multiple description vector quantization with a coarse lattice. IEEE Trans. Inform. Theory, 48(3):781–788, 2002. goko01 [2097] V. K. Goyal and J. Kovacevic. Generalized multiple description coding with correlating transforms. IEEE Trans. Inform. Theory, 47(6):2199–2224, 2001. gokeko01 [2098] V. K. Goyal, J. Kovacevic, and J. A. Kelner. Quantized frame expansions with erasures. Appl. Comput. Harmon. Anal., 10(3):203–233, 2001. gothve95 [2099] V. K. Goyal, M. Vetterli, and N. T. Thao. Quantization of overcomplete expansions. In Data Compression Conference, 1995. DCC ’95. Proceedings, pages 13–22, Snowbird, UT, 1995. gothve98 [2100] V. K. Goyal, M. Vetterli, and N. T. Thao. Quantized overcomplete expansions in rn : analysis, synthesis, and algorithms. IEEE Trans. Inform. Theory, 44(1):16–31, 1998. gr92-3 [2101] J. M. Gracia Bondia. Generalized Moyal quantization on homogeneous symplectic. In Deformation Theory and Quantum Groups with Applications to, volume 134 of Contemp. Math., pages 93–114. Amer. Math. Soc., Providence, RI, 1992. gr92-4 [2102] J. M. Gracia Bondia. The metaplectic action and phases in the Wigner-Moyal and. Modern Phys. Lett. A, 7(4):315–323, 1992. grv88-1 [2103] J. M. Gracia Bondia and J. C. Varilly. Algebras of distributions suitable for phase-space quantum mechanics. I. J. Math. Phys., 29(4):869– 879, 1988. grv88-2 [2104] J. M. Gracia Bondia and J. C. Varilly. Nonnegative mixed states in Weyl-Wigner-Moyal theory. Phys. Lett. A, 128(1-2):20–24, 1988. 188 figrva01 [2105] J. M. Gracia Bondia, J. C. Varilly, and H. Figueroa. Elements of Noncommutative Geometry. Birkhäuser Advanced Texts: Basel Textbooks. Birkhäuser Boston Inc., Boston, MA, 2001. gr04-3 [2106] L. Grafakos. Classical and Modern Fourier Analysis. Prentice Hall, 2004. grhose06 [2107] L. Grafakos, P. Honzı́k, and A. Seeger. On maximal functions for Mikhlin-Hörmander multipliers. Adv. Math., 204(2):363–378, 2006. grsa08 [2108] L. Grafakos and C. Sansing. Gabor frames and directional timefrequency analysis. Appl. Comput. Harmon. Anal., 25(1):47–67, 2008. grla93 [2109] C. C. Graham and A. T.-M. Lau. Bilinear operators on L∞ (G) of locally compact groups. Pacific J. Math., 158(1):157–176, 1993. grmc79 [2110] C. C. Graham and O. C. McGehee. Essays in Commutative Harmonic Analysis. Number 238 in Grundl. math. Wiss. Springer Verlag, New York, 1979. grsc84 [2111] C. C. Graham and B. M. Schreiber. Bimeasure algebras on LCA groups. Pacific J. Math., 115:91–127, 1984. grsc87 [2112] C. C. Graham and B. M. Schreiber. Sets of interpolation for Fourier transforms of bimeasures. Colloq. Math., 51:149–154, 1987. grsc88 [2113] C. C. Graham and B. M. Schreiber. Projections in spaces of bimeasures. Canad. Math. Bull., 31:19–25, 1988. gr91-2 [2114] K. Gram Hansen. A bandwidth concept for CPB time-frequency analysis. In ICASSP-91., 1991 International Conference on Acoustics, Speech, and Signal Processing, 1991., pages 2033–2036. IEEE, 1991. gr05 [2115] L. Granai. Nonlinear approximation with redundant multi-component dictionaries. PhD thesis, cole Polytechnique Fédérale de Lausanne, 2005. grle81 [2116] E. E. Granirer and M. Leinert. On some topologies which coincide on the unit sphere of the Fourier- Stieltjes algebra B(G) and of the measure algebra M(G). Rocky Mountain J. Math., 11:459–472, 1981. 189 grho01 [2117] J. Grassberger and G. Hörmann. A note on representations of the finite Heisenberg group and sums of greatest common divisors. Discrete Math. Theor. Comput. Sci., 4(2):91–100, 2001. gr76 [2118] A. W. M. Graven. Tensor products and multipliers of L1 (G)–modules. Indag. Math., 38:313–325, 1976. gr79 [2119] A. W. M. Graven. Injective and projective Banach modules. Nederl. Akad. Wetensch. Indag. Math., 41(3):253–272, 1979. gr71 [2120] R. M. Gray. Toeplitz and Circulant Matrices: a Review. Technical report, Information Systems Laboratory, Stanford University, 1971. grne98 [2121] R. M. Gray and D. L. Neuhoff. Quantization. IEEE Trans. Inform. Theory, 44(6):2325–2383, 1998. gr94 [2122] W. Greblicki. Nonparametric identification of Wiener systems by orthogonal series. IEEE Trans. Automat. Control, 39(10):2077–2086, 1994. gr78 [2123] P. Green. The local structure of twisted covariance algebras. Acta Math., 140(3-4):191–250, 1978. gr80-1 [2124] P. Green. Square-integrable representations and the dual topology. J. Funct. Anal., 35(3):279–294, 1980. grkr06 [2125] R. E. Greene and S. G. Krantz. Function Theory of One Complex Variable, volume 40 of Graduate Studies in Mathematics. American Mathematical Society (AMS), Providence, RI, 3rd ed. edition, 2006. bagr06 [2126] K. Greenebaum and R. Barzel, editors. A.K.Peters, Ltd., 2006. Audio Anecdotes III. gr83 [2127] H. Greenwald. On the theory of homogeneous Lipschitz spaces and Campanato spaces. Pacific J. Math., 106:87–93, 1983. gr90-1 [2128] W. Greiner. Relativistic Quantum Mechanics. Wave Equations. Springer-Verlag, Berlin, 1990. gruh72 [2129] N. E. Gretsky and J. J. j. Uhl. Bounded linear operators on Banach function spaces of vector-valued functions. Trans. Amer. Math. Soc., 167:263–277, 1972. 190 √ gr70-1 [2130] Grevholm Barbro. On the structure of spaces lk , lambda. Math. Scand., 26:241–254, 1970. grjolemamova06 [2131] R. Gribonval, P. Jost, S. Lesage, B. Mailhe, G. Monaci, and P. Vandergheynst. Learning multi-modal dictionaries: Application to audiovisual data. In Proc. of International Workshop on Multimedia Content Representation, Classification and Security (MCRCS’06), volume 4105 of LNCS, pages 538–545. Springer-Verlag, 2006. grkr06-1 [2132] R. Gribonval and S. Krstulovic. MPTK: Matching Pursuit made tractable. In Proc. Int. Conf. Acoust. Speech Signal Process. (ICASSP’06), Toulouse, France, May 2006., pages III–496 – III–499. grmarascva07 [2133] R. Gribonval, B. Mailhe, H. Rauhut, K. Schnass, and P. Vandergheynst. Average case analysis of multichannel thresholding. In Proc. IEEE Intl. Conf. Acoust. Speech Signal Process., 2007. grni01 [2134] R. Gribonval and M. Nielsen. Some remarks on nonlinear approximation with Schauder bases. East J. Approx., 7(3):267–285, 2001. grni03 [2135] R. Gribonval and M. Nielsen. Sparse representations in unions of bases. IEEE Trans. Inform. Theory, 49(12):3320–3325, 2003. grni04-1 [2136] R. Gribonval and M. Nielsen. Nonlinear approximation with dictionaries. I: Direct estimates. J. Fourier Anal. Appl., 10(1):51–71, 2004. grni04 [2137] R. Gribonval and M. Nielsen. On a problem of Gröchenig about nonlinear approximation with localized frames. J. Fourier Anal. Appl., 10(4):433–437, 2004. grni06 [2138] R. Gribonval and M. Nielsen. Nonlinear approximation with dictionaries. II: Inverse estimates. Constr. Approx., 24(2):157–173, 2006. grni07-1 [2139] R. Gribonval and M. Nielsen. Beyond sparsity: recovering structured representations by `1 -minimization and greedy algorithms. Adv. Comput. Math., to appear, 2007. grni07 [2140] R. Gribonval and M. Nielsen. Highly sparse representations from dictionaries are unique and independent of the sparseness measure. Appl. Comput. Harmon. Anal., 22(3):335–355, 2007. 191 grrascva08 [2141] R. Gribonval, H. Rauhut, K. Schnass, and P. Vandergheynst. Atoms of all channels, unite! Average case analysis of multi-channel sparse recovery using greedy algorithms. J. Fourier Anal. Appl., 14(5):655– 687, 2008. grva06 [2142] R. Gribonval and P. Vandergheynst. On the exponential convergence of matching pursuits in quasi-incoherent dictionaries. IEEE Trans. Inform. Theory, 52(1):255–261, 2006. gr02-2 [2143] H. Griebel. Time-frequency methods for pitch detection. PhD thesis, University of Technology Vienna, September 2002. grli84 [2144] D. Griffin and J. Lim. Signal estimation from modified short-time Fourier transform. IEEE Trans. Acoustics, Speech and Signal Processing, 32(2):236–243, 1984. grmc73 [2145] J. Griffin and K. McKennon. Multipliers and the group lp -algebras. Pacific J. Math., 49(2):365–370, 1973. grni96 [2146] R. B. Griffiths and C.-S. Niu. Semiclassical Fourier Transform for Quantum Computation. Phys. Rev. Lett., 76(17):3228–3231, 1996. gr02-1 [2147] M. Grigoriu. Stochastic Calculus. Applications in Science and Engineering. Boston: Birkhäuser, 2002. gr00 [2148] N. Grip. Hilbert space frames and bases. PhD thesis, Lulea University of Technology, 2000. gr02 [2149] N. Grip. Wavelet and Gabor Frames and Bases: Approximation, Sampling and Applications. PhD thesis, Lulea University of Technology, 2002. grsu03 [2150] N. Grip and W. Sun. Remarks on the article: “On the stability of wavelet and Gabor frames (Riesz bases)” [J. Fourier Anal. Appl. 5 (1999), no. 1, 105–125; MR1682246 (2000a:42055)] by J. Zhang. J. Fourier Anal. Appl., 9(1):97–100, 2003. grst04 [2151] D. Grishin and T. Strohmer. Fast scattered data approximation with Neumann and other boundary conditions. Linear Algebra Appl., 391:99–123, 2004. 192 gr75 [2152] J. J. Grobler. Indices for Banach function spaces. Math. Z., 145:99– 109, 1975. gr92-2 [2153] P. Gröbner. Banachräume glatter Funktionen und Zerlegungsmethoden. PhD thesis, University of Vienna, 1992. gr87 [2154] K. Gröchenig. Analyse multi-échelles et bases d’ondelettes. (Multiscale analysis and wavelets basis). C. R. Acad. Sci. Paris S’er. I Math., 305(1):13–15, 1987. gr88 [2155] K. Gröchenig. Unconditional bases in translation and dilation invariant function spaces on rn . In Constructive Theory of Functions (Varna, 1987), pages 174–183. Bulgar. Acad. Sci., Sofia, 1988. gr90 [2156] K. Gröchenig. A new approach to irregular sampling of band-limited functions. In J.S. and J. Byrnes, editors, Recent Advances in Fourier Analysis and Its Applications’, Series C, volume 315, pages 251–260. Kluwer Acad. Publ., 1990. gr91 [2157] K. Gröchenig. Describing functions: atomic decompositions versus frames. Monatsh. Math., 112(3):1–41, 1991. gr91-1 [2158] K. Gröchenig. Efficient algorithms in irregular sampling of bandlimited functions. In Computers and Communications, 1991. Conference Proceedings.Tenth Annual International Phoenix Conference on.27-30 March., pages 490–495, Scottsdale, AZ, 1991. IEEE Computer Society Press. gr92 [2159] K. Gröchenig. Reconstruction algorithms in irregular sampling. Math. Comp., 59:181–194, 1992. gr92-1 [2160] K. Gröchenig. Sharp results on random sampling of band-limited functions. In J. Byrnes and J. Byrnes, editors, Probabilistic and Stochastic Methods in Analysis,with Applications, volume 372 of NATO ASI Studies, pages 323–335, Dordrecht-Boston-London, 1992. Kluwer. gr93-1 [2161] K. Gröchenig. A discrete theory of irregular sampling. Linear Algebra and Appl., 193:129–150, 1993. gr93 [2162] K. Gröchenig. Acceleration of the frame algorithm. IEEE Trans. SSP, 41/12:3331–3340, 1993. 193 gr93-2 [2163] K. Gröchenig. Irregular sampling of wavelet and short-time Fourier transforms. Constr. Approx., 9:283–297, 1993. gr96 [2164] K. Gröchenig. An uncertainty principle related to the Poisson summation formula. Studia Math., 121(1):87–104, 1996. gr98 [2165] K. Gröchenig. Aspects of Gabor analysis on locally compact abelian groups. In H. G. Feichtinger and T. Strohmer, editors, Gabor Analysis and Algorithms: Theory and Applications, pages 211–231. Birkhäuser Boston, Boston, MA, 1998. gr99 [2166] K. Gröchenig. Irregular sampling, Toeplitz matrices, and the approximation of entire functions of exponential type. Math. Comp., 68(226):749–765, 1999. gr01 [2167] K. Gröchenig. Foundations of Time-Frequency Analysis. Appl. Numer. Harmon. Anal. Birkhäuser, Boston, MA, 2001. gr01-2 [2168] K. Gröchenig. Non-uniform sampling in higher dimensions: from trigonometric polynomials to bandlimited functions. In Modern Sampling Theory, Appl. Numer. Harmon. Anal., pages 155–171. Birkhäuser Boston, Boston, MA, 2001. gr03-3 [2169] K. Gröchenig. Localization of frames, pages 875–882. IOP Publishing, Bristol, 2003. gr03-1 [2170] K. Gröchenig. Localized frames are finite unions of Riesz sequences. Adv. Comput. Math., 18(2-4):149–157, 2003. gr03-2 [2171] K. Gröchenig. Uncertainty principles for time-frequency representations. In H. G. Feichtinger and T. Strohmer, editors, Advances in Gabor Analysis, Appl. Numer. Harmon. Anal., pages 11–30. Birkhäuser Boston, Boston, 2003. gr04-6 [2172] K. Gröchenig. Localization of frames, Banach frames, and the invertibility of the frame operator. Proceedings of SPIE, San Diego, San Diego, California, USA, 2004. gr06-6 [2173] K. Gröchenig. A pedestrian’s approach to pseudodifferential operators. In C. Heil, editor, Harmonic Analysis and Applications, volume in Honor of John J. Benedetto’s 65th Birthday of Appl. Numer. Harmon. Anal., pages 139–169. Birkhäuser Boston, Boston, MA, 2006. 194 gr06-2 [2174] K. Gröchenig. Book review (Time-frequency and time-scale methods, Hogan, Lakey). Bull. Amer. Math. Soc., 44(2):285–290, 2006. gr06-3 [2175] K. Gröchenig. Composition and spectral invariance of pseudodifferential operators on modulation spaces. J. Anal. Math., 98:65–82, 2006. gr06 [2176] K. Gröchenig. Time-Frequency analysis of Sjörstrand’s class. Rev. Mat. Iberoam., 22(2):703–724, 2006. gr07-2 [2177] K. Gröchenig. Gabor frames without inequalities. Int. Math. Res. Not. IMRN, (23):Art. ID rnm111, 21, 2007. gr07 [2178] K. Gröchenig. Weight functions in time-frequency analysis. In L. Rodino and et al., editors, Pseudodifferential Operators: Partial Differential Equations and Time-Frequency Analysis, volume 52 of Fields Inst. Commun., pages 343–366. Amer. Math. Soc., Providence, RI, 2007. gr08 [2179] K. Gröchenig. The homogeneous approximation property and the comparison theorem for coherent frames. Sampl. Theory Signal Image Process., 7(3):271–279, 2008. grha96 [2180] K. Gröchenig and A. Haas. Backward continued fractions, Hecke groups and invariant measures for transformations of the interval. Ergodic Theory Dynam. Systems, 16(6):1241–1274, 1996. grhaheku02 [2181] K. Gröchenig, D. Han, C. Heil, and G. Kutyniok. The Balian-Low theorem for symplectic lattices in higher dimensions. Appl. Comput. Harmon. Anal., 13(2):169–176, 2002. grhe99 [2182] K. Gröchenig and C. Heil. Modulation spaces and pseudodifferential operators. Integr. Equ. Oper. Theory, 34(4):439–457, 1999. grhe01 [2183] K. Gröchenig and C. Heil. Gabor meets Littlewood-Paley: Gabor expansions in Lp (Rd ). Studia Math., 146(1):15–33, 2001. grhe03 [2184] K. Gröchenig and C. Heil. Modulation spaces as symbol classes for pseudodifferential operators. In R. R. M. Krishna, editor, Proceedings of International conference on wavelets and applications 2002, pages 151–170, Chennai,India, 2003. Allied Publishers, Chennai. 195 grhe04 [2185] K. Gröchenig and C. Heil. Counterexamples for boundedness of pseudodifferential operators. Osaka J. Math., 41:1–11, 2004. grheok02 [2186] K. Gröchenig, C. Heil, and O. Okoudjou. Gabor analysis in weighted amalgam spaces. Sampl. Theory Signal Image Process., 1(3):225–259, 2002. grja02 [2187] K. Gröchenig and A. J. E. M. Janssen. Letter to the editor: A new criterion for Gabor frames. J. Fourier Anal. Appl., 8(5):507–512, 2002. grjakapf03 [2188] K. Gröchenig, A. J. E. M. Janssen, N. Kaiblinger, and G. E. Pfander. Note on B-splines, wavelet scaling functions, and Gabor frames. IEEE Trans. Inform. Theory, 49(12):3318– 3320, 2003. grle04 [2189] K. Gröchenig and M. Leinert. Wiener’s lemma for twisted convolution and Gabor frames. J. Amer. Math. Soc., 17:1–18, 2004. grle06 [2190] K. Gröchenig and M. Leinert. Symmetry and inverse-closedness of matrix algebras and symbolic calculus for infinite matrices. Trans. Amer. Math. Soc., 358:2695–2711, 2006. grly07 [2191] K. Gröchenig and Y. Lyubarskii. Gabor frames with Hermite functions. C. R. Acad. Sci. Paris S’er. I Math., 344(3):157–162, 2007. grma92 [2192] K. Gröchenig and W. R. Madych. Multiresolution analysis, Haar bases, and self-similar tilings of rn . IEEE Trans. Inform. Theory, 38(2):556–568, 1992. grpora09 [2193] K. Gröchenig, B. M. Pötscher, and H. Rauhut. Learning trigonometric polynomials from random samples and exponential inequalities for eigenvalues of random matrices. 2009. grra96 [2194] K. Gröchenig and H. Razafinjatovo. On Landau’s necessary density conditions for sampling and interpolation of band-limited functions. J. Lond. Math. Soc. (2), 54(3):557–565, 1996. grrzst06 [2195] K. Gröchenig, Z. Rzeszotnik, and T. Strohmer. Quantitive estimates for the finite section method. preprint, 2006. grsa00 [2196] K. Gröchenig and S. Samarah. Nonlinear approximation with local Fourier bases. Constr. Approx., 16(3):317–331, 2000. 196 grsc03 [2197] K. Gröchenig and H. Schwab. Fast local reconstruction methods for nonuniform sampling in shift-invariant spaces. SIAM J. Matrix Anal. Appl., 24(4):899–913 (electronic), 2003. grst01 [2198] K. Gröchenig and T. Strohmer. Numerical and theoretical aspects of non-uniform sampling of band-limited images. In F. Marvasti, editor, Nonuniform Sampling: Theory, chapter 6, pages 283 – 324. Kluwer, 2001. grst07 [2199] K. Gröchenig and T. Strohmer. Pseudodifferential operators on locally compact abelian groups and Sjöstrand’s symbol class. J. Reine Angew. Math., 613:121–146, 2007. grwa92 [2200] K. Gröchenig and D. F. Walnut. A Riesz basis for Bargmann-Fock space related to sampling and interpolation. Ark. Mat., 30(2):283–295, 1992. grzi01 [2201] K. Gröchenig and G. Zimmermann. Hardy’s theorem and the shorttime Fourier transform of Schwartz functions. J. London Math. Soc., 63(1):205–214, February 2001. grzi04 [2202] K. Gröchenig and G. Zimmermann. Spaces of test functions via the STFT. J. Funct. Spaces Appl., 2(1):25–53, 2004. gr96-1 [2203] H. Groemer. Geometric Applications of Fourier Series and Spherical Harmonics. Cambridge University Press, Cambridge, 1996. grva78 [2204] G. Groenewegen and A. C. M. van Rooij. Positive multipliers. Technical Report 7809, 1978. gr46 [2205] H. J. Groenewold. On the principles of elementary quantum mechanics. Physica, 12:405–460, 1946. gr85 [2206] M. Gromov. Pseudoholomorphic curves in symplectic manifolds. Invent. Math., 82(2):307–347, 1985. gr79-1 [2207] M. Grosser. Bidualräume und Vervollständigungen von Banachmoduln. Springer, Berlin, Heidelberg, New York, 1979. gr79-2 [2208] M. Grosser. L1(G) as an ideal in its second dual space. Proc. Amer. Math. Soc., 73:363–364, 1979. 197 grmo71 [2209] S. Grosser and M. Moskowitz. Compactness conditions in topological groups. J. Reine Angew. Math., 246:1–40, 1971. grheillama02 [2210] J. P. Grossman, D. C. Henley, V. Iliescu, M. P. Lamoureux, and G. F. Margrave. An update on Gabor deconvolution. Technical report, CREWES, University of Calgary, 2002. grlama02 [2211] J. P. Grossman, M. P. Lamoureux, and G. F. Margrave. Constructing adaptive nonuniform Gabor frames from partitions of unity. Technical report, CREWES, University of Calgary, 2002. grlama02-1 [2212] J. P. Grossman, M. P. Lamoureux, and G. F. Margrave. Fast wavefield extrapolation by phase-shift in the nonuniform Gabor domain. Technical report, 2002. aggrlama01 [2213] J. P. Grossman, M. P. Lamoureux, G. F. Margrave, and R. Aggarwala. Constant-Q wavelet estimation via a nonstationary Gabor spectral model. Technical report, CREWES, University of Calgary, 2001. gr76-2 [2214] A. Grossmann. Parity operator and quantization of delta-functions. Comm. Math. Phys., 48:191–194, 1976. bagrza75 [2215] A. Grossmann, H. Bacry, and J. Zak. Proof of completeness of lattice states in the kq representation. Phys. Rev. B, 12(4):1118–1120, August 1975. grkrmo89 [2216] A. Grossmann, R. Kronland Martinet, and J. Morlet. Reading and understanding continuous wavelet transforms. 1989. grlost68 [2217] A. Grossmann, G. Loupias, and E. M. Stein. An algebra of pseudodifferential operators and quantum mechanics in phase space. Ann. Inst. Fourier (Grenoble), 18(2):343–368, 1968. grmo84 [2218] A. Grossmann and J. Morlet. Decomposition of Hardy functions into square integrable wavelets of constant shape. SIAM J. Math. Anal., 15:723–736, 1984. grmo85 [2219] A. Grossmann and J. Morlet. Decomposition of functions into wavelets of constant shape, and related transforms. In Mathematics and Physics, Lect Recent Results, Bielefeld/FRG 1983/84, volume 1, pages 135–165. 1985. 198 grmopa85 [2220] A. Grossmann, J. Morlet, and T. Paul. Transforms associated to square integrable group representations. I: General results. J. Math. Phys., 26:2473–2479, 1985. grmopa86 [2221] A. Grossmann, J. Morlet, and T. Paul. Transforms associated to square integrable group representations. II: Examples. Ann. Inst. H. Poincar’e, 45(3):293–309, 1986. gr70 [2222] S. Grossmann. Funktionalanalysis I, II im Hinblick auf Anwendungen in der Physik. Studienbuch für Studierende der Physik und Mathematik verschiedener Richtungen an Universitäten und Technischen Hochschulen ab 3. oder 4. Semester. Herausgegeben von Hans Wolter. XIV,X,31. Akademische Verlagsgesellschaft, Frankfurt am Main, 1970. gr80 [2223] O. v. Grudzinski. Convolutions-Gleichungen in Räumen von BeurlingDistributionen endlicher Ordnung. 1980. gr85-1 [2224] K. E. Grue. Optimal reconstruction of bandlimited bounded signals. IEEE Trans. Inform. Theory, 31(5):594–601, 1985. grgr06 [2225] F. Grupp and F. Grupp. MATLAB 7 fuer Ingenieure. Oldenbourg, 4., korrigierte Auflage edition, 2006. gr06-1 [2226] A. Grybos. Errata to ’Excess of Gabor frames’ by Karin Nowak. 2006. grsyzi03 [2227] A. Grybos, P. Sypka, and M. Ziolko. Application of optimization method to transmultiplexer design. In Proceedings of Workshop on Multimedia Communications and Services MCS’03, Kielce, Poland, pages 101–105, April 2003. gupora67 [2228] L. G. Gubin, B. T. Polyak, and E. V. Raik. The Method of Projections for Finding the Common Point of Convex. U.S.S.R. Comput. Math. and Math. Phys., 7(6):1–24, 1967. gu93 [2229] J. A. Gubner. Distributed estimation and quantization. IEEE Trans. Inform. Theory, 39(4):1456–1459, 1993. gu00 [2230] C.-A. Gu’erin. Wavelet analysis and covariance structure of some classes of non-stationary processes. J. Fourier Anal. Appl., 6(4):403– 425, 2000. 199 gust82 [2231] V. Guillemin and S. Sternberg. Geometric quantization and multiplicities of group representations. Invent. Math., 67(3):515–538, 1982. gu41 [2232] A. P. Guinand. On Poisson’s summation formula. Ann. of Math. (2), 42(3):591–603, 1941. gu70 [2233] S. Gulick. Group algebra modules. IV(152):581–596, 1970. Trans. Amer. Math. Soc., guliva67 [2234] S. Gulick, T. S. Liu, and A. C. M. van Rooij. Group algebra modules. Canad. J. Math., I(19):151–173, 1967. gurosa88 [2235] R. M. Gulrajani, Savard P., and Roberge F. A. The inverse problem in electrocardiography: solutions in terms of equivalent sources. Crit. Rev. Biomed. Eng., 16(3):171–214, 1988. gukula05 [2236] K. Guo, G. Kutyniok, and D. Labate. Sparse multidimensional representations using anisotropic dilation and shear operators. In G. Chen and M. Lai, editors, Wavelets and Splines, pages 189–201. Nashboro Press, Nashville, TN, 2005. gula06-1 [2237] K. Guo and D. Labate. Optimally sparse multidimensional representations using shearlets. 2006. gula06 [2238] K. Guo and D. Labate. Some remarks on the unified characterization of reproducing systems. Collect. Math., 57(3):295–307, 2006. kula07 [2239] K. Guo and D. Labate. Construction of regular and irregular shearlets. J. Fourier Anal. Appl., 1:1–10, 2007. gula07 [2240] K. Guo and D. Labate. Optimally sparse multidimensional representation using shearlets. SIAM J. Math. Anal., 39(1):298–318, 2007. gula08 [2241] K. Guo and D. Labate. Representation of Fourier integral operators using shearlets. J. Fourier Anal. Appl., 14(3):327–371, 2008. gu83 [2242] D. Gurarie. A transitive Banach *-algebra of compact operators with no nontrivial projections. Integr. Equ. Oper. Theory, 6(1):59–66, 1983. gusa06 [2243] A. T. Gürkanli and A. Sandiki. The space Ωpm (Rd ) and some properties. Ukrainian Math. J., 58(1):139–145, 2006. 200 guur91 [2244] C. E. Gutierrez and W. O. Urbina. Estimates for the maximal operator of the Ornstein-Uhlenbeck semigroup. Proc. Amer. Math. Soc., 113(1):99–104, 1991. ha97 [2245] U. Haagerup. Orthogonal maximal abelian ∗-subalgebras of the ntimesn matrices and cyclic n-roots. In et al. and S. Doplicher, editors, Operator Algebras and Quantum Field Theory Proceedings of the Conference Dedicated to Daniel Kastler in Celebration of his 70th Birthday, Accademia Nazionale Dei Lincei, Roma, Italy, July 1–6, 1996, pages 296–322. International Press, Cambridge, MA, 1997. haro95 [2246] U. Haagerup and M. Rordam. Perturbations of the rotation c∗ algebras and of the Heisenberg commutation relation. Duke Math. J., 77(3):627–656, 1995. ha10 [2247] A. Haar. Zur Theorie der orthogonalen Funktionensysteme. (Erste Mitteilung.) [On the theory of orthogonal function systems (first communication)]. Math. Ann., 69:331–371, 1910. ha12 [2248] A. Haar. Zur Theorie der orthogonalen Funktionensysteme. (Zweite Mitteilung.) [On the theory of orthogonal function systems (second communication)]. Math. Ann., 71:38–53, 1912. hast96 [2249] D. Haase and H. Stachel. Almost-orthonormal vector systems. Beitr. Algebra Geom., 37(2):367–381, 1996. ha89 [2250] P. Haberäcker. Digitale Bildverarbeitung. Grundlagen und Anwendungen. 3rd Rev. ed. Hanser Verlag, München, 1989. ha01 [2251] M. K. Habib. Digital representations of operators on band-limited random signals. IEEE Trans. Inform. Theory, 47(1):173–177, jan 2001. ha89-1 [2252] W. Hackbusch. Integralgleichungen. Theorie und Numerik. (Integral Equations. Theory and Numerics). B. G. Teubner, Stuttgart, 1989. ha91 [2253] W. Hackbusch. Iterative Lösung großer schwachbesetzter Gleichungssysteme. (Iterative Solution of Large Sparse Systems of Equations). 1991. ha54 [2254] J. Hadamard. The Psychology of Invention in the Mathematical Field. 2nd ed. Dover Publications Inc, New York, 1954. 201 hala06 [2255] A. Hadjidimos and M. Lapidakis. Optimal Alternating Direction Implicit Preconditioners for Conjugate Gradient methods. Appl. Math. Comput., 183(1):559–574, 2006. harosi01 [2256] R. Hagen, S. Roch, and B. Silbermann. C ∗ -algebras and Numerical Analysis. Pure and Applied Mathematics. Marcel Dekker, New York, NY, 2001. ha73 [2257] L. S. Hahn. On an Extension of the Theorem of Hausdorff-Young. Amer. Math. Monthly, 80:667–669, 1973. ha90 [2258] D. Hajela. On Computing the Minimum Distance for Faster than Nyquist Signaling. IEEE Trans. Inform. Theory, 36(2):289–295, March 1990. haha00 [2259] L. Hales and S. Hallgren. An improved quantum Fourier transform algorithm and applications. In Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pages 515–525. IEEE, 2000. hajakova77 [2260] J. I. Hall, A. J. E. M. Janssen, A. W. J. Kolen, and J. H. van Lint. Equidistant codes with distance 12. Discrete Math., 17(1):71–83, 1977. hakepi04 [2261] P. Hall, G. Kerkyacharian, and D. Picard. Convergence properties of wavelet estimators with multiple sampling rates. Stat. Sin., 14(2):377– 393, 2004. hasz05 [2262] R. Haller and R. Szwarc. Kaczmarz algorithm in Hilbert space. Studia Math., 169(2):123–132, 2005. ha74 [2263] P. R. Halmos. Measure Theory, volume 18 of Graduate Texts in Mathematics. Springer-Verlag, New York - Heidelberg- - Berlin, 2nd printing edition, 1974. ha62 [2264] I. Halperin. The product of projection operators. Acta Math. Sci., 23:96–99, 1962. hali93 [2265] E. J. Halton and W. A. Light. On local and controlled approximation order. J. Approx. Theory, 72(3):268–277, 1993. ha80 [2266] U. Hamann. Eigenschaften von Potentialen bezüglich elliptischer Differentialoperatoren. Math. Nachr., 96:7–15, 1980. 202 ha04 [2267] E. Hammerich. A sampling theorem for time-frequency localized signals. Sampl. Theory Signal Image Process., 3(1):45–81, 2004. ha07 [2268] E. Hammerich. Sampling in shift-invariant spaces with Gaussian generator. Sampl. Theory Signal Image Process., 6(1):71–86, 2007. hoha94 [2269] G. Hämmerlin and K.-H. Hoffmann. Springer-Verlag, Berlin, 1994. hakr07 [2270] M. Hampejs and G. Kracher. The inversion of Gabor type matrices. Signal Process., 87(7):1670–1676, July 2007. hash05 [2271] B. Han and Z. Shen. Wavelets from the Loop scheme. J. Fourier Anal. Appl., 11(6):615–637, 2005. hash06 [2272] B. Han and Z. Shen. Wavelets with short support. SIAM J. Math. Anal., 38(2):530–556, 2006. hapiyu04 [2273] B. Han, T. P.-Y. Yu, and B. Piper. Multivariate refinable Hermite interpolant. Math. Commun., 73(248):1913–1935, 2004. ha03 [2274] D. Han. Approximations for Gabor and wavelet frames. Trans. Amer. Math. Soc., 355(8):3329–3342, 2003. ha04-1 [2275] D. Han. Tight frame approximation for multi-frames and superframes. J. Approx. Theory, 129(1):78–93, 2004. guha03 [2276] D. Han and Q. Gu. Functional Gabor frame multipliers. J. Geom. Anal., 13(3):467–478, 2003. hajola06 [2277] D. Han, P. E. T. Jorgensen, and D. R. Larson, editors. Operator theory, operator algebras, and applications. Proceedings of the 25th Great Plains Operator Theory Symposium, University of Central Florida, FL, USA, June 7–12, 2005., volume 414 of Contemporary Mathematics. American Mathematical Society (AMS), Providence, RI, 2006. hala00 [2278] D. Han and D. R. Larson. Frames, Bases and Group Representations. Mem. Amer. Math. Soc., 697:1–94, 2000. hawa01 [2279] D. Han and Y. Wang. Lattice tiling and the Weyl-Heisenberg frames. Geom. Funct. Anal., 11(4):742–758, 2001. 203 Numerische Mathematik. hawa04-1 [2280] D. Han and Y. Wang. The existence of Gabor bases and frames. In C. Heil and et al., editors, Wavelets, Frames and Operator Theory Papers from the Focused Research Group Workshop, University of Maryland, College Park, MD, USA, January 15-21, 2003, volume 345 of Contemporary Mathematics, pages 183–192. Providence, RI, 2004. haxu07 [2281] Y. Han and Y. Xu. New characterizations of Besov and Triebel; Lizorkin spaces over spaces of homogeneous type. J. Math. Anal. Appl., 325(1):305–318, 2007. hasa94 [2282] Y. S. Han and E. T. Sawyer. Littlewood-Paley Theory on Spaces of Homogenous Type and the Classical Function Spaces. American. Math. Soc., (530):126, July 1994. 97 [2283] K. Hanabuss. An Introduction to Quantum Theory. Oxford Graduate Texts in Mathematics. 1. Oxford: Clarendon Press., 1997. hanapl92 [2284] M. Hanke, J. Nagy, and R. Plemmons. Preconditioned Iterative Regularization for Ill-posed problems. September 1992. hani90 [2285] M. Hanke and W. Niethammer. On the acceleration of Kaczmarz’s method for inconsistent linear systems. Linear Algebra Appl., 130:83– 98, 1990. ha97-1 [2286] K. Hannabuss. An Introduction to Quantum Theory. Oxford Graduate Texts in Mathematics. 1. Oxford: Clarendon Press. xiv, 380 p., 1997. hali96 [2287] D. Hanselman and B. Littlefield. Mastering MATLAB5. Matlab Curriculum Series, New Jersey 07458, 1996. haja82 [2288] E. W. Hansen and A. Jablokow. State variable representation of a class of linear shift-variant systems. IEEE Trans. Acoustics, Speech and Signal Processing, 30:874–880, 1982. hanao06 [2289] P. C. Hansen, J. G. Nagy, and D. P. O’Leary. Deblurring Images. Matrices, Spectra, and Filtering., volume 3 of Fundamentals of Algorithms. SIAM, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2006. 204 hawa06-2 [2290] M. Hansson and P. Wahlberg. Kernels and multiple windows for estimation of the Wigner-Ville spectrum of Gaussian locally stationary processes. 2006. dehaseto04 [2291] E. Harboure, L. de Rosa, C. Segovia, and J.-L. Torrea. Lp -dimension free boundedness for Riesz transforms associated to Hermite functions. Math. Ann., 328(4):653–682, 2004. ha33-1 [2292] G. H. Hardy. A theorem concerning Fourier transforms. J. London Math. Soc., 8:227–231, 1933. halipo88 [2293] G. H. Hardy and G. P. J. E. Littlewood. Inequalities. Cambridge University Press, 1988. haro44 [2294] G. H. Hardy and W. Rogosinski. Fourier Series. 1944. haro56 [2295] G. H. Hardy and W. W. Rogosinski. Fourier Series. (3rd Ed.). Cambridge University Press, Cambridge, 1956. haro59 [2296] G. H. Hardy and W. W. Rogosinski. Fourier Series. [Rjady Fure]. Staatsverlag für physikalisch-mathematische Literatur, Moskau, 1959. ha07-1 [2297] D. Haroske. Envelopes and Sharp Embeddings of Function Spaces. Research Notes in Mathematics 437. Chapman and Hall/CRC, 2007. ha78 [2298] F. J. Harris. On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. of the IEEE, 66(1):51–83, 1978. ha81 [2299] K. Hartmann. Pedersonideal and group algebras. Proc. Amer. Math. Soc., 83:183–188, 1981. hamasc03 [2300] M. M. Hartmann, G. Matz, and D. Schafhuber. Theory and design of multipulse multicarrier systems for wireless communications. In Signals, Systems and Computers, 2003. Conference Record of the ThirtySeventh Asilomar Conference on, volume 1, pages 492–496, 2003. hamasc05 [2301] M. M. Hartmann, G. Matz, and D. Schafhuber. Transceiver design for precoded multipulse multicarrier packet transmissions over timevarying fading channels. In GLOBECOM ’04. IEEE Global Telecommunications Conference, 2004., pages 2409– 2413, 2004. 205 hamasc06 [2302] M. M. Hartmann, G. Matz, and D. Schafhuber. Wireless Multicarrier Communications via Multipulse Gabor Riesz Bases. EURASIP J. Appl. Signal Process., 2006:Article ID 23818, 15 pages, 2006. hahe07 [2303] F. Haslinger and B. Helffer. Compactness of the solution operator to barpartial in weighted l2 -spaces. J. Funct. Anal., 243(2):679–697, 2007. ha02 [2304] A. Hatcher. Algebraic Topology. Cambridge University Press, Cambridge, 2002. ha00 [2305] H. A. Haus. Electromagnetic Noise and Quantum Optical Measurements. Springer, Berlin, 2000. hajere99 [2306] W. Haußmann, K. Jetter, and M. Reimer. Advances in Multivariate Approximation. Proceedings of the 3rd International Conference on Multivariate Approximation Theory, Witten-Bommerholz, Germany, September 27–October 2, 1998. Wiley, Berlin, 1999. hajere01 [2307] W. Haussmann, K. Jetter, and M. Reimer. Recent Progress in Multivariate Approximation. Proceedings of the 4th International Conference, Witten-Bommerholz, Germany, Septembe 24–29, 2000. Birkhäuser, Basel, 2001. ha75 [2308] A. Hautot. New applications of Poisson’s summation formula. J. Phys. A, Math. Gen., 8:853–862, 1975. hani91 [2309] V. e. Havin and N. e. Nikol’skij. Commutative Harmonic Analysis I. General Survey. Classical Aspects. Transl. from the Russian., volume 15 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin etc, 1991. hani98 [2310] V. P. Havin and N. e. Nikol’skij. Commutative Harmonic Analysis II. Group Methods in Commutative Harmonic Analysis. Transl. from the Russian. Springer, Berlin, 1998. ha77 [2311] W. Hazod. Stetige Faltungshalbgruppen von Wahrscheinlichkeitsmaßen und erzeugende Distributionen. Springer, Berlin, Heidelberg, New York, 1977. 206 heshsh01 [2312] X. He, L. Shen, and Z. Shen. A data-adaptive knot selection scheme for fitting splines. IEEE Signal Processing Letters, 8(5):137–139, 2001. hewo99 [2313] Z. He and M. Wong. Wavelet multipliers and signals. J. Austral. Math. Soc. Ser. B, 40(4):437–446, 1999. heli96 [2314] D. M. Healy Jr. and S. Li. A parametric class of discrete Gabor expansions. IEEE Trans. Signal Process., 44(2):201–211, 1996. he96 [2315] M. T. Heath. Scientific Computing: an Introductory Survey. New York, NY: McGraw-Hill. xx, 2002. hengpe91 [2316] M. T. Heath, E. Ng, and B. W. Peyton. Parallel algorithms for sparse linear systems. SIAM Rev., 33(3):420–460, 1991. bohepa01 [2317] R. W. J. Heath, H. Bölcskei, and A. J. Paulraj. Space-time signaling and frame theory. In Acoustics, Speech, and Signal Processing, 2001. Proceedings. (ICASSP ’01). 2001 IEEE International Conference on, volume 4, pages 2445–2448, Salt Lake City, UT, 2001. hepast06 [2318] R. W. J. Heath, T. Strohmer, and A. J. Paulraj. On quasi-orthogonal sequences for CDMA. IEEE Trans. Inform. Theory, 52(3):1217–1226, 2006. dhhesttr05 [2319] R. W. J. Heath, T. Strohmer, J. A. Tropp, and I. S. Dhillon. Designing structured tight frames via an alternating projection method. IEEE Trans. Inform. Theory, 51(1):188–209, 2005. hekozh00 [2320] H. Hedenmalm, B. Korenblum, and K. Zhu. Theory of Bergman Spaces. Springer, New York, 2000. henish04 [2321] M. Hegland, O. M. Nielsen, and Z. Shen. Multidimensional smoothing using hyperbolic interpolatory wavelets. ETNA, Electron. Trans. Numer. Anal., 17:168–180, 2004. he05-2 [2322] A. J. Heightman. Q-CPR Eliminates Guesswork. Journal of Emergency Medical Services: CPR Revived, pages 14–17, December 2005. he89 [2323] C. Heil. A discrete Zak transform. Technical report, MITRE Corporation, 1989. 207 he90-2 [2324] C. Heil. Wavelets and frames. In Signal Processing Part I: Signal Processing Theory, Proc Lect, Minneapolis, MN (USA) 1988, IMA Vol Math Appl 22, pages 147–160. 1990. he90 [2325] C. Heil. Wiener amalgam spaces in generalized harmonic analysis and wavelet theory. PhD thesis, University of Maryland at College Park, College Park, MD, 1990. he92 [2326] C. Heil. An introduction to Wiener amalgams. Technical report, 1992. he98-1 [2327] C. Heil. A basis theory primer. Technical report, 1998. he99 [2328] C. Heil. The Wiener transform on the Besicovitch spaces. Proc. Amer. Math. Soc., 127(7):2065–2071, 1999. he03 [2329] C. Heil. An introduction to weighted Wiener amalgams. In M. Krishna, R. Radha, and S. Thangavelu, editors, Wavelets and their Applications (Chennai, January 2002), pages 183–216. Allied Publishers, New Delhi, 2003. he03-1 [2330] C. Heil. Integral operators, pseudodifferential operators, and Gabor frames. In H. G. Feichtinger and T. Strohmer, editors, Advances in Gabor Analysis, Applied and Numerical Harmonic Analysis, pages 153–169. Birkhäuser, Basel, 2003. he05 [2331] C. Heil. On the history of the Nyquist density theorem for Gabor frames. Technical report, 2005. he06-3 [2332] C. Heil. Finite linear independence of finite Gabor systems. In C. Heil, editor, Harmonic Analysis and Applications. In Honor of Benedetto, J.J., pages 1–33. Birkhäuser, 2006. he06-2 [2333] C. Heil, editor. Harmonic Analysis and Applications. In Honor of John J. Benedetto. Applied and Numerical Harmonic Analysis. Basel: Birkhäuser, Boston, 2006. he06-1 [2334] C. Heil. On the history and evolution of the density theorem for Gabor frames. Technical report, 2006. 208 hejola04 [2335] C. Heil, P. E. Jorgensen, and D. R. Larson, editors. Wavelets, Frames and Operator Theory. Papers from the Focused Research Group Workshop, University of Maryland, College Park, MD, USA, January 15– 21, 2003., volume 345 of Contemporary Mathematics. Contemporary Mathematics 345. Providence, RI: American Mathematical Society (AMS). xii, Providence, RI, 2004. heku03 [2336] C. Heil and G. Kutyniok. Density of weighted wavelet frames. J. Geom. Anal., 13(3):479–493, 2003. heku05 [2337] C. Heil and G. Kutyniok. Density of frames and Schauder bases of windowed exponentials. 2005. heku07-2 [2338] C. Heil and G. Kutyniok. The homogeneous approximation property for wavelet frames. J. Approx. Theory, 147:28–46, 2007. herato94 [2339] C. Heil, J. Ramanathan, and P. Topiwala. Asymptotic Singular Value Decay of Time-frequency Localization Operators, volume 2303, pages 15–24. October 1994. herato96 [2340] C. Heil, J. Ramanathan, and P. Topiwala. Linear independence of time-frequency translates. Proc. Amer. Math. Soc., 124(9):2787–2795, 1996. herato97 [2341] C. Heil, J. Ramanathan, and P. Topiwala. Singular values of compact pseudodifferential operators. J. Funct. Anal., 150(2):426–452, 1997. hestst96 [2342] C. Heil, G. Strang, and V. Strela. Approximation by translates of refinable functions. Numer. Math., 73(1):75–94, 1996. hewa89 [2343] C. Heil and D. F. Walnut. Continuous and discrete wavelet transforms. SIAM Rev., 31:628–666, 1989. hewa90 [2344] C. Heil and D. F. Walnut. Gabor and wavelet expansions. NATO ASI Ser., Ser. C, Math. Phys. Sci., 315:441–454, 1990. hewa06 [2345] C. Heil and D. F. Walnut, editors. Fundamental Papers in Wavelet Theory. Princeton University Press, Princeton, NJ, 2006. behewa92 [2346] C. Heil, D. F. Walnut, and J. J. Benedetto. Uncertainty principles for time-frequency operators. In I. Gohberg, editor, Continuous and 209 Discrete Fourier Transforms, Extension Problems and Wiener-Hopf Equations. Birkhäuser, Basel, 1992. he02 [2347] J. Heine. Topologie und Funktionalanalysis, Grundlagen der abstrakten Analysis mit Anwendungen. Oldenbourg, München, Oldenbourg, 2002. he06-5 [2348] S. B. Heineken. Espacios Invariantes por Traslaciones con Generador Refinable. PhD thesis, Universidad de Buenos Aires, 2006. he78-2 [2349] H. P. Heinig. The Marcinkiewicz interpolation theorem extends to weighted spaces. Studia Math., 62:163–168, 1978. he78-1 [2350] H. P. Heinig. Weighted interpolation in Banach spaces. Indiana Univ. Math. J., 27:989–999, 1978. heva78 [2351] H. P. Heinig and D. Vaughan. Interpolation in Orlicz spaces involving weights. J. Math. Anal. Appl., 64:79–95, 1978. he02-1 [2352] S. Heinrich. Quantum summation with an application to integration. J. Complexity, 18(1):1–50, 2002. he04 [2353] S. Heinrich. Quantum approximation. I: Embeddings of finitedimensional lp spaces. J. Complexity, 20(1):5–26, 2004. he04-1 [2354] S. Heinrich. Quantum approximation. II: Sobolev embeddings. J. Complexity, 20(1):27–45, 2004. he78 [2355] S. Helgason. Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, New York, San Francisco, London, 1978. he84 [2356] S. Helgason. Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions. Pure and Applied Mathematics, 113. Academic Press, Orlando, 1984. he05-1 [2357] S. Helgason. The Abel, Fourier and Radon transforms on symmetric spaces. Indag. Math. (N.S.), 16(3-4):531–551, 2005. he77 [2358] G. Hellwig. Partial Differential Equations. An Introduction. 2nd ed. B. G. Teubner, Stuttgart, 1977. 210 he52-1 [2359] H. Helson. Isomorphisms of the abelian group. Ark. Mat., 2:475–487, 1952. he52 [2360] H. Helson. On the ideal structure of group algebras. Ark. Mat., 2:782– 790, 1952. he71-1 [2361] H. Helson. Cocycles in harmonic analysis. In Actes Congr Internat Math 1970, 2, pages 477–481. 1971. he83 [2362] H. Helson. Harmonic Analysis. Addison-Wesley Publishing Company, 1983. he95 [2363] H. Helson. Harmonic Analysis. 2nd ed. Hindustan Book Agency, New Delhi, 1995. he87 [2364] J. W. Helton. Operator Theory, Analytic Functions, Matrices, and Electrical Engineering. Reg. Conf. Ser. Math., 68:134 p., 1987. he80-1 [2365] M. L. Hemler. The molecular theory of H (p,q,s) (H n ). PhD thesis, Washington University, May 1980. he08 [2366] Henri Maitre. Processing of Synthetic Aperture Radar Images. February 2008. he62 [2367] P. Henrici. Discrete Variable Methods in Ordinary Differential Equations. New York and London: John Wiley and Sons, Inc. XI, 1962. he72 [2368] P. Henrici. Elemente der Numerischen Analysis. I. Deutsche Übersetzung von Götz Alefeld. (Elements of Numerical Analysis. I.). Bibliographisches Institut, Mannheim, Wien, Zürich, 1972. heje77 [2369] P. Henrici and R. Jeltsch. Komplexe Analysis für Ingenieure. Band I. Birkhäuser, Basel, Stuttgart, 1977. heje80 [2370] P. Henrici and R. Jeltsch. Komplexe Analysis für Ingenieure. Band 2. Birkhäuser, Basel, Boston, Stuttgart, 1980. he00 [2371] N. Henze. Stochastik für Einsteiger. Eine Einführung in die faszinierende Welt des Zufalls. (Stochastics for Beginners. An Introduction to the Fascinating World of Chance). 3., erweit. Aufl. Vieweg, Braunschweig, 2000. 211 hewo87 [2372] R. A. Herb and J. A. Wolf. Wave packets for the relative discrete series. I: The holomorphic case. J. Funct. Anal., 73:1–37, 1987. hahejoru82 [2373] Herbert Kurke, HAns Triebel, Joseph, and Rüdiger, editors. Recent Trends in Mathematics. 1982. he97 [2374] J. Hergovic. Die diskrete Fourier-Transformation und einige Anwendungen auf schulnahe Probleme. Master’s thesis, University of Vienna, 1997. heve91 [2375] C. Herley and M. Vetterli. Linear phase wavelets: Theory and design. pages 2017–2023, 1991. he93 [2376] G. T. Herman. Algebraic Reconstruction Techniques can be Made Computationally. IEEE Trans. Med. Imaging, 12(3):600–609, Sep. 1993. he95-1 [2377] G. T. Herman. Image Reconstruction From Projections. Real-Time Imaging, 1:3–18, 1995. he98 [2378] G. T. Herman. Geometry of Digital Spaces. Birkhäuser, Boston, 1998. heku99 [2379] G. T. Herman and A. Kuba. Discrete Tomography. Foundations, Algorithms, and Applications. Birkhäuser, Basel, 1999. heku07 [2380] G. T. Herman and A. Kuba. Advances in Discrete Tomography and Its Applications. 2007. helero73 [2381] G. T. Herman, A. Lent, and S. W. Rowland. ART: mathematics and applications.A Report on the mathematical foundations and on the applicability to real data of the algebraic reconstruction techniques. J. Theoret. Biol., 42(1):1–32, November 1973. heod91 [2382] G. T. Herman and D. Odhner. Performance Evaluation of an Iterative Image Reconstruction Algorythm for Positron Emission Tomography. IEEE Transact., 10.Mär:336–346, September 1991. he01 [2383] M. Hermann. Numerische Mathematik. Oldenbourg, Munchen, 2001. he06 [2384] M. Hermann. Numerische Mathematik. Oldenbourg, 2., überarbeitete und erweiterte Auflage edition, 2006. 212 helawe02 [2385] E. Hernández, D. Labate, and G. Weiss. A unified characterization of reproducing systems generated by a finite family. II. J. Geom. Anal., 12(4):615–662, 2002. helawewi04 [2386] E. Hernández, D. Labate, G. Weiss, and E. Wilson. Oversampling, quasi-affine frames, and wave packets. Appl. Comput. Harmon. Anal., 16(2):111–147, 2004. he67 [2387] C. Herz. The ideal theorem in certain Banach algebras of functions satisfying smoothness conditions. In Functional Analysis, Proc. Conf. Univ. California, Irvine 1966., pages 222–234. 1967. he68 [2388] C. Herz. Lipschitz spaces and Bernstein’s theorem on absolutely convergent Fourier transforms. J. Math. Mech., 18:283–323, 1968. heri72 [2389] C. Herz and N. Riviere. Estimates for translation-invariant operators on spaces with mixed norms. Studia Math., 44:511–515, 1972. he80 [2390] H. Heuser. Lehrbuch der Analysis. Teil 1. B. G. Teubner, Stuttgart, 1980. he81 [2391] H. Heuser. Lehrbuch der Analysis. Teil 2. B. G. Teubner, Stuttgart, 1981. he58 [2392] E. Hewitt. Some Aspects of Analysis and Probability, volume 4 of Surveys in Applied Mathematics, chapter A survey of abstract harmonic analysis. N.Y.:John Wiley and Sons,Inc. edition, 1958. heri76 [2393] E. Hewitt and G. Ritter. Uber die Integrierbarkeit von FourierTransformierten auf Gruppen. I: Stetige Funktionen mit kompaktem Träger und eine Bemerkung über hyperbolische Differentialoperatoren. Math. Ann., 224:77–96, 1976. hero63 [2394] E. Hewitt and K. A. Ross. Abstract Harmonic Analysis I. Number 115 in Grundlehren Math. Wiss. Springer, Berlin, 1963. hero68 [2395] E. Hewitt and K. A. Ross. A maximal problem in harmonic analysis. III. Bull. Amer. Math. Soc., 74:225–227, 1968. hero70 [2396] E. Hewitt and K. A. Ross. Abstract Harmonic Analysis. Vol. II: Structure and Analysis for Compact Groups. Analysis on Locally Compact Abelian Groups. Springer, Berlin, Heidelberg, New York, 1970. 213 hero79 [2397] E. Hewitt and K. A. Ross. Abstract Harmonic Analysis. Vol. 1: Structure of Topological Groups; Integration Theory; Group Representations. 2nd ed. Springer-Verlag, Berlin-Heidelberg-New York, 1979. hest69 [2398] E. Hewitt and K. Stromberg. Real and Abstract Analysis. A Modern Treatment of the Theory of Functions of a Real Variable. 2nd Printing corrected. Springer, Berlin, Heidelberg, New York, 1969. hezu63 [2399] E. Hewitt and H. S. Zuckermann. On a theorem of P.J. Cohen and H. Davenport. Proc. Amer. Math. Soc., 14:847–855, 1963. he70 [2400] H. Heyer. Dualität lokalkompakter Gruppen. Springer, Berlin, Heidelberg, New York, 1970. hiko03 [2401] F. Hiai and H. Kosaki. Means of Hilbert Space Operators. Lecture Notes in Mathematics 1820. Berlin: Springer. viii, 148 p. EUR 29.95/net and and, 2003. hi85 [2402] J. R. Higgins. Five short stories about the cardinal series. Bull. Amer. Math. Soc. (N.S.), 12:45–89, 1985. hi96 [2403] J. R. Higgins. Sampling Theory in Fourier and Signal Analysis: Foundations. Clarendon Press, Oxford, 1996. hist99 [2404] J. R. Higgins and R. L. Stens. Sampling Theory in Fourier and Signal Analysis. Vol. 2: Advanced Topics. Oxford University Press, Oxford, 1999. hihi00 [2405] D. J. Higham and N. J. Higham. MATLAB Guide. SIAM, Philadelphia, PA, 2000. hihi05 [2406] D. J. Higham and N. J. Higham. MATLAB Guide. 2nd ed. SIAM, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2nd ed. edition, 2005. hi96-1 [2407] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, PA, 1996. hi99 [2408] J. A. Highsmith III. Adaptive Software Development. Dorset House Publishing, 1999. 214 hika01 [2409] N. Higson and G. Kasparov. e-theory and kk-theory for groups which act properly and isometrically on Hilbert space. Invent. Math., 144(1):23–74, 2001. hilask02 [2410] N. Higson, V. Lafforgue, and G. Skandalis. Counterexamples to the Baum-Connes conjecture. Geom. Funct. Anal., 12(2):330–354, 2002. hi87 [2411] F. B. Hildebrand. Introduction to Numerical Analysis. (Unabridged Republ. of the Rev. 2nd ed. (1974) of the 1956 Orig. Publ. by McGrawHill Book Co., New York). Dover Publications Inc, New York, 1987. hi02 [2412] B. J. Hiley. From the Heisenberg Picture to Bohm: a New Perspective on Active Information and its relation to Shannon Information. In A. Khrennikov, editor, Proc. Int. Conf. Quantum Theory: Reconsideration of Foundations., pages 141–162, Växjö, Sweden, 2002. Växjö University Press. hi88 [2413] D. R. Hill. Experiments in Computational Matrix Algebra. Random House, New York, NY, 1988. hi48 [2414] E. Hille. Functional Analysis and Semi-groups. American Mathematical Society Colloquium Publications. 31. New York: American Mathematical Society (AMS). XI, 528 p., 1948. hiph74 [2415] E. Hille and R. S. Phillips. Functional Analysis and Semi-groups. 3rd Printing of rev. ed. of 1957. Colloquium Publications, 31. Providence, 1974. hist98 [2416] N. Hindman and D. Strauss. Algebra in the Stone-Cech Compactification: Theory and Applications., volume 27 of De Gruyter Expositions in Mathematics. Walter de Gruyter, Berlin, 1998. hipi04 [2417] A. Hinrichs and M. Piotrowski. Fourier type 2 operators with respect to locally compact abelian groups. Math. Nachr., 276:57–62, 2004. hi91 [2418] G. Hinsen. Abtastsätze mit unregelmäßigen Stützstellen: Rekonstruktionsformeln, Konvergenzaussagen und Fehlerbetrachtungen. (Sampling Theorems with Irregularly Spaced Samples: Reconstruction Formulas, Convergence Statements, and Error Considerations). American Mathematical Society, Providence, RI, 1991. 215 hi59 [2419] I. I. Hirschman. On multiplier transformations. 26:221–242, 1959. hi61 [2420] I. I. j. Hirschman. Multiplier transformations, II. Duke Math. J., 28(1):45–56, 1961. hi62 [2421] I. I. j. Hirschman. Multiplier transformations. III. Proc. Amer. Math. Soc., 13:851–857, 1962. hi65 [2422] I. I. j. Hirschman. Finite sections of Wiener-Hopf equations and Szegö polynomials. J. Math. Anal. Appl., 11:290–320, 1965. hiwi55 [2423] I. Hirschmann and D. Widder. The Convolution Transform. Princeton University Press, 1955. hl92 [2424] F. Hlawatsch. Regularity and unitarity of bilinear time-frequency signal representations. IEEE Trans. Inform. Theory, 38(1):82–94, 1992. auhl08 [2425] F. Hlawatsch and F. Auger, editors. Time-Frequency Analysis: Concepts and Methods. Digital Signal and Image Processing Series. iSTE/Wiley, April 2008. bohl94 [2426] F. Hlawatsch and H. Bölcskei. Time-frequency analysis of frames. In Proc. IEEE-SP 1994 Int. Sympos. Time-Frequency Time-Scale Analysis, pages 52–55, oct 1994. hlko93 [2427] F. Hlawatsch and W. Kozek. The Wigner distribution of a linear signal space. IEEE Trans. Signal Process., 41:1248–1258, 1993. hlko94 [2428] F. Hlawatsch and W. Kozek. Time-frequency projection filters and TF signal expansions. IEEE Trans. Signal Process., 42:3321–3334, 1994. hlko95 [2429] F. Hlawatsch and W. Kozek. Second order time–frequency synthesis of nonstationary random processes. IEEE Trans. Inform. Theory, 41:255–267, January 1995. hlkikoma97 [2430] F. Hlawatsch, G. Matz, H. Kirchauer, and W. Kozek. Time–frequency formulation and design of time–varying optimal filters. IEEE Trans. Signal Process., 1997. 216 Duke Math. J., hlkikoma00 [2431] F. Hlawatsch, G. Matz, H. Kirchauer, and W. Kozek. Time-frequency formulation, design, and implementation of time-varying optimal filters for signal estimation. IEEE Trans. Signal Process., 48(5):1417– 1432, 2000. hlmasc02 [2432] F. Hlawatsch, G. Matz, and D. Schafhuber. Pulse-shaping OFDM/BFDM systems for time-varying channels: ISI/ICI analysis, optimal pulse design, and efficient implementation. In Proc. IEEE PIMRC-02, pages 1012–1016, Lisbon, Portugal, September 2002. hltw96 [2433] F. Hlawatsch and T. Twaroch. Covariant , time-frequency, and (a,b)representations. In Proceedings of the IEEE-SP International Symposium on Time-Frequency and Time-Scale Analysis, 1996., pages 437–440, 1996. hltw97 [2434] F. Hlawatsch and T. Twaroch. Extending the characteristic function method for joint a-b and time-frequency analysis. In Acoustics, Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE International Conference on, volume 3, pages 2049–2052, Munich, Germany, apr 1997. ho77 [2435] T.-J. Ho. Approximate identities in normed algebras. Fu Jen Studies, 11:5–13, 1977. ho78 [2436] T.-J. Ho. Characterizations of Segal algebras. Proc. Nat. Sci. Council, 2(1):8–11, 1978. ho79-3 [2437] T.-J. Ho. Approximate identities in dh s(g). Chinese J. Math., 7:117– 125, 1979. ho79-2 [2438] T.-J. Ho. On structure spaces of double algebras, 1979. ho02 [2439] R. Hochmuth. Wavelet characterizations for anisotropic Besov spaces. Appl. Comput. Harmon. Anal., 12(2):179–208, 2002. ho06 [2440] S. Hochstöger. Methoden der Gaboranalysis für Musik und Sprachsignale. Master’s thesis, Dept. Mathematics, Univ. Vienna, January 2006. hokaro97 [2441] P. Hoeher, S. Kaiser, and P. Robertson. Two-dimensional pilotsymbol-aided channel estimation by Wiener filtering. In ICASSP-97., 217 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing, 1997., volume 3, pages 1845–1848, Munich, 1997. hoze95 [2442] H. Hofer and E. Zehnder. Symplectic invariants and Hamiltonian dynamics. In The Floer Memorial Volume, volume 133 of Progr. Math., pages 525–544. Birkhäuser, Basel, 1995. homavo05 [2443] A. Hoffmann, B. Marx, and W. Vogt. Mathematik für Ingenieure I. Pearson Studium, München, Germany, 2005. hola95 [2444] J. A. Hogan and J. D. Lakey. Extensions of the Heisenberg group by dilations and frames. Appl. Comput. Harmon. Anal., 2(2):174–199, 1995. hola00 [2445] J. A. Hogan and J. D. Lakey. Sampling for shift-invariant and wavelet subspaces. Proc. SPIE, 4119:36–47, 2000. hola01 [2446] J. A. Hogan and J. D. Lakey. Embeddings and Uncertainty Principles for Generalized Modulation Spaces. In Modern Sampling Theory, Appl. Numer. Harmon. Anal., pages 73–105. Birkhäuser Boston, Boston, MA, 2001. hola05-1 [2447] J. A. Hogan and J. D. Lakey. Sampling and oversampling in shift-invariant and multiresolution spaces. I: Validation of sampling schemes. Int. J. Wavelets Multiresolut. Inf. Process., 3(2):257–281, 2005. hola05 [2448] J. A. Hogan and J. D. Lakey. Time-Frequency and Time-Scale Methods. Adaptive Decompositions, Uncertainty Principles, and Sampling. Birkhäuser, Boston, 2005. hola06-1 [2449] J. A. Hogan and J. D. Lakey. Hardy’s theorem and rotations. Proc. Amer. Math. Soc., 134(5):1459–1466 (electronic), 2006. hola06 [2450] J. A. Hogan and J. D. Lakey. On uncertainty bounds and growth estimates for fractional Fourier transforms. Appl. Anal., 85(8):891– 899, 2006. ho06-1 [2451] S. G. Hoggar. Mathematics of Digital Images. Cambridge University Press, 2006. 218 ho74 [2452] F. Holland. Square-summable positive-definite functions on the real line., 1974. ho75 [2453] F. Holland. Harmonic analysis on amalgams of Lp and `q . J. London Math. Soc., 10:295–305, 1975. ho75-1 [2454] F. Holland. On the representation of functions as Fourier transforms of unbounded measures. Proc. Lond. Math. Soc., III. Ser., 30:347– 365, 1975. howa88 [2455] F. Holland and D. Walsh. Hankel operators in the von NeumannSchatten classes. Ill. J. Math., 32:1–22, 1988. chhoko01 [2456] J. M. Hollingworth, A. Konstadopoulou, and S. Chountasis. GazeauKlauder coherent states in one-mode systems with periodic potential. J. Phys. A, 34(44):9463–9474, 2001. ho79-4 [2457] R. B. Holmes. Mathematical foundations of signal processing. SIAM Rev., 21(3):361–388, jul 1979. ho96 [2458] M. Holschneider. Continuous wavelet transforms on the sphere. J. Math. Phys., 37(8):4156–4165, 1996. hotc91 [2459] M. Holschneider and P. Tchamitchian. Pointwise analysis of Riemann’s “nondifferentiable” function. Invent. Math., 105(1):157–175, 1991. ho98 [2460] G. C. Holst. Sampling, aliasing, and data fidelity (for electronic imaging systems,. JCD Publishing and Bellingham, WA, Winter Park, FL, 1998. eihoo05 [2461] D. F. Holt, B. Eick, and E. A. O’Brien. Handbook of Computational Group Theory. Discrete Mathematics and its Applications. Boca Raton, FL: Chapman & Hall/CRC Press. xvi, 2005. horo05 [2462] O. Holtz and A. Ron. Approximation orders of shift-invariant subspaces of w2s (rd ). J. Approx. Theory, 132(1):97–148, 2005. hokakosc99 [2463] M. C. Hong, H. Schwab, L. P. Kondi, and A. K. Katsaggelos. Error concealment algorithms for compressed video. Signal Proc.: Image Communication, 14:473–491, 1999. 219 hope02 [2464] F. C. Hoppensteadt and C. S. Peskin. Modeling and Simulation in Medicine and the Life Sciences. 2nd ed. Texts in Applied Mathematics. 10. New York, NY: Springer. xiv, 2002. holiun02 [2465] S. Horbelt, M. Liebling, and M. Unser. Discretization of the Radon Transform and of its Inverse by Spline Convolutions. IEEE Transactions on Medical Imaging, 2002. ho68 [2466] K. Horiuchi. Sampling principle for continuous signals with timevarying bands. Information and Computation, 13(1):53–61, 1968. ho60 [2467] L. Hörmander. Estimates for translation invariant operators in Lp spaces. Acta Math., 104:93–140, 1960. ho76 [2468] L. Hörmander. Linear Partial Differential Operators. 4th Printing. Springer, Berlin, Heidelberg, New York, 1976. ho79 [2469] L. Hörmander. The Weyl calculus of pseudo-differential operators. Commun. Pure Appl. Anal., 32:359–443, 1979. ho81 [2470] L. Hörmander. Symbolic calculus and differential equations. In E. Balslev, editor, 18th Scand. Congr. Math., Proc., Aarhus 1980., volume 11 of Prog. Math., pages 56–81, Boston, 1981. Birkhäuser. ho83-4 [2471] L. Hörmander. L2 estimates for Fourier integral operators with complex phase. Ark. Mat., 21:283–307, 1983. ho83-1 [2472] L. Hörmander. The Analysis of Linear Partial Differential Operators I. Number 256 in Grundlehren Math. Wiss. Springer, Berlin, 1983. ho83 [2473] L. Hörmander. The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficients. Springer, Berlin, Heidelberg, New York, 1983. ho91 [2474] L. Hörmander. A uniqueness theorem of Beurling for Fourier transform pairs. Ark. Mat., 29(2):237–240, 1991. ho95 [2475] L. Hörmander. Symplectic classification of quadratic forms, and general Mehler formulas. Math. Z., 219(3):413–449, 1995. 220 ho03 [2476] L. Hörmander. The Analysis of Linear Partial Differential Operators I: Distribution Theory and Fourier Analysis. Classics in Mathematics. Springer, Reprint of the 2nd Edition 1990 edition, 2003. ho07-2 [2477] L. Hörmander. The Analysis of Linear Partial Differential Operators . III: Pseudo-differential Operators. Classics in Mathematics. Springer, Berlin, 2007. ho87 [2478] W. Hörmann. Stochastic Processes and Vector Quasi-Measures. Master’s thesis, University of Vienna, July 1987. ho89 [2479] W. Hörmann. Generalized Stochastic Processes and Wigner Distribution. PhD thesis, University of Vienna, (AUSTRIA), 1989. ho66 [2480] J. Horv’ath. Topological Vector Spaces and Distributions. Vol.I. Addison-Wesley, Reading, 1966. ho04 [2481] J. Horv’ath. On the Riesz–Fischer theorem. Studia Sci. Math. Hungar., 41(4):467–478, 2004. homipa86 [2482] B. Host, J. F. Mila, and F. Parreau. Analyse Harmonique des Mesures. Siminaire de Villetaneuse (France). (Harmonic Analysis of Measures). Sociiti Mathimatique de France, Paris, 1986. ho90-1 [2483] C. Houdré. Harmonizability, V-boundedness, (2,p)-boundedness of stochastic processes. Probab. Theory Relat. Fields, 84(1):39–54, 1990. ho90 [2484] C. Houdré. Linear Fourier and stochastic analysis. Probab. Theory Relat. Fields, 87(2):167–188, 1990. cahomo03 [2485] S. D. Howard, A. R. Calderbank, and W. Moran. The finite Heisenberg-Weyl group in radar and communications. preprint, 2003. cahomosasc05 [2486] S. D. Howard, W. Moran, A. R. Calderbank, H. A. Schmitt, and C. O. Savage. Relationships between radar ambiguity and coding theory. In IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005. Proceedings. (ICASSP ’05)., pages v/897– v/900, 2005. ho80 [2487] R. Howe. On the role of the Heisenberg group in harmonic analysis. Bull. Amer. Math. Soc., 3(2):821–843, 1980. 221 ho80-1 [2488] R. Howe. Quantum mechanics and partial differential equations. J. Funct. Anal., 38:188–254, 1980. ho80-2 [2489] R. Howe. Quantum mechanics and partial differential equations. [PART II for upload]. J. Funct. Anal., 38:188–254, 1980. ho88-1 [2490] R. Howe. The oscillator semigroup. In The Mathematical Heritage of Hermann Weyl, Proc Symp, Durham/NC 1987, volume 48 of Proc. Symp. Pure Math., pages 61–132. 1988. ho05-1 [2491] R. Howe. Nice error bases, mutually unbiased bases, induced representations, the Heisenberg group and finite geometries. Indag. Math. (N.S.), 16(3-4):553–583, 2005. hota92 [2492] R. Howe and E. C. Tan. Non-Abelian Harmonic Analysis. Applications of SL(2,R). Universitext. Springer-Verlag, New York etc., 1992. ho01 [2493] K. B. Howell. Principles of Fourier Analysis. Hall/CRC, Boca Raton, FL, 2001. Chapman and hoka90 [2494] A. G. Howson and J.-P. Kahane. The Popularization of Mathematics. Cambridge University Press, Cambridge, 1990. hris04 [2495] T. Hrycak and V. Isakov. Increased stability in the continuation of solutions to the Helmholtz equation. Inverse Problems, 20(3):697–712, 2004. hrma06 [2496] T. Hrycak and G. Matz. Low-Complexity Time-Domain ICI Equalization for OFDM Communications over Rapidly Varying Channels. 2006. hrro98 [2497] T. Hrycak and V. Rokhlin. An improved fast multipole algorithm for potential fields. SIAM J. Sci. Comput., 19(6):1804–1826, 1998. hu78 [2498] J. H. Huang. A remark on ap (g). Math. Japon., 23(4):345–347, 1978. hurava98 [2499] S.-Z. Huang, J. van Neerven, and F. Räbiger. Ditkin’s condition for certain Beurling algebras. Proc. Amer. Math. Soc., 126(5):1397–1407, 1998. hu85 [2500] P. J. Huber. Projection pursuit. Ann. Statist., 13:435–525, 1985. 222 husc02 [2501] T. Huckle and S. Schneider. Numerik für Informatiker. (Numerics for Computer Scientists). Springer, Berlin, 2002. hu72 [2502] A. Hulanicki. On the spectrum of convolution operators on groups with polynomial growth. Invent. Math., 17:135–142, 1972. hu89-1 [2503] J. C. Hull. Options, Futures, and Other Derivatives. Prentice-Hall, Inc, Upper Saddle River, NJ, 1989. humo90 [2504] R. Hummel and Moniot R. Reconstruction From Zero Crossings in Scale Space. IEEE Trans. PAMI, 12:629–639, 1990. hu66 [2505] R. A. Hunt. On the convergence of Fourier series, orthgonal expansions and their continuous analogues. pages 235–255, 1966. huwi06 [2506] B. Huppert and W. Willems. Lineare Algebra. Teubner, 2006. hu89 [2507] N. E. Hurt. Phase Retrieval and Zero Crossings. Mathematical Methods in Image Reconstruction. Kluwer Academic Publishers, Dordrecht, 1989. aaefeihumyst02 [2508] J. H. Husoy, J. Eilevstjonn, T. Eftestol, S. O. Aase, H. Myklebust, and P. A. Steen. Removal of Cardiopulmonary Resuscitation Artifacts from Human ECG Using an Efficient Matching Pursuit-Like Algorithm. IEEE Transactions on Biomedical Engineering, 49 (11):1287– 1298, 2002. hu81 [2509] J. E. Hutchinson. Fractals and self similarity. Indiana Univ. Math. J., 30:713–747, 1981,. hwle94 [2510] I. L. Hwang and R. B. Lee. Lp -boundedness of pseudo-differential operators of class S0,0 . Trans. Amer. Math. Soc., 346(2):489–510, 1994. azib96 [2511] A. Ibrahim and M. R. Azimi Sadjadi. A fast learning algorithm for Gabor transformation. IEEE Trans. Image Process., 5(1):171–175, 1996. ignava01 [2512] A. Ignjatovic, M. J. Narasimha, and P. P. Vaidyanathan. New sampling expansions for bandlimited signals based on chromaticderivatives. In Conference Record of the Thirty-Fifth Asilomar Conference on Signals, Systems and Computers, 2001., pages 558–562, 2001. 223 ignava02 [2513] A. Ignjatovic, M. J. Narasimha, and P. P. Vaidyanathan. Chromatic derivative filter banks. IEEE Signal Processing Letters, 9(7):215–216, 2002. ig72 [2514] J.-i. Igusa. Theta Functions. Die Grundlehren der mathematischen Wissenschaften. Band 194. Berlin-Heidelberg-New York: SpringerVerlag. X, 232 p. Cloth DM 64.00, 1972. ilsp05 [2515] M. Ilie and N. Spronk. Completely bounded homomorphisms of the Fourier algebras. J. Funct. Anal., 225(2):480–499, 2005. im78 [2516] S. Imai. On a duality for c∗ -crossed products by a locally compact group. J. Math. Soc. Japan, 30(3):495–504, 1978. imja97 [2517] K. A. S. Immink and A. J. E. M. Janssen. Effects of floating point arithmetic in enumerative coding. 1997. imja98 [2518] K. A. S. Immink and A. J. E. M. Janssen. Error propagation effects of enumerative coding schemes. 1998. imja99 [2519] K. A. S. Immink and A. J. E. M. Janssen. Error propagation assessment of enumerative coding schemes. IEEE Trans. Inform. Theory, 45(7):2591–2594, 1999. inwi53 [2520] E. Inönü and E. P. Wigner. On the contraction of groups and their representations. Proc. Natl. Acad. Sci. USA, 39:510–524, 1953. is92 [2521] V. Isernhagen. Error bounds for projection-type iterative methods in solving linear operator equations. Z. Anal. Anwend., 11(3):397–400, 1992. iskura03 [2522] P. Ishwar, A. Kumar, and K. Ramchandran. Distributed sampling for dense sensor networks: A ’bit-conservation principle’. In L. Guibas and F. Zhao, editors, Information Processing in Sensor Networks Second International Workshop, IPSN 2003, Palo Alto, CA, USA, April 22-23, 2003 Proceedings, volume 2634 of Lect. Notes Comput. Sci., pages 17–31. Springer, Berlin, 2003. deis07-1 [2523] J. M. Isidro and M. De Gosson. A gauge theory of quantum mechanics. Modern Phys. Lett. A, 22(3):191–200, 2007. 224 deis07 is04 [2524] J. M. Isidro and M. De Gosson. Abelian gerbes as a gauge theory of quantum mechanics on phase space. J. Phys. A, Math. Theor., 40(13):3549–3567, 2007. [2525] A. Iske. Multiresolution Methods in Scattered Data. Springer, 2004. flisqu02 [2526] A. Iske, E. Quak, and M. S. Floater, editors. Tutorials on multiresolution in geometric modelling. European summer. Springer and Berlin: Springer, 2002. isra05 [2527] A. Iske and T. Randen. Mathematical Methods and Modelling in Hydrocarbon Exploration and Production, volume 7 of Mathematics in Industry. Springer-Verlag, Berlin, 2005. isle07 [2528] A. e. Iske and J. e. . Levesley. Algorithms for Approximation. Proceedings of the 5th International Conference, Chester, UK, July 17–21, 2005. Berlin: Springer., 2007. ghisnaza95 [2529] M. E. e. Ismail, M. e. Nashed, A. I. e. Zayed, and A. F. e. Ghaleb. Mathematical Analysis, Wavelets, and Signal Processing. An International Conference on Mathematical Analysis and Signal Processing, Cairo University, Cairo, Egypt, January 3-9, 1994. American Mathematical Society, Providence, RI, 1995. issa83 [2530] E. Isobe and S. Sato. Wiener-Hermite expansion of a process generated by an Ito stochastic differential equation. J. Appl. Probab., 20:754–765, 1983. it06 [2531] K. Ito. Essentials of Stochastic Processes. Translated from the 1957 Japanese Original. Translations of Mathematical Monographs 231. American Mathematical Society (AMS), 2006. it54 [2532] K. It. Stationary random distributions. Mem. Coll. Sci. Univ. Kyoto, Ser. A, 28:209–223, 1954. iv98 [2533] V. Ivrii. Microlocal Analysis and Precise Spectral Asymptotics. Springer Monographs in Mathematics. Springer, Berlin, 1998. iw44 [2534] K. Iwasawa. On group rings of topological rings. Proc. Imp. Acad. Japan, 20:67–70, 1944. 225 briy05 [2535] S. S. Iyengar and R. R. Brooks. Distributed Sensor Networks. Computer and Information Science Series. Chapman & Hall/ CRC, Boca Raton; London; New York; Washington, D.C., 2005. pe62 [2536] Jaak Peetre. Elliptic Partial Differential Equation of Higher Order. 1962. jaro97 [2537] S. D. Jacka and G. O. Roberts. On strong forms of weak convergence. Stochastic Process. Appl., 67:41–53, 1997. jasc01 [2538] N. Jacob and R. L. Schilling. Levy-type processes and pseudodifferential operators. In et al. and O. E. Barndorff Nielsen, editors, L’evy Processes Theory and Applications, pages 139–168. Birkhäuser, Boston, 2001. jasc05-2 [2539] N. Jacob and R. L. Schilling. Function spaces as Dirichlet spaces (about a paper by Maz’ya and Nagel). Z. Anal. Anwend., 24(1):3–28, 2005. ja97-2 [2540] M. Jacobsen. Laplace and the origin of the Ornstein-Uhlenbeck process. Bernoulli J. Math. Stat. Prob., 2(3):271–286, 1997. ja85-2 [2541] N. Jacobson. Basic Algebra I. W. H. Freeman and Company, New York, 2nd ed. edition, 1985. ja89-4 [2542] N. Jacobson. Basic Algebra II. W. H. Freeman and Company, New York, NY, 2nd ed. edition, 1989. ja77 [2543] Jacques Dupraz. La Theorie des Distributions et ses Applications. 1977. ja89-3 [2544] S. Jaffard. Exposants de Hölder en des points donnés et coefficients d’ondelettes. (Hölder exponents at given points and wavelet coefficients). C. R. Acad. Sci. Paris S’er. I Math., 308:79–81, 1989. ja90-2 [2545] S. Jaffard. Propriétés des matrices “bien localisées” près de leur diagonale et quelques applications. (Properties of matrices “well localized” near the diagonal and some applications). Ann. Inst. H. Poincar’e Anal. Non Lin’eaire, 7(5):461–476, 1990. jamery01 [2546] S. Jaffard, Y. Meyer, and R. D. Ryan. Wavelets. Tools for Science and Technology. SIAM, Philadelphia, PA, 2001. 226 ja00 [2547] R. C. Jaffe. Random Signals for Engineers Using MATLAB and Mathcad. Springer, 2000. jasisuva87 [2548] R. Jagannathan, R. Simon, E. C. G. Sudarshan, and R. Vasudevan. Dynamical maps and nonnegative phase-space distribution functions in quantum mechanics. Phys. Lett. A, 120(4):161–164, 1987. ja66 [2549] D. Jagerman. Bounds for truncation error of the sampling expansion. SIAM J. Appl. Math., 14:714–723, 1966. ja69 [2550] D. Jagerman. e-entropy and approximation of bandlimited functions. SIAM J. Appl. Math., 17:362–377, 1969. jakamawi98 [2551] S. Jaggi, W. C. Karl, S. Mallat, and A. S. Willsky. High resolution pursuit for feature extraction. Appl. Comput. Harmon. Anal., 5(4):428–449, 1998. jato07 [2552] F. Jaillet and B. Torrésani. Timefrequency jigsaw puzzle: adaptive multiwindow and multilayered Gabor expansions. Int. J. Wavelets Multiresolut. Inf. Process., 2:293–316, 2007. jakava06 [2553] P. K. Jain, S. K. Kaushik, and L. Vashisht. On perturbation of Banach frames. Int. J. Wavelets Multiresolut. Inf. Process., 4(3):559–565, 2006. jamimi07 [2554] T. Jakaba, I. Mitrea, and M. Mitrea. Traces of functions in Hardy and Besov spaces on Lipschitz domains with applications to compensated compactness and the theory of Hardy and Bergman type spaces. J. Funct. Anal., 246(1):50–112, 2007. jaru82 [2555] A. Jakimovski and D. C. Russell. Representation of continuous linear functionals on a subspace of a countable Cartesian product of Banach spaces. Studia Math., 72:273–284, 1982. jaru83 [2556] A. Jakimovski and D. C. Russell. An extension of Wiener’s closure and Tauberian theorems. In Functions, Series, Operators, Proc Int Conf, Budapest 1980,Vol II, volume 35 of Colloq. Math. Soc. J’anos Bolyai, pages 689–698. 1983. jashsz06 [2557] A. Jakimovski, A. Sharma, and J. Szabados. Walsh Equiconvergence of Complex Interpolating Polynomials. Springer Monographs in Mathematics. Springer, Dordrecht, 2006. 227 ja06-1 [2558] S. Jakobsson. Frequency optimized computation methods. J. Sci. Comput., 26(3):329–362, 2006. ja75 [2559] James T. Burnham. The relative completion of an A-Segal algebra is closed, May 1975. ja87 [2560] G. J. O. Jameson. Summing and Nuclear Norms in Banach Space Theory. Cambridge University Press, Cambridge, 1987. jaXX [2561] P. Jaming. Zero-free regions of radar ambiguity functions and moments. ja06 [2562] P. Jaming. Uncertainty principles for orthonormal bases. preprint, 2006. japo07 [2563] P. Jaming and A. Powell. Uncertainty principles for orthonormal sequences. J. Funct. Anal., 243(2):611–630, 2007. ja80 [2564] K. Jänich. Einführung in die Funktionentheorie. 2. Aufl. Springer, Berlin, Heidelberg, New York, 1980. ja80-1 [2565] K. Jänich. Topologie. Springer, Berlin, Heidelberg, New York, 1980. ja81-7 [2566] K. Jänich. Lineare Algebra. Ein Skriptum für das erste Semester. 2. Aufl. Springer, Berlin, Heidelberg, New York, 1981. boja67 [2567] L. Jansen and M. Boon. Theory of Finite Groups. Applications in Physics. Symmetry Groups of Quantum Mechanical Systems. NorthHolland Publishing Company, Amsterdam, 1967. ja80-2 [2568] S. Janson. Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation. Duke Math. J., 47:959– 982, 1980. ja93-1 [2569] S. Janson. Interpolation of subcouples and quotient couples. Ark. Mat., 31(2):307–338, 1993. jape90 [2570] S. Janson and J. Peetre. Weak factorization in periodic Fock space. Math. Nachr., 146:159–165, 1990. japero87 [2571] S. Janson, J. Peetre, and R. Rochberg. Hankel forms and the Fock space. Rev. Mat. Iberoam., 3(1):61–138, 1987. 228 japese84 [2572] S. Janson, J. Peetre, and S. Semmes. On the action of Hankel and Toeplitz operators on some function spaces. Duke Math. J., 51(4):937– 958, 1984. jatawe83 [2573] S. Janson, M. H. Taibleson, and G. Weiss. Elementary characterizations of the Morrey-Campanato spaces. In Harmonic Analysis, Proc Conf, Cortona/Italy 1982, volume 992 of Lect. Notes Math., pages 101–114. Springer, 1983. jaXX-1 [2574] A. J. E. M. Janssen. Gabor systems and communication theory. ja79 [2575] A. J. E. M. Janssen. Convolution theory in a space of generalized functions. Nederl. Akad. Wetensch. Indag. Math., 41(3):283–305, 1979. ja81-1 [2576] A. J. E. M. Janssen. Gabor representation of generalized functions. J. Math. Anal. Appl., 83:377–394, October 1981. ja81-4 [2577] A. J. E. M. Janssen. Note on a paper by M. Laczkovich on functions with measurable differences. Indag. Math., 43:309–313, 1981. ja81-3 [2578] A. J. E. M. Janssen. Positivity of weighted Wigner distributions. SIAM J. Math. Anal., 12(5):752–758, 1981. ja81-2 [2579] A. J. E. M. Janssen. Weighted Wigner distributions vanishing on lattices. J. Math. Anal. Appl., 80:156–167, 1981. ja82 [2580] A. J. E. M. Janssen. Bargmann transform, Zak transform, and coherent states. J. Math. Phys., 23(5):720–731, 1982. ja82-1 [2581] A. J. E. M. Janssen. On the locus and spread of pseudodensity functions in the time-frequency plane. Philips J. Res., 37(3):79–110, 1982. ja84 [2582] A. J. E. M. Janssen. A note on Hudson’s theorem about functions with nonnegative Wigner distributions. SIAM J. Math. Anal., 15(1):170– 176, 1984. ja84-1 [2583] A. J. E. M. Janssen. Gabor representation and Wigner distribution of signals. In Proc. IEEE ICASSP-84, volume 9, pages 258 – 261, March 1984. ja84-2 [2584] A. J. E. M. Janssen. Positivity properties of phase-plane distribution functions. J. Math. Phys., 25(7):2240–2252, 1984. 229 ja85 [2585] A. J. E. M. Janssen. Bilinear phase-plane distribution functions and positivity. J. Math. Phys., 26(8):1986–1994, 1985. ja85-1 [2586] A. J. E. M. Janssen. On the eigenvalues of an infinite Jacobi matrix. Philips J. Res., 40(6):323–351, 1985. ja87-1 [2587] A. J. E. M. Janssen. A note on Positive Time-Frequency Distributions. IEEE Trans. Acoustics, Speech and Signal Processing, 35(5):701–703, 1987. ja87-2 [2588] A. J. E. M. Janssen. Comments on: “Characterizing the radar ambiguity functions” [IEEE Trans. Inform. Theory 30 (1984), no. 6, 832– 836; MR0782216 (86j:94011)] by L. Auslander and R. Tolimieri. IEEE Trans. Inform. Theory, 33(2):298, 1987. ja87-3 [2589] A. J. E. M. Janssen. On certain integrals occurring in the analysis of a frequency-domain, power-compensated adaptive filter. Philips J. Res., 42(2):131–171, 1987. ja88-2 [2590] A. J. E. M. Janssen. On exponentially weighted Toeplitz matrices and their use in the analysis of a frequency-domain, power-compensated adaptive filter. In Linear Circuits, Systems and Signal Processing: Theory and Application (Phoenix, AZ, 1987), pages 207–216. NorthHolland, Amsterdam, 1988. ja88-1 [2591] A. J. E. M. Janssen. Positivity of time-frequency distribution functions. Signal Process., 14(3):243–252, 1988. ja88 [2592] A. J. E. M. Janssen. The Zak transform: A signal transform for sampled time-continuous signals. Philips J. Res., 43(1):23–69, 1988. ja89-2 [2593] A. J. E. M. Janssen. Asymptotics of the Perron-Frobenius eigenvalue of nonnegative Hessenberg-Toeplitz matrices. IEEE Trans. Inform. Theory, 35(6):1340–1344, 1989. ja89 [2594] A. J. E. M. Janssen. Note on a linear system occurring in perfect reconstruction. Signal Process., 18(1):109–114, 1989. ja89-1 [2595] A. J. E. M. Janssen. Wigner weight functions and Weyl symbols of nonnegative definite linear operators. Philips J. Res., 44(1):7–42, 1989. 230 ja90-1 [2596] A. J. E. M. Janssen. Frequency-domain bounds for non-negative band-limited functions. Philips J. Res., 45(5):325–366, 1990. ja90 [2597] A. J. E. M. Janssen. Spread and Entropy Inequalities For Wigner Weight Functions, pages 347– 355. 1990. ja91-3 [2598] A. J. E. M. Janssen. An optimization problem related to neural networks. Inform. Process. Lett., 37(3):155–157, 1991. ja91-1 [2599] A. J. E. M. Janssen. Bounds of optical transfer functions: Analytic results. Philips J. Res., 45(6):367–411, 1991. ja91-2 [2600] A. J. E. M. Janssen. Largest eigenvalues for truncated averaging operators. Philips J. Res., 45(6):413–432, 1991. ja91 [2601] A. J. E. M. Janssen. Optimality property of the Gaussian window spectrogram. IEEE Trans. Signal Process., 39(1):202–204, 1991. ja92-2 [2602] A. J. E. M. Janssen. On the asymptotics of some Pearcey-type integrals. J. Phys. A, 25(13):L823–L831, 1992. ja92-1 [2603] A. J. E. M. Janssen. The Smith-Barnwell condition and nonnegative scaling functions. IEEE Trans. Inform. Theory, 38(2, part 2):884–886, 1992. ja92 [2604] A. J. E. M. Janssen. The Zak transform and some counterexamples in time-frequency analysis. IEEE Trans. Inform. Theory, 38(1):168–171, 1992. ja93 [2605] A. J. E. M. Janssen. The Zak transform and sampling theorems for wavelet subspaces. IEEE Trans. Signal Process., 41:3360–3364, 1993. ja94 [2606] A. J. E. M. Janssen. Bilinear time-frequency distributions. In Wavelets and their Applications (Il Ciocco, 1992), volume 442 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 297–311. Kluwer Acad. Publ., Dordrecht, 1994. ja94-4 [2607] A. J. E. M. Janssen. Duality and biorthogonality for discrete-time Weyl-Heisenberg frames. Technical report, Philips Electronics, 1994. 231 ja94-1 [2608] A. J. E. M. Janssen. Frequency-domain bounds for non-negative, unsharply band-limited functions. J. Fourier Anal. Appl., 1:39–65, 1994. ja94-2 [2609] A. J. E. M. Janssen. More epsilonized bounds of the Boas-Kac-Lukosz type. J. Fourier Anal. Appl., 1(2):171–191, 1994. ja94-3 [2610] A. J. E. M. Janssen. Signal analytic proofs of two basic results on lattice expansions. Appl. Comput. Harmon. Anal., 1(4):350–354, 1994. ja95 [2611] A. J. E. M. Janssen. Duality and biorthogonality for Weyl-Heisenberg frames. J. Fourier Anal. Appl., 1(4):403–436, 1995. ja95-1 [2612] A. J. E. M. Janssen. On rationally oversampled Weyl-Heisenberg frames. Signal Process., 47(3):239–245, 1995. ja96-1 [2613] A. J. E. M. Janssen. Some counterexamples in the theory of WeylHeisenberg frames. IEEE Trans. Inform. Theory, 42(2):621–623, 1996. ja96 [2614] A. J. E. M. Janssen. Some Weyl-Heisenberg frame bound calculations. Indag. Math. (N.S.), 7(2):165–183, 1996. ja97-1 [2615] A. J. E. M. Janssen. From continuous to discrete Weyl-Heisenberg frames through sampling. J. Fourier Anal. Appl., 3(5):583–596, 1997. ja97 [2616] A. J. E. M. Janssen. Positivity and spread of bilinear time-frequency distributions. In F. Hlawatsch and W. Mecklenbräuker, editors, The Wigner Distribution. Theory and Applications in Signal Processing., pages 1–58. Elsevier Science, Amsterdam, 1997. ja98-1 [2617] A. J. E. M. Janssen. A density theorem for time-continuous filter banks. In Y. Zeevi and R. Coifman, editors, Signal and Image Representation in Combined Spaces, volume 7 of Wavelet Anal. Appl., pages 513–523. Academic Press, San Diego, CA, 1998. ja98-2 [2618] A. J. E. M. Janssen. Proof of a conjecture on the supports of Wigner distributions. J. Fourier Anal. Appl., 4(6):723–726, 1998. ja98 [2619] A. J. E. M. Janssen. The duality condition for Weyl-Heisenberg frames. In H. G. Feichtinger and T. Strohmer, editors, Gabor Analysis and Algorithms: Theory and Applications, pages 33–84, 453–488. 1998. 232 ja01 [2620] A. J. E. M. Janssen. Representations of Gabor frame operators. In J. Byrnes, editor, Twentieth Century Harmonic Analysis–a Celebration Proceedings of the NATO Advanced Study Institute, Il Ciocco, Italy, July 2-15, 2000, volume 33 of NATO Sci. Ser. II, Math. Phys. Chem., pages 73–101. Kluwer Academic Publishers, Dordrecht, 2001. ja02 [2621] A. J. E. M. Janssen. Extended Nijboer-Zernike approach for the computation of optical point-spread functions. J. Opt. Soc. Amer. A, 19:849–857, 2002. ja03-1 [2622] A. J. E. M. Janssen. On generating tight Gabor frames at critical density. J. Fourier Anal. Appl., 9(2):175–214, 2003. ja03 [2623] A. J. E. M. Janssen. Zak transforms with few zeros and the tie. In H. G. Feichtinger and T. Strohmer, editors, Advances in Gabor Analysis, Applied and Numerical Harmonic Analysis, pages 31–70. Birkhäuser, Basel, 2003. ja04 [2624] A. J. E. M. Janssen. Some iterative algorithms to compute canonical windows for Gabor frames. volume to appear of Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap. World Scientific Publishing Co. Pte. Ltd., River Edge, 2004. ja05-1 [2625] A. J. E. M. Janssen. Classroom Proof of the Density Theorem for Gabor Systems. ESI preprints, 2005. ja05 [2626] A. J. E. M. Janssen. Hermite function description of Feichtinger’s space S0 . J. Fourier Anal. Appl., 11(5):577–588, 2005. beja89 [2627] A. J. E. M. Janssen and G. F. M. Beenker. A note on Rogers-Szegö polynomials and determinants of Jacobi matrices with exponentially decreasing elements. Philips J. Res., 44(1):1–5, 1989. beja87 [2628] A. J. E. M. Janssen and J. W. M. Bergmans. Robust decision-feedback equalization. In Proc. 8th Symposium on Information Theory in the Benelux, Deventer, 1987. brdija04 [2629] A. J. E. M. Janssen, J. J. M. Braat, and P. Dirksen. On the computation of the Nijboer-Zernike aberration integrals at arbitrary defocus. J. Modern Opt., 51(5):687–703, 2004. 233 brja96 [2630] A. J. E. M. Janssen and V. Braun. On the low-frequency suppression performance of DC-free runlength-limited modulation codes. IEEE Trans. Consumer Electronics, 42(4):939–945, 1996. clja85 [2631] A. J. E. M. Janssen and T. A. C. M. Claasen. On positivity of timefrequency distributions. IEEE Trans. Acoustics, Speech and Signal Processing, 33(4):1029–1032, 1985. coja91 [2632] A. J. E. M. Janssen and W. M. J. Coene. Image delocalisation and HREM imaging with a FEG. In Proc. of the 10th Pfefferkorn Conference on Signal and Image Processing in Microscopy and Microanalysis, Cambridge, pages 379–404, 1991. csja00 [2633] A. J. E. M. Janssen and N. Csizmadia. Fourier analysis and synthesis for a Mildly Non-linear Quantizer. Signal Process., 80(10):2075–2098, 2000. brdeja94 [2634] A. J. E. M. Janssen, G. de Boer, and J. J. M. Braat. Scan density and resolution in a laser beam pattern generator. Pure Appl. Opt., 3:623–641, 1994. deja98-1 [2635] A. J. E. M. Janssen and M. J. M. de Jong. Analytic properties of contention tree-algorithms. pages 128–129, 1998. deja00 [2636] A. J. E. M. Janssen and M. J. M. de Jong. Analysis of contention tree algorithms. IEEE Trans. Inform. Theory, 46(6):2163–2172, 2000. deja98 [2637] A. J. E. M. Janssen and R. de Vries. Decreasing the sensitivity of ADC test parameters by means of wobbling. In Proceedings of the 16th IEEE VLSI Test Symposium, Monterey, pages 386–391, 1998. deja99 [2638] A. J. E. M. Janssen and R. de Vries. Decreasing the sensitivity of ADC test parameters by means of wobbling. Journal Electronic Testing Theory and Applications, 15:23–29, 1999. dejava85 [2639] A. J. E. M. Janssen, C. B. Dekker, and P. J. van Otterloo. The contour plot method for noise reduction in digital video. Acta Electronica, 27:119–131, 1985. imja91 [2640] A. J. E. M. Janssen and K. A. S. Immink. Entropy and power spectrum of asymmetrically DC-constrained binary sequences. IEEE Trans. Inform. Theory, 37(3, part 2):923–927, 1991. 234 imja00 [2641] A. J. E. M. Janssen and K. A. S. Immink. An entropy theorem for computing the capacity of weakly (d, k)-constrained sequences. IEEE Trans. Inform. Theory, 46(3):1034–1038, 2000. jaka99 [2642] A. J. E. M. Janssen and T. Kalker. A note on Unser-Zerubia generalized sampling theory applied to the linear interpolator. IEEE Trans. Signal Process., 47(8):2332–2335, 1999. jaka99-1 [2643] A. J. E. M. Janssen and T. Kalker. Analysis of watermark detection using SPOMF. In ICIP 99. Proceedings International Conference on Image Processing 1999, volume 1, pages 316–319, 1999. jako00 [2644] A. J. E. M. Janssen and A. G. C. Koppelaar. Box-functions and mismatched log-likelihood ratios. In Proc. of the 21st Symposium on Information Theory in the Benelux, Wassenaar, The Netherlands, May 2000., pages 17–24, 2000. jakova03 [2645] A. J. E. M. Janssen, A. G. C. Koppelaar, and M. van Dijk. Correcting systematic mismatches in computed log-likelihood ratios. Eur. trans. telecommun., 14(3):227–244, 2003. jale05 [2646] A. J. E. M. Janssen and J. S. H. Leeuwaarden. Analytic computation schemes for the discrete-time bulk service queue. Queueing Syst., 50(2-3):141–163, 2005. jama91 [2647] A. J. E. M. Janssen and M. J. J. J. B. Maes. A note on cylindrical reflector design. Optik, 88:177–181, 1991. jama92 [2648] A. J. E. M. Janssen and M. J. J. J. B. Maes. An optimization problem in reflector design. Philips J. Res., 47(2):99–143, 1992. jame93 [2649] A. J. E. M. Janssen and J. B. M. Melissen. An unexpected result in classical electrostatics, Problem 92-16. SIAM Rev., 45:643–645, 1993. jaklnova94 [2650] A. J. E. M. Janssen, M. L. Norg, M. H. Klompstra, and G. van Engelen. Wavelet analysis applied to a capstanless DCC recorder. 1994. codejaopva94 [2651] A. J. E. M. Janssen, M. Op de Beeck, D. van Dyck, W. M. J. Coene, and T. J. J. Denteneer. Focus variation image reconstruction in field emission TEM. Microscopy Society of America Bulletin, 24:472–486, 1994. 235 aajaro03 [2652] A. J. E. M. Janssen, J. A. Rodenas, and R. M. Aarts. Derivation of an optimal directivity pattern for sweet spot widening in stereo sound reproduction. J. Acoust. Soc. Amer., 113(1):267–278, 2003. jalosezw96 [2653] A. J. E. M. Janssen, G. P. H. Seuren, T. Zwemstra, and M. T. Looijer. A broadband test method for A/D converters. 1996. jakosova87 [2654] A. J. E. M. Janssen, P. C. W. Sommen, P. J. van Gerwen, and H. J. Kotmans. Convergence analysis of a frequency-domain adaptive filter with exponential power averaging and generalized window function. IEEE Trans. Circuits and Systems, 34(7):788–798, 1987. jast02 [2655] A. J. E. M. Janssen and T. Strohmer. Characterization and computation of canonical tight windows for Gabor frames. J. Fourier Anal. Appl., 8(1):1–28, January 2002. jast02-1 [2656] A. J. E. M. Janssen and T. Strohmer. Hyperbolic secants yield Gabor frames. Appl. Comput. Harmon. Anal., 12(2):259–267, 2002. jatj87 [2657] A. J. E. M. Janssen and D. L. A. Tjaden. Solution to Problem 86-2* by Jerrold W. Grossman. Math. Intelligencer, 9(3):41–43, 1987. java90 [2658] A. J. E. M. Janssen and S. van Eijndhoven. Spaces of type w, growth of Hermite coefficients, Wigner distribution, and Bargmann transform. J. Math. Anal. Appl., 152(2):368–390, 1990. java05 [2659] A. J. E. M. Janssen and J. S. H. Van Leeuwaarden. A discrete queue, Fourier sampling on Szegö curves and Spitzer formulas. Int. J. Wavelets Multiresolut. Inf. Process., 3(3):361–387, 2005. java05-1 [2660] A. J. E. M. Janssen and J. S. H. Van Leeuwaarden. Relaxation time for the discrete d/g/1 queue. Queueing Syst., 50(1):53–80, 2005. javava91 [2661] A. J. E. M. Janssen, J. M. J. Vankan, and H. F. J. M. van Well. Note on sideband intensities in one-dimensional MAS NMR spectra. Philips J. Res., 46:107–112, 1991. jave86 [2662] A. J. E. M. Janssen and R. N. J. Veldhuis. A unified approach to the restoration of lost samples in discrete-time signals. In Proc. 21st Asilomar Conference, Asilomar, 1986. 236 javevr84 [2663] A. J. E. M. Janssen, R. N. J. Veldhuis, and L. B. Vries. Adaptive restoration of unknown samples in time-discrete signals. In Verhandelingen Vijfde Symposium over Informatietheorie in de Benelux, Aalten, 1984. javevr85 [2664] A. J. E. M. Janssen, R. N. J. Veldhuis, and L. B. Vries. Adaptive restoration of unknown samples in certain time-discrete signals. In Proc. IEEE ICASSP ’85, April 1985. javevr86 [2665] A. J. E. M. Janssen, R. N. J. Veldhuis, and L. B. Vries. Adaptive interpolation of discrete-time signals that can be modeled as autoregressive processes. IEEE Trans. Acoustics, Speech and Signal Processing, 34(2):317 – 330, April 1986. javr84 [2666] A. J. E. M. Janssen and L. Vries. Interpolation of band-limited discrete-time signals by minimizing out-of-band energy. volume 9, pages 515–518, March 1984. jaze83 [2667] A. J. E. M. Janssen and S. Zelditch. Szegö limit theorems for the harmonic oscillator. Trans. Amer. Math. Soc., 280(2), 1983. jasezw95 [2668] A. J. E. M. Janssen, T. Zwemstra, and G. P. H. Seuren. Fast analogIC test using non-stationary signals. Philips Research Bulletin on IC Design, 24:10–11, 1995. ja81-5 [2669] H. Jarchow. Locally Convex Spaces. Stuttgart: B. G. Teubner. 548 p., 1981. fe92-3 [2670] K. Jarosz, editor. Wiener amalgams over Euclidean spaces and some of their applications, volume 136 of Lect. Notes Pure Appl. Math., New York, 1992. Marcel Dekker. jato84 [2671] B. Jawerth and A. Torchinsky. On a Hardy and Littlewood imbedding theorem. Michigan Math. J., 31:131–137, 1984. je01 [2672] Jean-Michel Bony. Theorie des Distributions et Analyse de Fourier. 2001. je97 [2673] Y.-C. Jenq. Perfect reconstruction of digital spectrum from nonuniformly sampled signals. IEEE Trans. Instrumentation and Measurement, 46(3):649–652, 1997. 237 Mathematische Leitfäden. jela01 [2674] A. Jensen and A. LaCour Harbo. Ripples in Mathematics. The Discrete Wavelet Transform. Springer, 2001. je77 [2675] A. J. Jerri. The Shannon sampling theorem - its various extensions and applications: a tutorial review. Proc. IEEE, 65(11):1565–1596, 1977. je98 [2676] A. J. Jerri. The Gibbs Phenomenon in Fourier Analysis, Splines and Wavelet Approximations., volume 446 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, 1998. jebuhascst06 [2677] K. Jetter. Topics in Multivariate Approximation and Interpolation. Academic Press, 2006. jeko89 [2678] K. Jetter and P. Koch. Methoden der Fourier-Transformation bei der kardinalen Interpolation periodischer Daten. In Multivariate Approximation Theory IV, Proc Conf, Oberwolfach/FRG 1989, ISNM 90, 201-208. 1989. jepfzi01 [2679] K. Jetter, G. E. Pfander, and G. Zimmermann. The crest factor for trigonometric polynomials. I. Approximation theoretical estimates. Rev. Anal. Num’er. Th’eor. Approx., 30(2):179–195 (2002), 2001. jerish94 [2680] K. Jetter, S. D. Riemenschneider, and Z. Shen. Hermite interpolation on the lattice Zd . SIAM J. Math. Anal., 25(3):962–975, 1994. jirish99 [2681] H. Ji, S. D. Riemenschneider, and Z. Shen. Multivariate compactly supported fundamental refinable functions, duals, and biorthogonal wavelets. Stud. Appl. Math., 102(2):173–204, 1999. jish99 [2682] H. Ji and Z. Shen. Compactly supported (bi)orthogonal wavelets generated by interpolatory refinable functions. Adv. Comput. Math., 11(1):81–104, 1999. ji95 [2683] R.-Q. Jia. Refinable shift-invariant spaces: From splines to wavelets. Singapore: World Scientific. Ser. Approx. Decompos. 6, 1995. ji95-1 [2684] R.-Q. Jia. Subdivision schemes in lp spaces. Adv. Comput. Math., 3(4):309–341, 1995. ji97 [2685] R.-Q. Jia. Shift-invariant spaces on the real line. Proc. Amer. Math. Soc., 125(3):785–793, 1997. 238 ji98-2 [2686] R.-Q. Jia. Approximation properties of multivariate wavelets. Math. Commun., 67(222):647–665, 1998,. ji98 [2687] R.-Q. Jia. Stability of the shifts of a finite number of functions. J. Approx. Theory, 95(2):194–202, 1998. jijish00 [2688] R.-Q. Jia, Q. Jiang, and Z. Shen. Convergence of cascade algorithms associated with nonhomogeneous refinement equations. Proc. Amer. Math. Soc., 129(2):415–427, 2000. jijish00-1 [2689] R.-Q. Jia, Q. Jiang, and Z. Shen. Distributional solutions of nonhomogeneous discrete and continuous refinement equations. SIAM J. Math. Anal., 32(2):420–434, 2000. jimi93 [2690] R.-Q. Jia and C. A. Micchelli. On linear independence for integer translates of a finite number of functions. Proc. Edinburgh Math. Soc. (2), 36(1):69–85, 1993. jirish92 [2691] R.-Q. Jia, S. Riemenschneider, and Z. Shen. Dimension of kernels of linear operators. Amer. J. Math., 114(1):157–184, 1992. jirish94 [2692] R.-Q. Jia, S. Riemenschneider, and Z. Shen. Solvability of systems of linear operator equations. Proc. Amer. Math. Soc., 120(3):815–824, 1994. jirizh98 [2693] R.-Q. Jia, S. D. Riemenschneider, and D.-X. Zhou. Vector subdivision schemes and multiple wavelets. Math. Commun., 67(224):1533–1563, 1998. jish94 [2694] R.-Q. Jia and Z. Shen. Multiresolution and wavelets. Proc. Edinburgh Math. Soc. (2), 37(2):271–300, 1994. jiwa93 [2695] R. Q. Jia and J. Wang. Stability and linear independence associated with wavelet. Proc. Amer. Math. Soc., 117(4):1115–1124,, 1993. jiwa80 [2696] R. S. Jia and H. C. Wang. Rudin synthesis on homogeneous Banach algebras. J. Austr. Math. J., 29:407–416, 1980. jipe91 [2697] Q. Jiang and L. Peng. Hermite polynomials and Toeplitz type operators, 1991. 239 jish99-1 [2698] Q. Jiang and Z. Shen. On existence and weak stability of matrix refinable functions. Constr. Approx., 15(3):337–353, 1999. jili01 [2699] Y. Jiang and Y. Liu. Average widths and optimal recovery of multivariate Besov classes in the lp (rd ). J. Comput. Anal. Appl., 3(4):301– 316, 2001. jipa06 [2700] Y. Jiang and A. Papandreou Suppappola. Discrete time-scale characterization of wideband time-varying systems. IEEE Trans. Signal Process., 54(4):1364–1375, 2006. frji05 [2701] Y. Jin and B. Friedlander. A CFAR adaptive subspace detector for second-order Gaussian signals. IEEE Trans. Signal Process., 53(3):871– 884, 2005. dadepeXX [2702] M. Jodeit. Spaces of homogeneous type and anisotropic wavelets in Rd . jo84 [2703] M. j. Jodeit. On a decomposition of c0 (Rn ) functions into simple component pieces. Real Anal. Exchange, 9:116–122, 1984. jora03 [2704] M. Joelson and A. Ramamonjiarisoa. Random fields of water surface waves using Wiener–Hermite functional series expansions. J. Fluid Mech., 496:313–334, 2003. jo02 [2705] B. D. Johnson. Generalized quasi-affine and oversampled affine frames. PhD thesis, Washington University, 2002. jo64 [2706] B. E. Johnson. Isometric isomorphisms of measure algebras. Proc. Amer. Math. Soc., 15:186–188, 1964. jo73-1 [2707] B. E. Johnson. Some examples in harmonic analysis. Studia Math., 48:181–188, 1973. jo97-1 [2708] M. J. Johnson. On the approximation order of principal shift-invariant subspaces of Lp (Rd ). J. Approx. Theory, 91(3):279–319, 1997. jo00-1 [2709] M. J. Johnson. Approximation in Lp (Rd ) from spaces spanned by the perturbed integer translates of a radial function. J. Approx. Theory, 107(2):163–203, 2000. 240 jo01 [2710] M. J. Johnson. Scattered data interpolation from principal shiftinvariant spaces. J. Approx. Theory, 113(2):172–188, 2001. jo73 [2711] R. Johnson. Temperatures, Riesz potentials, and the Lipschitz spaces of Herz. Proc. Lond. Math. Soc., III. Ser., 27:290–316, 1973. jo74 [2712] R. Johnson. Lipschitz spaces, Littlewood-Paley spaces, and convoluteurs. Proc. Lond. Math. Soc., III. Ser., 28:127–141, 1974. jo79 [2713] R. Johnson. Maximal subspaces of Besov spaces invariant under multiplication by characters. Trans. Amer. Math. Soc., 249:387–407, 1979. jomasctz79 [2714] W. B. Johnson, B. Maurey, G. Schechtman, and L. Tzafriri. Symmetric Structures in Banach Spaces. Cambridge University Press, Cambridge, 1979. josi04 [2715] I. M. Johnstone and B. W. Silverman. Needles and straw in haystacks: Empirical Bayes estimates of possibly sparse sequences. Ann. Statist., 32(4):1594–1649, 2004. jo87 [2716] L. K. Jones. On a conjecture of Huber concerning the convergence of projection pursuit regression. Ann. Statist., 15:880–882, 1987. jo06 [2717] P. Jorgensen. Analysis and Probability, volume 234 of Graduate Texts in Mathematics. Springer, 2006. jowe94 [2718] P. E. T. Jorgensen and R. F. Werner. Coherent states of the qcanonical commutation relations. Comm. Math. Phys., 164(3):455– 471, 1994. brjoto01 [2719] A. Joseph, A. K. Brodzik, and R. Tolimieri. Under-sampled WeylHeisenberg expansions via orthogonal projections in Zak space. Signal Process., 81(11):2383–2402, 2001. jo97 [2720] J. M. C. Joshi. Recent studies integral transforms. J. Natur. Phys. Sci., 11:65–78, 1997. jolumo97 [2721] S. Joshi, C. Lu, and J. M. Morris. Parallel lattice structure of block time-recursive generalized Gabor transforms. Signal Process., 57(2):195–203, 1997. 241 jolumo97-1 [2722] S. Joshi, Y. Lu, and J. M. Morris. Noise reduction for NMR FID signals via Gabor expansion. IEEE Trans. Biomedical Engineering, 44(6):512–528, January 1997. jomo97 [2723] S. Joshi and J. M. Morris. On a novel critically-sampled discrete-time real Gabor transform. Signal Process., 61(1):9–22, 1997. jomo00 [2724] S. Joshi and J. M. Morris. Some results on product-function frames. Signal Process., 80(4):737–740, 2000. jomo03 [2725] S. M. Joshi and J. M. Morris. Product-function frames in l2 (Z). IEEE Trans. Inform. Theory, 49(5):1336–1342, 2003. jo98 [2726] J. Jost. Postmodern Analysis. Springer, Berlin, 1998. jo99 [2727] J. Jost. Postmodern Analysis. 2nd ed. Springer, Berlin, 1999. frjova06 [2728] P. Jost, P. Vandergheynst, and P. Frossard. Tree-based pursuit: Algorithm and properties. IEEE Trans. Signal Process., 54(12):4685–4697, 2006. jo83 [2729] J.-L. Journe. Calderon-Zygmund Operators, Pseudo-differential Operators and the Cauchy Integral of Calderon. Springer, Berlin, Heidelberg, New York, Tokio, 1983. jo00 [2730] D. Joyner. Coding Theory and Cryptography. From Enigma and Geheimschreiber to Quantum Theory. Proceedings of the Conference on Coding Theory, Cryptography, and Number Theory, Annapolis, MD, USA, October 25–26, 1998. Springer, Berlin, 2000. jo98-1 [2731] R. Jozsa. Quantum algorithms and the Fourier transform. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci., 454(1969):323–337, 1998. biju07 [2732] Y. Ju and G. Bi. Generalized Fast Algorithms for the Polynomial Time-Frequency Transform. IEEE Trans. Signal Process., 55(10):4907–4915, 2007. juvu88 [2733] H. Junek and Vuong T. V. On modulation spaces. Wiss.Zeitschr., Jg.32:153–162, 1988. 242 jusc92 [2734] Z. J. Jurek and B. M. Schreiber. Fourier transforms of measures from the classes Uβ , −∈ < β ≤ −∞. J. Multivariate Anal., 41(2):194–211, 1992. julete04 [2735] L. A. Justen, G. Teschke, and V. Lehmann. Wavelet-based methods for clutter removal from radar wind profiler data. In Wavelet Applications in Industrial Processing, volume 5266 of Proc. SPIE, pages 157–168, 2004. ka37 [2736] S. Kaczmarz. Angenäherte Auflösung von Systemen linearer Gleichungen. Bull. Int. Acad. Polon. Sci. A, 1937:355–357, 1937. ka64 [2737] M. I. Kadets. The exact value of the Paley-Wiener constant. Sov. Math., Dokl., 5:559–561, 1964. kaka91 [2738] V. M. Kadets and M. I. Kadets. Rearrangements of Series in Banach Spaces. Transl. from the Russian by Harold H. McFaden. American Mathematical Society, Providence, RI, 1991. ka68 [2739] J.-P. Kahane. Some Random Series of Functions. 1968. ka84 [2740] J.-P. Kahane. Une preuve rapide du thèorème de Beurling et Helson sur les endomorphismes de l’algèbre `1 (Z). Studia Math., 77:437–438, 1984. kaka81 [2741] J.-P. Kahane and Y. Katznelson. Homeomorphismes du cercle et séries de Fourier absolument convergentes. C. R. Acad. Sci. Paris S’er. I Math., 292:271–273, 1981. kale94 [2742] J.-P. Kahane and P.-G. Lemarie Rieusset. Remarks on the Poisson summation formula. (Remarques sur la formule sommatoire de Poisson.). Studia Math., 109:303–316, 1994. kasa63 [2743] J.-P. Kahane and R. Salem. Trigonometriques. 1963. ka76-1 [2744] D. Kahnert. Haar-Maß und Hausdorff-Maß. In Measure Theory, Proc. Conf. Oberwolfach 1975., volume 541 of Lecture Notes in Mathematics, pages 13–23. 1976. ka96 [2745] N. Kaiblinger. Metaplectic representation in digital signal processing. Master’s thesis, Dept. Mathematics, Univ. Vienna, 1996. 243 Ensembles Parfait et Series ka99-1 [2746] N. Kaiblinger. Metaplectic representation, eigenfunctions of phase space shifts, and Gelfand-Shilov spaces for LCA groups. PhD thesis, Dept. Mathematics, Univ. Vienna, 1999. ka05 [2747] N. Kaiblinger. Approximation of the Fourier transform and the dual Gabor window. J. Fourier Anal. Appl., 11(1):25–42, 2005. kama99 [2748] N. Kaiblinger and W. Madych. Translation invariant systems of orthonormal sampling functions. In Proc. SampTA-99 (Loen, Norway), pages 66–71, 1999. kama06 [2749] N. Kaiblinger and W. Madych. Orthonormal sampling functions. Appl. Comput. Harmon. Anal., 21(3):404–412, 2006. kamape00 [2750] N. Kaiblinger, L. Maligranda, and L.-E. Persson. Norms in weighted L2 -spaces and Hardy operators. In Function Spaces (Poznan, 1998), volume 213, pages 205–216. Dekker, New York, 2000. ka62 [2751] T. Kailath. Measurements on time-variant communication channels. IEEE Trans. Inform. Theory, 8(5):229– 236, 1962. ka63 [2752] T. Kailath. Time-variant communication channels. IEEE Trans. Inform. Theory, 9(4):233– 237, 1963. kasa99 [2753] T. Kailath and A. H. Sayed. Fast Reliable Algorithms for Matrices with Structure. SIAM, Philadelphia, PA, 1999. ka90-2 [2754] G. Kaiser. Quantum Physics, Relativity, and Complex Spacetime. Towards a new Synthesis., volume 163 of North-Holland Mathematics Studies. North-Holland, Amsterdam etc., 1990. ka94 [2755] G. Kaiser. A Friendly Guide to Wavelets. Birkhäuser, Boston, 1994. kato93 [2756] C. Kalisa and B. Torrésani. n-dimensional affine Weyl-Heisenberg wavelets. Ann. Inst. H. Poincar’e Phys. Th’eor., 59(2):201–236, 1993. kali87 [2757] G. A. Kaljabin and P. I. Lizorkin. Spaces of functions of generalized smoothness. Math. Nachr., 133:7–32, 1987. ka67-1 [2758] R. R. Kallmann. Uniform continuity, unitary groups, and compact operators. J. Funct. Anal., 1:245–253, 1967. 244 ka94-1 [2759] G. Kalyabin. On the exact values and bilateral estimates of certain capacities. Math. Nachr., 170:149–159, 1994. kakasa89 [2760] B. Kamgar Parsi, B. Kamgar Parsi, and W. A. Sander. Quantization error in spatial sampling: comparison between square and hexagonal pixels. In Proceedings CVPR ’89., IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1989., pages 604–611. IEEE, 1989. ka81 [2761] A. Kaminska. On some compactness criterion for Orlicz subspace Eφ (Ω). Ann. Soc. Math. Polon. Ser. I Comment. Math. Prace Mat., 22:245–255, 1981. kapl80 [2762] A. Kaminska and R. Pluciennik. Some theorems on compactness in generalized Orlicz spaces with application of the deltai nf ty-condition. Funct. Approx. Comment. Math., 10:135–146, 1980. ka82 [2763] A. Kaminski. Convolution, product and Fourier transform of distributions. Studia Math., 74:83–96, 1982. ka99 [2764] D. W. Kammler. A First Course in Fourier Analysis. Prentice Hall, 1999. ka81-1 [2765] H. Kamowitz. On compact multipliers of Banach algebras. Proc. Amer. Math. Soc., 81:79–80, 1981. ka97 [2766] Y. Kanjin. Hardy’s inequalities for Hermite and Laguerre expansions. Bull. Lond. Math. Soc., 29(3):331–337, 1997. ka95 [2767] S. Kanjo. Beste Approximation durch Translate eines festen Atoms. Master’s thesis, University of Vienna, February 1995. ka04 [2768] R. P. Kanwal. Generalized Functions. Theory and Applications. 3rd Revised ed. Birkhäuser, MA, 2004. ka05-1 [2769] C. Kanzow. Numerik Linearer Gleichungssysteme. Direkte und Iterative Verfahren. (Numerical Linear Equations. Direct and Iterative Procedures.). Springer Lehrbuch. Springer-Verlag, Berlin, 2005. ka70 [2770] I. Kaplansky. Algebraic and Analytic Aspects of Operator Algebras. American Mathematical Society, Providence, R.I., 1970. 245 kavo03 [2771] N. P. Karampetakis and S. Vologiannidis. DFT calculation of the generalized and Drazin inverse of a polynomial matrix. Appl. Math. Comput., 143(2-3):501–521, 2003. ka46 [2772] K. Karhunen. Zur Spektraltheorie stochastischer Prozesse. Ann. Acad. Sci. Fenn. Ser. A I Math., 34:3–7, 1946. ka87 [2773] B. Karimi. Der Begriff der schwachen Konvergenz in Funktionalanalysis und Wahrscheinlichkeitstheorie. Master’s thesis, University of Vienna, 1987. jokasv06 [2774] Karl Skretting, John Haakon Husoy, and Sven Ole Aase. General design algorithm for sparse frame expansions. Signal Process., 86(1):117–126, 2006. kata75 [2775] S. Karlin and H. M. Taylor. A First Course in Stochastic Processes. 2nd ed. Academic Press, New York, San Francisco, London, 1975. kane04 [2776] A. Karlsson and M. Neuhauser. The Bass conjecture and growth in groups. Colloquium Mathematicum, 100(1):23–27, 2004. kane06 [2777] A. Karlsson and M. Neuhauser. Heat Kernels, Theta Identities, and Zeta Functions on Cyclic Groups. In R. Grigorchuk, M. Mihalik, M. Sapir, and Z. Sunik, editors, Topological and Asymptotic Aspects of Group Theory, volume 394 of Contemporary Mathematics, pages 177–189. American Mathematical Society, 2006. ka79 [2778] G. G. Kasparov. The k-functors in the theory of extensions of c∗ algebras. Funktsional. Anal. i Prilozhen., 13(4):73–74, 1979. ka80 [2779] G. G. Kasparov. Hilbert c∗ -modules: theorems of Stinespring and Voiculescu. J. Operator Theory, 4(1):133–150, 1980. ka80-2 [2780] G. G. Kasparov. The operator k-functor and extensions of c∗ -algebras. Izv. Akad. Nauk SSSR Ser. Mat., 44(3):571–636, 719, 1980. ka88 [2781] G. G. Kasparov. Equivariant kk-theory and the Novikov conjecture. Invent. Math., 91(1):147–201, 1988. ka90-1 [2782] P. Kasperkovitz. Quasiclassical descriptions of quantum systems based on coherent states: Product formulae. J. Phys. A, Math. Gen., 23(23):5493–5512, 1990. 246 ka93 [2783] P. Kasperkovitz. Phase-space formalisms related to compact groups. 1993. kape94 [2784] P. Kasperkovitz and M. Peev. Wigner-Weyl formalisms for toroidal geometries. Ann. Physics, 230(1):21–51, 1994. ka65 [2785] D. Kastler. The C ∗ -algebras of a free Boson field. Comm. Math. Phys., 1:14–48, 1965. ka95-1 [2786] T. Kato. Perturbation Theory for Linear Operators. Reprint of the Corr. Print. of the 2nd ed. 1980. Classics in Mathematics. Berlin: Springer-Verlag. xxi, 619 p. DM 59.00 and and sFr. 57.00, 1995. ka89 [2787] A. K. Katsaggelos. Iterative Image Restoration Algorithms. Opt. Eng., 28(7):735–748, Jul. 1989. ka90 [2788] A. K. Katsaggelos. A class of iterative signal restoration algorithms. IEEE Trans. Acoustics, Speech and Signal Processing, 38/Nr.5:778– 786, May 1990. efka90 [2789] A. K. Katsaggelos and S. N. Efstratiadis. Adaptive iterative image restoration with reduced computational load. Opt. Eng., 29(12):1458– 1468, 1990. karawi00 [2790] A. K. Katsaggelos, M. A. Randolph, and J. J. Williams. A hidden Markov model based visual speech synthesizer. In Proceedings. ICASSP ’00. IEEE International Conference on Acoustics, Speech, and Signal Processing, 2000., pages 2393–2396, 2000. kaprue05 [2791] S. Katzenbeisser, D. Praetorius, and C. Überhuber. MATLAB 7 (eine Einfuehrung). Springer-Verlag, Wien, Austria, 2005. ka67 [2792] Y. Katznelson. Une remarque concernant la formule de Poisson. Studia Math., 29:107–108, 1967. ka76 [2793] Y. Katznelson. An Introduction to Harmonic Analysis. 2nd corr. ed. Dover Publications Inc, New York, 1976. ka03 [2794] Y. Katznelson. An Introduction to Harmonic Analysis. Cambridge University Press, 2003. 247 ka04-1 [2795] Y. Katznelson. An Introduction to Harmonic Analysis. 3rd Corr. ed. Cambridge University Press, 2004. ka96-1 [2796] R. Kauza. Through a Reporter’s Eyes: the Life of Stefan Banach. Birkhäuser, 1996. ka72 [2797] T. Kawata. Fourier Analysis in Probability Theory. Number 15 in Probab. Math. Stat. Academic Press, New York, 1972. kelota91 [2798] A. S. Kechris, A. Louveau, and V. Tardivel. The class of synthesizable pseudomeasures. Ill. J. Math., 35(1):107–146, 1991. ke91 [2799] D. M. Keller. Periodic Functions and the discrete Fourier transform: a time-domain view. IEEE Trans. Educ., 34/Nr.1:36–38, February 1991. ke95 [2800] C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. SIAM, Phiadelphia, PA, 1995. ke75 [2801] J. L. Kelley. General Topology. 2nd ed. Springer, Berlin, Heidelberg, New York, 1975. keto80 [2802] C. E. Kenig and P. A. Tomas. Maximal operators defined by Fourier multipliers. Studia Math., 68:79–83, 1980. ke94 [2803] M. Kenn. Anwendungen der Maximum Entropy Methode zur Verbesserung der Auflösung von IR-Spektren. PhD thesis, University of Technology Vienna, 1994. chkeze98 [2804] R. Keren, Y. Y. Zeevi, and D. Chazan. Multiresolution time-frequency analysis of polyphonic music. In Time-Frequency and Time-Scale Analysis, 1998. Proceedings of the IEEE-SP International Symposium on, pages 565–568, Pittsburgh, PA, USA, 1998. ke73 [2805] J. E. Kerlin. Tensor products of group algebras. Trans. Amer. Math. Soc., 175:1–36, 1973. ke74 [2806] J. E. Kerlin. Beurling algebras on locally compact groups, tensor products, and multipliers. Studia Math., 52:9–21, 1974. ke74-1 [2807] J. E. Kerlin. Representations of generalized multipliers of Lp -spaces of locally compact groups. Bull. Amer. Math. Soc., 79:1223–1228, 1974. 248 kepe75 [2808] J. E. Kerlin and W. D. Pepe. Norm decreasing homomorphisms between group algebras. Pacific J. Math., 57:445–451, 1975. ke71 [2809] J. E. j. Kerlin. On algebra actions on a group algebra. Pacific J. Math., 38:669–680, 1971. kepi99 [2810] B. W. Kernighan and R. Pike. The Practice of Programming. AddisonWesley Professional Computing Series. Addison-Wesley, 1999. keun73 [2811] G. N. Keshava Murthy and K. R. Unni. Multipliers on a space of Wiener. Nanta Math., 6(1):29–35, 1973. ke03 [2812] B. Keville. Multidimensional Second Order Generalised Stochastic Processes on Locally Compact Abelian Groups. PhD thesis, Trinity College Dublin, 2003. ke97 [2813] V. Keyantuo. Integrated semigroups and related partial differential. J. Math. Anal. Appl., 212(1):135–153, 1997. kh07 [2814] D. Khadjiev. The widest continuous integral. J. Math. Anal. Appl., 326(2):1101–1115, 2007. kh87 [2815] L. G. Khanin. A theorem on spectral synthesis of ideals for a class of Banach algebras. Sov. Math., Dokl., 35:108–112, 1987. gekh03 [2816] K. Khare and N. George. Sampling theory approach to prolate spheroidal wavefunctions. J. Phys. A, Math. Gen., 36(39):10011– 10021, 2003. kh24 [2817] A. Khintchine. Über einen Satz der Wahrscheinlichkeitsrechnung. Fund. Math., 6:9–20, 1924. hoki05 [2818] U. Kiencke and Holger Jäkel. Signale und Systeme. Oldenbourg, 3rd edition, 2005. ki94 [2819] T. Kilpeläinen. Weighted Sobolev spaces and capacity. Ann. Acad. Sci. Fenn. Ser. A I Math., 19(1):95–113, 1994. ki84 [2820] C.-W. Kim. Doubly stochastic right multipliers. Int. J. Math. Math. Sci., 7:477–489, 1984. 249 bogokikslu07 [2821] S. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. An InteriorPoint Method for Large-Scale l1-Regularized Least Squares. IEEE J. Sel. Topics Sig. Process., 4(1):606–617, Dec. 2007. jokios05 [2822] S. Kindermann, S. Osher, and P. W. Jones. Deblurring and denoising of images by nonlocal functionals. Multiscale Model. Simul., 4(4):1091–1115, 2005. hlkiko95 [2823] H. Kirchauer, F. Hlawatsch, and W. Kozek. Time-frequency formulation and design of nonstationary Wiener filters. In Proc. IEEE ICASSP–95, pages 1089–1092, Detroit, 1995. ki76 [2824] A. A. Kirillov. Elements of the Theory of Representations. Translated from the Russian by Edwin Hewitt. Springer, Berlin, Heidelberg, New York, 1976. gvki82 [2825] A. A. Kirillov and A. D. Gvishiani. Theorems and Problems in Functional Analysis. Transl. from the Russian by Harold H. McFaden. Springer, New York, Heidelberg, Berlin, 1982. ki96 [2826] A. Kirsch. An Introduction to the Mathematical Theory of Inverse Problems. Springer, Berlin, 1996. kita78 [2827] A. Kishimoto and H. Takai. Some remarks on c∗ -dynamical systems with a compact abelian group. Publ. Res. Inst. Math. Sci., 14(2):383– 397, 1978. ki99 [2828] V. V. Kisil. Relative convolutions. I: Properties and applications. Adv. Math., 147(1):35–73, 1999. ki99-1 [2829] V. V. Kisil. Wavelets in Banach spaces. Acta Appl. Math., 59(1):79– 109, 1999. ki84-1 [2830] T. Kitada. Fourier multipliers on certain disconnected groups. Sci. Rep. Hirosaki Univ., 31:79–83, 1984. kiro82 [2831] J. W. Kitchen and D. A. Robbins. Gelfand Representation of Banach Modules. Diss. Math., 203:47 p., 1982. ki66 [2832] J. W. J. Kitchen. Normed modules and almost periodicity. Monatsh. Math., 70:233–243, 1966. 250 ki68 [2833] J. W. j. Kitchen. The almost periodic measures on a compact abelian group. Monatsh. Math., 72:217–219, 1968. grki88 [2834] F. L. Kitson and L. J. Griffiths. Design and analysis of recursive periodically time-varying digital filters with highly quantized coefficients. IEEE Trans. Acoustics, Speech and Signal Processing, 36(5):674–685, 1988. ki95 [2835] K. C. Kiwiel. Block-iterative surrogate projection methods for convex feasibility problems. Linear Algebra Appl., 215:225–259, 1995. kl63 [2836] J. R. Klauder. Continuous-representation theory. I: Postulates of continuous-representation theory. J. Math. Phys., 4(8):1055–1058, 1963. kl63-1 [2837] J. R. Klauder. Continuous-representation theory. II: Generalized relation between quantum and classical dynamics. J. Math. Phys., 4(8):1058–1073, 1963. kl64 [2838] J. R. Klauder. Continuous-representation theory. III: On functional quantization of classical systems. J. Math. Phys., 5:177–187, 1964. klmc65 [2839] J. R. Klauder and J. McKenna. Continuous-representation theory. V: Construction of a class of scalar Boson field continuous representations. J. Math. Phys., 6:68–87, 1965. klsk85 [2840] J. R. Klauder and B.-S. Skagerstam, editors. Coherent States. Applications in Physics and Mathematical Physics. World Scientific, Singapore, 1985. klsk07 [2841] J. R. Klauder and B.-S. K. Skagerstam. Generalized phase-space representation of operators. J. Phys. A, Math. Theor., 40(9):2093–2105, 2007. kaklwo02 [2842] C. T. Klein, N. Kaiblinger, and P. Wolschann. Internally defined distances in 3D-quantitative structure-activity relationships. J. Comp. Molec. Des., 16(2):79–93, 2002. klri05 [2843] T. Klein and E. Rio. Concentration around the mean for maxima of empirical processes. Ann. Probab., 33(3):1060–1077, 2005. 251 klme04 [2844] J. Kliewer and A. Mertins. Soft-input reconstruction of binary transmitted quantized overcomplete expansions. IEEE Signal Processing Letters, 11(11):899–903, 2004. kl01 [2845] B. Klingen. Fouriertransformation für Ingenieur- und Naturwissenschaften. Springer, Berlin, 2001. kl02 [2846] A. Klotz. Aspects of Walsh-Systems: Shift invariance and Sampling. Master’s thesis, University of Vienna, 2002. kl65 [2847] I. Kluvanek. Sampling theorem in abstract harmonic analysis. Mat. v Casopis Sloven. Akad. Vied, 15:43–48, 1965. kl70-1 [2848] I. Kluvanek. A compactness property of Fourier-Stieltjes transforms. Matematicky Casopis, 20(2):84–86, 1970. kl70 [2849] I. Kluvanek. An example concerning the projective tensor product of vector measures. Matematicky Casopis, 20(2):81–83, 1970. kl81 [2850] I. Kluvanek. Remarks on bimeasures. Proc. Amer. Math. Soc., 81:233– 239, 1981. kl90 [2851] I. Kluvanek. Sampling theorem for groups of operators. In Measure Theory, Proc 2nd Winter Sch, Liptovsk Ján/Czech 1990, 114-116. 1990. kn86 [2852] A. W. Knapp. Representation Theory of Semisimple Groups. An Overview Based on Examples. Princeton University Press, Princeton, N.J., 1986. knsc06 [2853] W. Knirsch and G. Schneider. Generalized Hankel operators and the generalized solution operator to barpartial on the Fock space and on the Bergman space of the unit disc. Math. Nachr., 279(15):1684 – 1694, 2006. knol99 [2854] L. Knockaert and F. Olyslager. Modified B-splines for the sampling of bandlimited functions. IEEE Trans. Signal Process., 47(8):2328–2332, 1999. ko98 [2855] M. Kobayashi. Wavelets and their Applications. Case Studies. SIAM, Philadelphia, PA, 1998. 252 ko06 [2856] M. Kobayashi. Modulation spaces mp,q for 0 < p, q ≤ ∞. J. Funct. Spaces Appl., 4(3):329–341, 2006. ko06-1 [2857] M. Kobayashi. Multipliers on modulation spaces. SUT J. Math., 42(2):305–312, 2006. kood98 [2858] T. Kobayashi and T. Oda. A vanishing theorem for modular symbols on locally symmetric spaces. Comment. Math. Helv.., 73(1):45–70, 1998. ko39 [2859] H. Kober. Wurzeln aus der Hankel-, Fourier- und aus anderen stetigen Transformationen. Quart. J. Math. Oxford Ser., 10:45–59, 1939. kota05 [2860] H. Koch and D. Tataru. Dispersive estimates for principally normal pseudodifferential operators. Commun. Pure Appl. Anal., 58(2):217– 284, 2005. ko96-1 [2861] E. Kochneff. Rotational symmetry of the Hermite projection operators. Proc. Amer. Math. Soc., 124(5):1539–1547, 1996. kovoXX [2862] R. Koetter and P. Vontobel. Graph-covers and iterative decoding of finite length codes. koni65 [2863] J. J. Kohn and L. Nirenberg. An algebra of pseudo-differential operators. Comm. Pure Appl. Math., 18:269–305, 1965. ko98-1 [2864] A. Kokaram. Motion Picture Restoration. Springer, London, 1998. ko31 [2865] A. Kolmogoroff. Über Kompaktheit der Funktionenmengen bei der Konvergenz im Mittel. Nachr. Ges. Wiss. Göttingen, H1:60–63, 1931. ko73 [2866] H. Komatsu. Ultradistributions. I: Structure theorems and a characterization. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 20:25–105, 1973. ko77 [2867] H. Komatsu. Ultradistributions. II: The kernel theorem and ultradistributions with support in a submanifold. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 24:607–628, 1977. ko82 [2868] H. Komatsu. Ultradistributions. III: Vector valued ultradistributions and the theory of kernels. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 29:653–717, 1982. 253 ko84 [2869] T. Komatsu. Pseudo-differential operators and Markov processes. J. Math. Soc. Japan, 36:387–418, 1984. ko05 [2870] Y. Komori. Singular integrals on the discrete Besov space dotb0 , 11 (z). Acta Math. Hungar., 108(1-2):105–115, 2005. kolo05 [2871] V. Komornik and P. Loreti. Springer, New York, 2005. Fourier Series in Control Theory. ko53 [2872] H. König. Neue Begründung der Theorie der Distributionen von L. Schwartz. Math. Nachr., 9:129–148, 1953. ko86 [2873] H. König. Eigenvalue Distribution of Compact Operators. Operator Theory: Advances and Applications, Vol. 16. Basel/Boston/Stuttgart: Birkhäuser Verlag. 262 p., 1986. kolo84 [2874] T. H. Koornwinder and J. J. Lodder. Generalized functions as linear functionals on generalized functions. In Approximation Theory and Functional Analysis, Anniv Vol, Proc Conf, Oberwolfach 1983, volume 65 of ISNM, pages 151–163. 1984. kosw92 [2875] T. H. Koornwinder and R. F. Swarttouw. On q-analogues of the Fourier and Hankel transforms. Trans. Amer. Math. Soc., 333(1):445– 461, 1992. ko95 [2876] T. H. e. . Koornwinder. Wavelets: an Elementary Treatment of Theory and Applications. Series in Approximations and Decompositions. 1. Singapore: World, 1995. ko80 [2877] P. Koosis. Introduction to Hp Spaces. With an Appendix on Wolff ’s Proof of the Corona Theorem. Cambridge University Press, Cambridge, 1980. ko82-1 [2878] A. Koranyi. Some applications of Gelfand pairs in classical analysis. Harmonic analysis and group representations, C.I.M.E., pages 333– 348, 1982. ko49 [2879] B. I. Korenblyum. On certain special commutative normed rings. Dokl. Akad. Nauk SSSR, (64):281–284, 1949. ko04 [2880] J. Korevaar. Tauberian Theory. A Century of Developments. Springer, Berlin, 2004. 254 ko05-2 [2881] P. Korn. Bounds on essential support and entropy of Weyl-Heisenberg frames at critical density. Appl. Comput. Harmon. Anal., 18(2):207– 214, 2005. ko05-1 [2882] P. Korn. Some uncertainty principles for time-frequency transforms of the Cohen class. IEEE Trans. Signal Process., 53(2, part 1):523–527, 2005. ko88 [2883] T. W. Körner. Fourier Analysis. Cambridge University Press, Cambridge, 1988. ko99 [2884] T. W. Körner. Decreasing rearranged Fourier series. J. Fourier Anal. Appl., 5(1):1–19, 1999. ko04-1 [2885] T. W. Körner. A Companion to Analysis. A Second First and First Second Course in Analysis., volume 62 of Graduate Studies in Mathematics. American Mathematical Society (AMS), Providence, RI, 2004. ko01-1 [2886] S. Kotz. Extreme Value Distributions: Theory and Applications. World Sci.Pub., 2001. kolori79 [2887] E. Kotzmann, V. Losert, and H. Rindler. Dense ideals of group algebras. Math. Ann., 246:1–14, 1979. kori76 [2888] E. Kotzmann and H. Rindler. Central approximate unites in a certain ideal of L1 (G). Proc. Amer. Math. Soc., 57:155–158, 1976. kori78 [2889] E. Kotzmann and H. Rindler. Isometrien auf Segal-Algebren. Sitzungsber.d.österr. Akad.Wiss., (1):1–4, 1978. kori78-1 [2890] E. Kotzmann and H. Rindler. Segal algebras on non-abelian groups. Trans. Amer. Math. Soc., 237:271–281, 1978. koqi05 [2891] K.-I. Kou and T. Qian. Shannon sampling and estimation of bandlimited functions in the several complex variables setting. Acta Math. Sci., 25(4):741–754, 2005. ko91 [2892] O. Kouba. On the interpolation of injective or projective tensor products of Banach spaces. J. Funct. Anal., 96(1):38–61, 1991. ko01 [2893] O. Kounchev. Multivariate Polysplines: Applications to Numerical and Wavelet Analysis. San Diego, CA: Academic Press. xiv, 2001. 255 drgoko02 [2894] J. Kovacevic, P. L. Dragotti, and V. K. Goyal. Filter bank frame expansions with erasures. IEEE Trans. Inform. Theory, 48(6):1439– 1450, 2002. kove92 [2895] J. Kovacevic and M. Vetterli. Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for rn . IEEE Trans. Inform. Theory, 38(2):533–555, 1992. ko92 [2896] W. Kozek. On the generalized Weyl correspondence and its application to time-frequency analysis of linear time-varying systems. In IEEE Int. Symp. on Time–Frequency and Time–Scale Analysis, pages 167–170, Victoria, Canada, October 1992. ko92-1 [2897] W. Kozek. Time-frequency signal processing based on the WignerWeyl-framework. Signal Process., 29:77–92, 1992. ko93-2 [2898] W. Kozek. Matched generalized Gabor expansion of nonstationary processes. In Proc. IEEE Int. Conf. Signals, Systems, and Computers, pages 499–503, Pacific Grove, CA, November 1993. ko93-1 [2899] W. Kozek. Optimally Karhunen–Loeve–like STFT expansion of nonstationary processes. In IEEE ICASSP-93, volume 4, pages 428–431, 1993. ko96 [2900] W. Kozek. On the underspread/overspread classification of nonstationary random processes. In K. Kirchgaessner, . Mahrenholtz, and R. Mennicken, editors, Proc. ICIAM 95, Hamburg, July 1995, volume 3 of Mathematical Research, pages 63–66, Berlin, 1996. Akademieverlag. ko97-1 [2901] W. Kozek. Adaptation of Weyl-Heisenberg frames to underspread environments. In H. G. Feichtinger and T. Strohmer, editors, Gabor Analysis and Algorithms: Theory and Applications, pages 323–352. Birkhäuser Boston, Boston, 1997. ko97-2 [2902] W. Kozek. Matched Weyl-Heisenberg Expansions of Nonstationary Environments. PhD thesis, University of Technology Vienna, 1997. ko97 [2903] W. Kozek. On the transfer function calculus for underspread LTV channels. IEEE Trans. Signal Process., 45(1):219–223, January 1997. 256 feko97 [2904] W. Kozek and H. G. Feichtinger. Time-frequency structured decorrelation of speech signals via nonseparable Gabor frames. In Proc. ICASSP = IEEE Int. Conf. Acoustic, Speech, and Signal Processing, pages 1439–1442, Muenich, Germany, 1997. fekost94 [2905] W. Kozek, H. G. Feichtinger, and T. Strohmer. Time-frequency synthesis of statistically matched Weyl-Heisenberg prototype signals. In Proc. IEEE-SP Internat. Symp. on Time-Frequency and Time-scale Analysis, pages 21–24, Philadelphia/PA, October 1994. hlko92 [2906] W. Kozek and F. Hlawatsch. A comparative study of linear and nonlinear time–frequency filters. In IEEE Int. Symp. on Time–Frequency and Time–Scale Analysis, pages 163–166, Victoria, Canada, October 1992. hlkikotr94 [2907] W. Kozek, F. Hlawatsch, H. Kirchauer, and Trautwein U. Correlative time-frequency analysis and classification of nonstationary random processes. In Proc. IEEE-SP Internat. Symp. on Time-Frequency and Time-scale Analysis, pages 417–420, Philadelphia/PA, October 1994. komo97 [2908] W. Kozek and A. F. Molisch. On the eigenstructure of underspread WSSUS channels. In Proc.IEEE Workshop on Signal Processing Applications in Wireless Communications, Paris, pages 325–328, 1997. bokomo98 [2909] W. Kozek, A. F. Molisch, and E. Bonek. Pulse design for robust multicarrier transmission over doubly-dispersive channels. In Proc. International Conference on Telecommunications (ICT’98), pages 313–317, 1998. kopf06 [2910] W. Kozek and G. E. Pfander. Identification of operators with bandlimited symbols. SIAM J. Math. Anal., 37(3):867–888, 2006. kopfunzi00 [2911] W. Kozek, G. E. Pfander, J. Ungermann, and G. Zimmermann. A comparative study of various MCM schemes. In Proc. 5th International OFDM-Workshop, pages 20.1–20.4., Hamburg, 2000. Technische Universität Hamburg-Harburg. kopfzi00 [2912] W. Kozek, G. E. Pfander, and G. Zimmermann. Perturbation stability of various coherent Riesz families. In A. Aldroubi, A. F. Laine, and M. A. Unser, editors, Proc. of SPIE’s 45th Annual Meeting, Wavelet 257 Applications in Signal and Image Processing VIII, pages 411–419, San Diego, 2000. kopfzi02 [2913] W. Kozek, G. E. Pfander, and G. Zimmermann. Perturbation stability of coherent Riesz systems under convolution operators. Appl. Comput. Harmon. Anal., 12(3):286–308, 2002. kori94 [2914] W. Kozek and K. Riedel. Quadratic time-varying spectral estimation for underspread processes. In Proc. IEEE-SP Internat. Symp. on Time-Frequency and Time-scale Analysis, pages 417–420, Philadelphia/PA, October 1994. kr98 [2915] G. Kracher. The POCS-method and its application to the phase problem. Master’s thesis, University of Vienna, 1998. kr01 [2916] G. Kracher. Contributions to Visual Path Following and KnowledgeBased Robot Motion Planning. PhD thesis, University of Technology Vienna, 2001. krpfra08 [2917] F. Krahmer, G. E. Pfander, and P. Rashkov. Uncertainty in timefrequency representations on finite abelian groups and applications. Appl. Comput. Harmon. Anal., 25(2):209–225, 2008. kr79 [2918] S. G. Krantz. Analysis on the Heisenberg group and estimates for functions in Hardy classes of several complex variables. Math. Ann., 244:243–262, 1979. kr91 [2919] S. G. Krantz. Real Analysis and Foundations. Studies in Advanced Mathematics. Boca Raton, FL etc.: CRC Press. xiv, 1991. kr93 [2920] S. G. Krantz. Geometric Analysis and Function Spaces, volume 81 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, 1993. kr97-1 [2921] S. G. Krantz. A Primer of Mathematical Writing. Being a Disquisition on Having Your Ideas Recorded, Typeset, Published, Read, and Appreciated. Providence, RI: American Mathematical Society (AMS). xv, 1997. kr99 [2922] S. G. Krantz. A Panorama of Harmonic Analysis. The Carus Mathematical Monographs. 27. Washington, DC: The Mathematical Association of America. xvi, 1999. 258 kr05 [2923] S. G. Krantz. Real Analysis and Foundations. 2nd ed. Studies in Advanced Mathematics. Boca Raton, FL: Chapman & Hall/CRC. xvi, 2005. kr97 [2924] A. Krause. Einführung in S und S-Plus. (An Introduction to S and S-Plus). Springer, Berlin, 1997. kr29 [2925] M. Krawtchouk. Sur une g’en’eralisation des polynomes d’Hermite. C. R. Acad. Sci., Paris, 189:620–622, 1929. kr70 [2926] G. M. Krein. On some new Banach algebras and Wiener–Levy type theorems for Fourier series and integrals. Trans. AMS, 1970. krpese82 [2927] S. G. Kren, J. I. Petunin, and E. M. Semenov. Interpolation of linear operators, volume 54 of Translations of Mathematical Monographs. AMS, Providence, R.I., 1982. krrath03 [2928] M. Krishna, R. Radha, and S. Thangavelu. Wavelets and their Applications. Allied Publishers Private Ltd., Chennai, India, 2003. kr74 [2929] H. E. Krogstad. Multipliers on homogeneous Banach spaces on compact groups. Ark. Mat., 12:203–212, 1974. kr75 [2930] H. E. Krogstad. On a class of Segal algebras, 1975. kr76 [2931] H. E. Krogstad. Multipliers of Segal algebras. Math. Scand., 38:285– 303, 1976. kr78 [2932] H. E. Krogstad. The A(p, q) algebras and singular measures with Fourier transforms in L(2, q), q > 2. Hokkaido Math. J., 7:27–42, 1978. bikrle99 [2933] W. G. Kropatsch, A. Leonardis, and H. Bischof. Hierarchical, adaptive, and robust methods for image understanding. Surveys Math. Indust., 9(1):1–47, 1999. krthxu05 [2934] B. Krötz, S. Thangavelu, and Y. Xu. The heat kernel transform for the Heisenberg group. J. Funct. Anal., 225(2):301–336, 2005. ku01 [2935] C. S. Kubrusly. Elements of Operator Theory. Birkhäuser, Boston, 2001. 259 ku03 [2936] C. S. Kubrusly. Hilbert Space Operators. A Problem Solving Approach. Birkhäuser, MA, 2003. fujoku77 [2937] A. Kufner, O. John, and S. Fucı́k. Function Spaces. From the Czech. Monographs and Textsbooks on Mechanics of Solids and Fluids. Mechanics: Analysis. Leyden: Noordhoff International Publishing. Prague: Publishing House of the Czechoslovak Academy of Sciences. XV, 454 p. Dfl. 120.00, 1977. kule77 [2938] E. Kühner and P. Lesky. Grundlagen der Funktionalanalysis und Approximationstheorie. Moderne Mathematik in elementarer Darstellung. 17. Göttingen: Vandenhoeck & Ruprecht. 216 S. mit 51 Fig. DM 30.00, 1977. ku83 [2939] H. K. Kuiken. An analysis of the temperature drop across a doublelayered medium. Philips J. Res., 38:273–294, 1983. gekulazy98 [2940] F. Kullander, C. Laurent, S. Zyra, and H. Geis. Crosstalk reduction in a code division multiplexed optical fiber sensor system. Opt. Eng., 37(7):2104–2107, 1998. ku70 [2941] H. Kumano go. Algebras of pseudo-differential operators. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 17:31–50, 1970. ku82 [2942] H. Kumano go. Pseudo-differential Operators. (Updated Transl. from the Japanese by the Author, Remi Vaillancourt, and Michihiro Nagase). The MIT Press, London, 1982. frfujaku92 [2943] A. Kumar, D. R. Fuhrmann, M. Frazier, and B. D. Jawerth. A new transform for time-frequency analysis. IEEE Trans. Signal Process., 40(7):1697–1707, 1992. ku95 [2944] B. Kümmerle. Orthogonale Wavelets vom Faktor n mit kompaktem Träger. Master’s thesis, Universität Hamburg, December 1995. kupo07 [2945] S. Kunis and D. Potts. Stability results for scattered data interpolation by trigonometric polynomials. SIAM J. Sci. Comput., 29(4):1403–1419, June 2007. kura08 [2946] S. Kunis and H. Rauhut. Random sampling of sparse trigonometric polynomials II - orthogonal matching pursuit versus basis pursuit. Found. Comput. Math., 8(6):737–763, 2008. 260 ku01-1 [2947] A. Kunoth. Wavelet Methods – Elliptic Boundary Value Problems and Control Problems. B. G. Teubner, Stuttgart, 2001. ebku91 [2948] M. Kunt and T. Ebrahimi. Image compression by Gabor expansion. Opt. Eng., 30(7):873–880, July 1991. ku01-3 [2949] H.-H. Kuo. White noise theory. In et al. and D. Kannan, editors, Handbook of Stochastic Analysis and Applications, volume 163 of Textb. Monogr., pages 107–158. Marcel Dekker, New York, NY, 2001. kuma92 [2950] S. Kuo and R. J. Mammone. Image Restoration by convex projections using adaptive constraints and the l1 norm. IEEE Trans. Signal Process., 40(1):159–168, January 1992. ku91 [2951] V. G. Kurbatov. One class of input-output relations for linear systems with infinite memory. Autom. Remote Control, 52(4):588–590, 1991. ku96 [2952] V. G. Kurbatov. A remark on limit operators. Funct. Anal. Appl., 30(1):56–58, 1996. ku99 [2953] V. G. Kurbatov. Functional-differential Operators and Equations, volume 473 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, 1999. ku01-2 [2954] V. G. Kurbatov. Some algebras of operators majorized by a convolution. Funct. Differ. Equ., 8(3-4):323–333, 2001. kuwh79 [2955] D. S. Kurtz and R. L. Wheeden. Results on weighted norm inequalities for multipliers. Trans. Amer. Math. Soc., 255:343–362, 1979. kuozza01 [2956] M. A. Kutay, H. M. Ozaktas, and Z. Zalevsky. The Fractional Fourier Transform, with Applications in Optics and Signal Processing. John Wiley and Sons, 2001. ku00 [2957] G. Kutyniok. Time-frequency Analysis on Locally Compact Groups. PhD thesis, Paderborn University, New York, Basel, 2000. ku02 [2958] G. Kutyniok. Linear independence of time-frequency shifts under a generalized Schrödinger representation. Arch. Math. (Basel), 78(2):135–144, 2002. 261 ku02-1 [2959] G. Kutyniok. The Zak transform on certain locally compact groups. J. Math. Sci. (N.S.) (Delhi), 1:62–85, 2002. ku03-2 [2960] G. Kutyniok. A qualitative uncertainty principle for functions generating a Gabor frame on LCA groups. J. Math. Anal. Appl., 279(2):580– 596, 2003. ku03-3 [2961] G. Kutyniok. A weak qualitative uncertainty principle for compact groups. Illinois J. Math., 47(3):709–724, 2003. ku03-1 [2962] G. Kutyniok. Ambiguity functions, Wigner distributions and Cohen’s class for LCA groups. J. Math. Anal. Appl., 277(2):589–608, 2003. ku03-4 [2963] G. Kutyniok. Computation of the density of weighted wavelet systems. In A. Aldroubi, A. F. Laine, and M. A. Unser, editors, Wavelets X (San Diego, CA, 2003), volume 5207 of SPIE Proc., pages 393–404, Bellingham,WA, 2003. SPIE. ku05 [2964] G. Kutyniok. Affine density in wavelet analysis, 2005. ku06 [2965] G. Kutyniok. Beurling density and shift-invariant weighted irregular Gabor system. Sampl. Theory Signal Image Process., 5:131–149, 2006. ku06-1 [2966] G. Kutyniok. The local integrability condition for wavelet frames. J. Geom. Anal., 16:155–166, 2006. ku07 [2967] G. Kutyniok. Affine Density in Wavelet Analysis, volume 1914 of Lecture Notes in Mathematics. 2007. ku07-2 [2968] G. Kutyniok. Affine density, frame bounds, and the admissibility condition for wavelet frames. Constr. Approx., to appear. kaku98 [2969] G. Kutyniok and E. Kaniuth. Zeros of the Zak transform on locally compact abelian groups. Proc. Amer. Math. Soc., 126(12):3561–3569, 1998. kula06 [2970] G. Kutyniok and D. Labate. The theory of reproducing systems on locally compact abelian groups. Colloq. Math., 106:197–220, 2006. kula09 [2971] G. Kutyniok and D. Labate. Resolution of the wavefront set using continuous shearlets. Trans. Amer. Math. Soc., 361(5):2719–2754, 2009. 262 li05 [2972] G. Kutyniok, D. Labate, W. Lim, and G. Weiss. Sparse multidimensional representation using shearlets. In Wavelets XI (San Diego, CA, 2005), volume 5914, pages 254–262. SPIE, 2005. kusa08 [2973] G. Kutyniok and T. Sauer. From wavelets to shearlets and back again. In Approximation theory XII: San Antonio 2007, Mod. Methods Math., pages 201–209. Nashboro Press, Brentwood, 2008. kusa09-2 [2974] G. Kutyniok and T. Sauer. Adaptive directional subdivision schemes and shearlet multiresolution analysis. SIAM J. Math. Anal., 41(4):1436–1471, 2009. kust05 [2975] G. Kutyniok and T. Strohmer. Wilson bases for general timefrequency lattices. SIAM J. Math. Anal., 37(3):685–711, 2005. kuku00 [2976] V. I. Kuznetsova and V. G. Kurbatov. Stability of linear systems described by integral equations with slowly varying kernels. Autom. Remote Control, 61(6):933–944, 2000. hokw97 [2977] J. H. Kwak and S. Hong. Linear Algebra. Birkhäuser, Boston, 1997. kwta08 [2978] H. K. Kwan and L. Tao. Parallel lattice structures of block timerecursive discrete Gabor transform and its inverse transform. Signal Process., 88(2):407–414, February 2008. kw72 [2979] S. Kwapien. Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients. Studia Math., 44:583–595, 1972. kwmy01 [2980] S. Kwapien and J. Mycielski. On the Kaczmarz algorithm of approximation in infinite-dimensional spaces. Studia Math., 148(1):75–86, 2001. ky97 [2981] G. C. Kyriazis. Wavelet-type decompositions and approximations from shift-invariant spaces. J. Approx. Theory, 88(2):257–271, 1997. ky03 [2982] G. C. Kyriazis. Decomposition systems for function spaces. Studia Math., 157(2):133–169, 2003. ky04 [2983] G. C. Kyriazis. Multilevel characterizations of anisotropic function spaces. SIAM J. Math. Anal., 36(2):441–462, 2004. 263 kype06 [2984] G. C. Kyriazis and P. Petrushev. On the construction of frames for Triebel-Lizorkin and Besov spaces. Proc. Amer. Math. Soc., 134(6):1759–1770, 2006. la01-1 [2985] D. Labate. Pseudodifferential operators on modulation spaces. J. Math. Anal. Appl., 262(1):242–255, 2001. la01 [2986] D. Labate. Time-frequency analysis of pseudodifferential operators. Monatsh. Math., 133(2):143–156, 2001. la02 [2987] D. Labate. A unified characterization of reproducing systems generated by a finite family. J. Geom. Anal., 12(3):469–491, 2002. lawewi04 [2988] D. Labate, G. Weiss, and E. Wilson. An approach to the study of wave packet systems. In C. Heil and et al., editors, Wavelets, Frames and Operator Theory Papers from the Focused Research Group Workshop, University of Maryland, College Park, MD, USA, January 15– 21, 2003, volume 345 of Contemporary Mathematics, pages 215–235, Providence, RI, 2004. American Mathematical Society (AMS). lame05 [2989] M. Lacey and J. Metcalfe. Paraproducts in One and Several Parameters. ESI preprints, 2005. la90 [2990] E. Laeng. An orthonormal basis of L2 (R) whose elements have good phase space localization and supports adapted to any symmetric partition of frequency space. C. R. Acad. Sci. Paris S’er. I Math., 311:677– 680, 1990. la00 [2991] V. Lafforgue. A proof of property (RD) for cocompact lattices of rmsl(3, boldr) and rmsl(3, boldc). J. Lie Theory, 10(2):255–267, 2000. la02-1 [2992] V. Lafforgue. Banach K-theory and the Baum-Connes conjecture. In Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pages 795–812, Beijing, 2002. Higher Ed. Press. la02-2 [2993] V. Lafforgue. kk-théorie bivariante pour les algèbres de Banach et conjecture de Baum-Connes. Invent. Math., 149(1):1–95, 2002. la07 [2994] V. Lafforgue. K-thèorie bivariante pour les algèbres de Banach, groupoides et conjecture de Baum-Connes. J. Inst. Math. Jussieu, 6(3):415–451, 2007. 264 lawa95 [2995] J. C. Lagarias and Y. Wang. Haar type orthonormal wavelet bases in r2 . J. Fourier Anal. Appl., 2(1):1–14, 1995. lawa96 [2996] J. C. Lagarias and Y. Wang. Haar bases for L2 (Rn ) and algebraic number theory. J. Number Theory, 57(1):181–197, 1996. lawa97 [2997] J. C. Lagarias and Y. Wang. Integral self-affine tiles in Rn . II: Lattice tilings. J. Fourier Anal. Appl., 3(1):83–102, 1997. ahhukelilanipeyl02 [2998] H. Lähdesmäki, T. Aho, H. Huttunen, M.-L. Linne, J. Niemi, J. Kesseli, R. Pearson, and O. Yli Harja. Using Signal Processing Tools to Improve the Quality of Microarray Time-Series Measurements. Technical report, Tampere, Finland, 2002. la69 [2999] H. C. Lai. On some properties of ap (g)–algebras. Proc. Japan Acad., 45:572–576, 1969. la69-1 [3000] H. C. Lai. On the category of L1 (g) ∪ Lp (g) in aq (g). Proc. Japan Acad., 45:577–581, 1969. la75 [3001] H.-C. Lai. Banach algebras which are ideals in a Banach algebra. Bull. Inst. Math. Acad. Sinica, 3:227–233, 1975. chla80 [3002] H.-C. Lai and I.-S. Chen. Harmonic analysis on the Fourier algebras A//(1,p)(G). J. Austral. Math. Soc. Ser. A, 30:438–452, 1980. chla81 [3003] H. C. Lai and I.-S. Chen. Harmonic analysis on the Fourier algebra A1,p (G). J. Aust. Math. Soc., 30:438–452, 1981. lawa03 [3004] J. D. Lakey and Y. Wang. On perturbations of irregular Gabor frames. J. Comput. Appl. Math., 155(1):111–129, 2003. gigrlama03 [3005] M. P. Lamoureux, P. C. Gibson, J. P. Grossman, and G. F. Margrave. A fast, discrete Gabor transform via a partition of unity. 2003. lama01 [3006] M. P. Lamoureux and G. F. Margrave. Gabor deconvolution. Technical report, CREWES, University of Calgary, 2001. lama06 [3007] M. P. Lamoureux and G. F. Margrave. Gabor deconvolution. The CSEG Recorder, Special Issue:30–37, 2006. 265 lasa81 [3008] P. Lancaster and K. Salkauskas. Surfaces generated by moving least squares methods. Math. Comp., 37(155):141–158, 1981. la95 [3009] E. C. Lance. Hilbert C ∗ -modules. A Toolkit for Operator Algebraists. London Mathematical Society Lecture Note Series. 210. Cambridge: Univ. Press. 1995. la67-1 [3010] H. Landau. Sampling, data transmission, and the Nyquist rate. Proc. IEEE, 55(10):1701–1706, October 1967. la64 [3011] H. J. Landau. A sparse regular sequence of exponentials closed on large sets. Bull. Amer. Math. Soc., 70:566–569, 1964. la67 [3012] H. J. Landau. Necessary density conditions for sampling an interpolation of certain entire functions. Acta Math., 117:37–52, 1967. la75-1 [3013] H. J. Landau. On Szegö’s eigenvalue distribution theorem and nonHermitian kernels. J. Anal. Math., 28:335–357, 1975. le86 [3014] H. J. Landau. Extrapolating a band-limited function from its samples taken in a finite interval. IEEE Trans. Inform. Theory, 32:464–470, 1986. la93 [3015] H. J. Landau. On the density of phase-space expansions. IEEE Trans. Inform. Theory, 39(4):1152–1156, 1993. lapo61 [3016] H. J. Landau and H. O. Pollak. Prolate spheroidal wave functions, Fourier analysis and uncertainty II. Bell System Tech. J., 40:65–84, 1961. lapo62 [3017] H. J. Landau and H. O. Pollak. Prolate spheroidal wave functions, Fourier analysis and uncertainty,III: The dimension of the space of essentially time- and band-limited signals. Bell System Tech. J., 41:1295–1336, 1962. lawi80 [3018] H. J. Landau and H. Widom. Eigenvalue distribution of time and frequency limiting. J. Math. Anal. Appl., 77:469–481, 1980. lali58 [3019] L. D. Landau and E. M. Lifshitz. Quantum Mechanics: Nonrelativistic Theory. Course of Theoretical Physics, Vol. 3. AddisonWesley Series in Advanced Physics. Pergamon Press Ltd., LondonParis, 1958. 266 lali74 [3020] L. D. Landau and E. M. Lifshitz. A Shorter Course of Theoretical Physics. Vol. 2. Pergamon Press, Oxford, 1974. la99-1 [3021] N. P. Landsman. Mathematical Topics Between Classical and Quantum Mechanics. Springer Monographs in Mathematics. Springer, New York, NY, 1999. la66 [3022] S. Lang. Linear Algebra. Addison-Wesley Publishing Company, 1966. la85 [3023] S. Lang. SL2(R). 2nd Printing. Graduate Texts in Mathematics, 105. Springer, New York, 1985. la84 [3024] A. Langenbach. Vorlesungen zur Höheren Analysis. VEB Deutscher Verlag der Wissenschaften, Berlin, 1984. la04 [3025] L. Lanzhe. The continuity of commutators on Triebel-Lizorkin spaces. Integr. Equ. Oper. Theory, 49(1):65–75, 2004. la69-2 [3026] R. Larsen. The Multiplier Problem. Springer-Verlag, York, 1969. la71-1 [3027] R. Larsen. A theorem concerning Ditkins condition. Portugal. Math., 30:17–20, 1971. la71-2 [3028] R. Larsen. An Introduction to the Theory of Multipliers. Springer, 1971. la71 [3029] R. Larsen. The multipliers for functions with Fourier transforms in Lp . Math. Scand., 28:1–11, 1971. la74 [3030] R. Larsen. The algebras of functions with Fourier transforms in Lp : a survey. Nieuw Arch. Wisk. (3), 22:195–240, 1974. laliwa64 [3031] R. Larsen, T. S. Liu, and J. K. Wang. On functions with Fourier transforms in Lp . Michigan Math. J., 11:369–378, 1964. lamo89 [3032] J. L. Larsonneur and J. Morlet. Wavelets and seismic interpretation. 1989. lala97 [3033] B. Lascar and R. Lascar. FBI transforms in Gevrey classes. J. Anal. Math., 72:105–125, 1997. la96 [3034] R. Lasser. Introduction to Fourier Series. Marcel Dekker, New York, NY, 1996. 267 laobra07 [3035] R. Lasser, J. Obermaier, and H. Rauhut. Generalized hypergroups and orthogonal polynomials. J. Aust. Math. Soc., 82(3):369–393, 2007. latr88 [3036] R. Lasser and J. Tritschler. How to compute the n-fold convolution power of elementary functions. Computing, 40(4):347–351, 1988. la05 [3037] F. Latr’emoli‘ere. Approximation of quantum tori by finite quantum tori for the quantum Gromov-Hausdorff distance. J. Funct. Anal., 223(2):365–395, 2005. la77 [3038] A. T.-M. Lau. Closed convex invariant subsets of L//p(G). Trans. Amer. Math. Soc., 232:131–142, 1977. la80 [3039] K.-S. Lau. On the Banach spaces of functions with bounded upper means. Pacific J. Math., 91:153–172, 1980. la81 [3040] K.-S. Lau. The class of convolution operators on the Marcinkiewicz spaces. Ann. Inst. Fourier (Grenoble), 31(3):225–243, 1981. la83 [3041] K.-s. Lau. Extension of Wiener’s Tauberian identity and multipliers on the Marcinkiewicz space. Trans. Amer. Math. Soc., 277:489–506, 1983. la99 [3042] K.-S. Lau. Advances in Wavelets. Springer, Singapore, 1999. lasasc00 [3043] P.-J. Laurent, P. Sablonniere, and L. L. Schumaker. Curve and Surface Design. Saint-Malo Conference, Saint-Malo, France, July 1999. Vol. 1. Vanderbilt University Press, Nashville, TN, 2000. la69-3 [3044] K. B. Laursen. Ideal structure in generalized group algebras. Pacific J. Math., 30:155–174, 1969. la06 [3045] G. F. Lawler. Introduction to Stochastic Processes. 2nd ed. Chapman and Hall/CRC, Boca Raton, FL, 2006. lapfwa05 [3046] J. Lawrence, G. E. Pfander, and D. Walnut. Linear independence of Gabor systems in finite dimensional vector spaces. J. Fourier Anal. Appl., 11(6):715–726, 2005. lalesh95 [3047] W. Lawton, S. L. Lee, and Z. Shen. Characterization of compactly supported refinable splines. Adv. Comput. Math., 3(1-2):137–145, 1995. 268 lalesh96 [3048] W. Lawton, S. L. Lee, and Z. Shen. An algorithm for matrix extension and wavelet construction. Math. Commun., 65(214):723–737, 1996. lalesh97 [3049] W. Lawton, S. L. Lee, and Z. Shen. Stability and orthonormality of multivariate refinable functions. SIAM J. Math. Anal., 28(4):999– 1014, 1997. lalesh98 [3050] W. Lawton, S. L. Lee, and Z. Shen. Convergence of multidimensional cascade algorithm. Numer. Math., 78(3):427–438, 1998. la90-1 [3051] W. M. Lawton. Tight frames of compactly supported affine wavelets. J. Math. Phys., 31(8):1898–1901, 1990. le06-1 [3052] M. Le Bellac. A Short Introduction to Quantum Information and Quantum Computation. Cambridge University Press, 2006. lema05 [3053] E. Le Pennec and S. Mallat. Sparse geometric image representations with bandelets. IEEE Trans. Image Process., 14(4):423–438, 2005. le88 [3054] M. Ledoux. In’egalit’es isop’erim’etriques et calcul stochastique. S’eminaire de Probabilit’e XXII, 1988. le01 [3055] M. Ledoux. The Concentration of Measure Phenomenon. AMS, 2001. leta91 [3056] M. Ledoux and M. Talagrand. Probability in Banach Spaces. SpringerVerlag, Berlin, Heidelberg, NewYork, 1991. le95 [3057] H.-W. Lee. Theory and application of the quantum phase-space distribution functions. Phys. Rep., 259:147–211, 1995. le06 [3058] M.-Y. Lee. Convolution operators on the weighted Herz-type Hardy spaces. J. Approx. Theory, 138(2):197–210, 2006. lelu01 [3059] N.-Y. Lee and B. J. Lucier. Wavelet methods for inverting the Radon transform with noisy data. IEEE Trans. Image Process., 10(1):79–94, 2001. lepa95 [3060] S. T. Lee and J. A. Packer. Twisted group c∗ -algebras for two-step nilpotent and generalized discrete Heisenberg groups. J. Operator Theory, 34(1):91–124, 1995. 269 lepa96 [3061] S. T. Lee and J. A. Packer. The cohomology of the integer Heisenberg groups. J. Algebra, 184(1):230–250, 1996. lepa99 [3062] S. T. Lee and J. A. Packer. k-theory for c∗ -algebras associated to lattices in Heisenberg Lie groups. J. Operator Theory, 41(2):291–319, 1999. le80 [3063] W. Y. Lee. On a problem of Kato on the L2 -continuity of some pseudodifferential operators of multiple symbol. Indian J. Pure Appl. Math., 11:279–286, 1980. le58 [3064] K. Leeuw de. Homogeneous algebras on compact abelian groups. Trans. Amer. Math. Soc., 87:372–386, 1958. golesp99 [3065] T. M. Lehmann, C. Gonner, and K. Spitzer. Survey: interpolation methods in medical image processing. IEEE Transactions on Medical Imaging, 18(11):1049–1075, 1999. lete01 [3066] V. Lehmann and G. Teschke. Wavelet Based Methods for Improved Wind Profiler Signal Processing. Annales Geophysicae, 19:825–836, 2001. lete06 [3067] V. Lehmann and G. Teschke. Advanced Intermittent Clutter Filtering for Radar Wind Profiler: Signal Separation through Redundancy and Statistics. under review, 2006. lesoya98 [3068] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK user’s guide. Solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, Philadelphia, PA, 1998. levowu05 [3069] C. Lei, A. Vourdas, and A. Wünsche. Analytic and contour representations in the unit disk based on SU(1,1) coherent states. J. Math. Phys., 46(11):112101 1–12, 2005. chjile97 [3070] J. Lei, R.-Q. Jia, and W. Cheney. Approximation from shift-invariant spaces by integral operators. SIAM J. Math. Anal., 28(2):481–498, 1997. le73 [3071] M. Leinert. A contribution to Segal algebras. Manuscripta Math., 10:297–306, 1973. 270 le74-1 [3072] M. Leinert. Faltungsoperatoren auf gewissen diskreten Gruppen. Studia Math., 52:149–158, 1974. le75 [3073] M. Leinert. Remarks on Segal algebras. Manuscripta Math., 16:1–9, 1975. le76-1 [3074] M. Leinert. A commutative Banach algebra which factorizes but has no approximate units. Proc. Amer. Math. Soc., 55:345–346, 1976. le77 [3075] M. Leinert. A factorable Banach algebra with inequivalent regular representation norm. Proc. Amer. Math. Soc., 60:161–162, 1977. le82-1 [3076] M. Leinert. Daniell-Stone integration without the lattice condition. Arch. Math. (Basel), 38:258–265, 1982. lema89 [3077] P. G. Lemarié and G. Malgouyres. Ondelettes sans peine. page 9, 1989. leme86 [3078] P. G. Lemarié and Y. Meyer. Ondelettes et bases hilbertiennes. (Wavelets and Hilbert bases). Rev. Mat. Iberoam., 2:1–18, 1986. lemasp97 [3079] O. V. Lepski, E. Mammen, and V. G. Spokoiny. Optimal spatial adaptation to inhomogeneous smoothness: An approach based on kernel estimates with variable bandwidth selectors. Ann. Statist., 25(3):929– 947, 1997. le67 [3080] H. Leptin. Verallgemeinerte lsp1-Algebren und projektive Darstellungen lokal kompakter Gruppen. I. Invent. Math., 3:257–281, 1967. le68 [3081] H. Leptin. Darstellungen verallgemeinerter L1 - Algebren. Invent. Math., 5:192–215, 1968. le74 [3082] H. Leptin. On symmetry of some Banach algebras. Pacific J. Math., 53:203–206, 1974. le76 [3083] H. Leptin. Symmetrie in Banachschen Algebren. Arch. Math. (Basel), 27:394–400, 1976. le79 [3084] H. Leptin. On onesided harmonic analysis in non commutative locally compact groups. J. Reine Angew. Math., 306:122–153, 1979. 271 le82 [3085] H. Leptin. Another remark on twisted convolution. Rend. Circ. Mat. Palermo (2), 31:365–370, 1982. le85 [3086] H. Leptin. A new kind of eigenfunction expansions on groups. Pacific J. Math., 116:45–67, 1985. lemu82 [3087] H. Leptin and D. Müller. Schranken für verschränkte Faltungsoperatoren. Math. Ann., 260:511–519, 1982. lemu91 [3088] H. Leptin and D. Müller. Uniform partitions of unity on locally compact groups. Adv. Math., 90(1):1–14, 1991. le81 [3089] J. Leray. Lagrangian Analysis and Quantum Mechanics. A Mathematical Structure related to Asymptotic Expansions and the Maslov Index. The MIT Press, Cambridge, Massachusetts; London, 1981. le96 [3090] N. Lerner. Coherent states and evolution equations. In M.-Y. Qi and et al., editors, General Theory of Partial Differential Equations and Microlocal Analysis Proceedings of a Workshop, ICTP, Trieste, Italy, September 4–15, 1995, Pitman Res. Notes Math. Ser. 349, pages 123–154. Longman, Harlow, 1996. le97-1 [3091] N. Lerner. The Wick calculus of pseudo-differential operators and energy estimates. In J.-M. Bony and et al., editors, New Trends in Microlocal Analysis, pages 23–37. Springer, Tokyo, 1997. le97 [3092] N. Lerner. Wave packets techniques. 1997. le00 [3093] N. Lerner. When is a pseudo-differential equation solvable ?. Ann. Inst. Fourier (Grenoble), 50(2):443–460, 2000. le02 [3094] N. Lerner. Solving pseudo-differential equations. In Li, Ta Tsien (ed) et al, Proceedings of the International Congress of Mathematicians, ICM 2002, Beijing, China, August 20-28, 2002 Vol II: Invited Lectures, pages 711–720. World Scientific, 2002. leya96 [3095] N. Lerner and D. Yafaev. On trace theorems for pseudo-differential operators. 1996. leya98 [3096] W. Lerner and D. Yafaev. Trace theorems for pseudo-differential operators. J. Anal. Math., 74:113–164, 1998. 272 le79-1 [3097] S. Z. Levendorskij. Algebras of pseudodifferential operators with discontinuous symbols. Sov. Math., Dokl., 20:1045–1048, 1979. lete03 [3098] D. Leviatan and V. N. Temlyakov. Simultaneous approximation by greedy algorithms. Technical report, University of South Carolina at Columbia, 2003. le36 [3099] N. Levinson. On non-harmonic Fourier series. 37(4):919–936, 1936. Ann. of Math., lezh82 [3100] B. M. Levitan and V. V. Zhikov. Almost Periodic Functions and Differential Equations. Cambridge University Press, Cambridge etc., 1982. lese00 [3101] M. S. Lewicki and T. J. Sejnowski. Learning overcomplete representations. Neural Comput., 12(2):337–365, 2000. le03 [3102] J. Lewin. An Interactive Introduction to Mathematical Analysis. With CD-ROM. Cambridge University Press, Cambridge, 2003. liwi95 [3103] C.-T. Li and R. Wilson. Image segmentation using multiresolution Fourier transform. Technical report, Department of Computer Science, University of Warwick, Coventry, 1995. alli07 [3104] J. Li and G. AlRegib. Rate-Constrained Distributed Estimation in Wireless Sensor Networks. IEEE Trans. Signal Process., 55:1634– 1643, 2007. li95-1 [3105] S. Li. Fast and parametric algorithm for discrete Gabor expansions and the role of various dual windows. In H. H. Szu, editor, Wavelet Applications II, Orlando, Florida, USA, April 1995., volume 2491 of Proceedings of SPIE, pages 935–946, 1995. li95 [3106] S. Li. On general frame decompositions. Numer. Funct. Anal. Optimization, 16(9-10):1181–1191, 1995. li99 [3107] S. Li. Discrete multi-Gabor expansions. IEEE Trans. Inform. Theory, 45(6):1954–1967, 1999. li01 [3108] S. Li. A theory of generalized multiresolution structure and pseudoframes of translates. J. Fourier Anal. Appl., 7(1):23–40, 2001. 273 li04-1 [3109] S. Li. Proportional nonuniform multi-Gabor expansions. EURASIP J. Appl. Signal Process., 2004(17):2723–2731, 2004. liog01 [3110] S. Li and H. Ogawa. Pseudo-duals of frames with applications. Appl. Comput. Harmon. Anal., 11(2):289–304, 2001. liog04 [3111] S. Li and H. Ogawa. Pseudoframes for subspaces with applications. J. Fourier Anal. Appl., 10(4):409–431, 2004. li99-2 [3112] V. O. K. Li. Hints on writing technical papers and making presentations. IEEE Trans. Educ., 42(2):134–137, 1999. lali00 [3113] Z.-P. Liang and P. C. Lauterbur. Principles of Magnetic Resonance Imaging: a Signal Processing Perspective. SPIE Optical Engineering Press, Bellingham, WA, 2000. li90-2 [3114] E. H. Lieb. Gaussian kernels have only Gaussian maximizers. Invent. Math., 102(1):179–208, 1990. li90-1 [3115] E. H. Lieb. Integral bounds for radar ambiguity functions and Wigner distributions. J. Math. Phys., 31(3):594–599, 1990. lilo96 [3116] E. H. Lieb and M. Loss. Analysis. American Mathematical Society, Providence, RI, 1996. li91 [3117] W. Light. Advances in Numerical Analysis. Volume I: Nonlinear Partial Differential Equations and Dynamical Systems. Proceedings of the 4th Summer School, held at Lancaster University, United Kingdom, from 15th July to 3rd August, 1990. Clarendon Press, Oxford, 1991. li92 [3118] W. Light. Advances in Numerical Analysis. Vol. II: Wavelets, Subdivision Algorithms, and Radial Basis Functions. Proceedings of the 4th Summer School, held at Lancaster University, Lancaster, UK, from 15th July to 3rd August, 1990. Clarendon Press, Oxford, 1992. li62 [3119] M. J. Lighthill. Introduction to Fourier Analysis and Generalised Functions. (Students’ Edition). Cambridge University Press, Cambridge, 1962. li66 [3120] M. J. Lighthill. Einführung in die Theorie der Fourieranalysis und der Verallgemeinerten Funktionen. Bibliographisches Institut, Mannheim, 1966. 274 liop88 [3121] J. S. Lim and A. V. Oppenheim. Advanced Topics in Signal Processing. Prentice Hall, Englewood Cliffs, NJ, 1988. lipata01 [3122] L.-H. Lim, J. A. Packer, and K. F. Taylor. A direct integral decomposition of the wavelet representation. Proc. Amer. Math. Soc., 129(10):3057–3067, 2001. li04 [3123] P.-K. Lin. Köthe-Bochner Function Spaces. Boston, MA: Birkhäuser. xiv and EUR 98.00, 2004. li73 [3124] D. A. Lind. Convolutions and absolute continuity. Proc. Amer. Math. Soc., 39:347–348, 1973. li90 [3125] T. Lindeberg. Scale-Space for discrete signals. IEEE Trans. Pattern Analysis and Machine intelligence, 12/Nr.3:234–254, March 1990. limi95 [3126] J. Lindenstrauss and V. Milman. Geometric Aspects of Functional Analysis. Operator Theory: Advances and Applications, Vol. 77. Birkhäuser, 1995. litz77 [3127] J. Lindenstrauss and L. Tzafriri. Classical Banach Spaces. I: Sequence Spaces. Number 92 in Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin, 1977. litz79 [3128] J. Lindenstrauss and L. Tzafriri. Classical Banach Spaces. II: Function Spaces. Number 92 in Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer, Berlin, Heidelberg, New York, 1979. litz96 [3129] J. Lindenstrauss and L. Tzafriri. Classical Banach Spaces. 1: Sequence Spaces. 2. Function Spaces. Repr. of the 1977 a. 1979 ed. Springer and Springer-Verlag, 1996. li05-1 [3130] A. Linderhed. Variable sampling of the empirical mode decomposition of two-dimensional signals. Int. J. Wavelets Multiresolut. Inf. Process., 3:435–452, 2005. li06 [3131] M. Lindner. Infinite Matrices and their Finite Sections. Frontiers in Mathematics. Birkhäuser Boston, 2006. li70 [3132] K. Linen. The maximal ideal space of a Banach algebra of multipliers. Math. Scand., 27:166–180, 1970. 275 li99-1 [3133] P. A. Linnell. Von Neumann algebras and linear independence of translates. Proc. Amer. Math. Soc., 127(11):3269–3277, 1999. li02 [3134] H. J. Lipkin. Lie Groups for Pedestrians. Dover Publications Inc, 2002. li86 [3135] R. G. Littlejohn. The semiclassical evolution of wave packets. Phys. Rep., 138(4-5):193–291, 1986. lirish06 [3136] B. Liu, S. D. Riemenschneider, and Z. Shen. A Fast adaptive timefrequency analysis method and its application in vibration analysis. J. Vibration and Acoustics (Trans. ASME), to appear, 2006. kalisa04 [3137] K. Liu, T. Kadous, and A. M. Sayeed. Orthogonal time-frequency signaling over doubly dispersive channels. IEEE Trans. Inform. Theory, 50(11):2583– 2603, 2004. ling98 [3138] Q. H. Liu and N. Nguyen. An accurate algorithm for nonuniform fast Fourier transforms (NUFFT’s). IEEE Microwave and Guided Wave Letters, 8(1):18–20, 1998. livawa74 [3139] T.-s. Liu, A. van Rooij, and J.-k. Wang. On some group algebra modules related to Wiener’s algebra m1 . Pacific J. Math., 55:507– 520, 1974. liva69 [3140] T. S. Liu and A. C. M. van Rooij. Sums and intersections of normed linear spaces. Math. Nachr., 42(1-3):29–42, 1969. li96 [3141] Y. Liu. Irregular sampling for spline wavelet subspaces. IEEE Trans. Inform. Theory, 42(2):623–627, 1996. li06-2 [3142] Y. Liu. Two conditions for nonuniform Gabor frames. Acta Math. Sci. Ser. B Engl. Ed., 26(3):415–420, 2006. hulisu98 [3143] Y. Liu, Q. Sun, and D. Huang. Some extensions of Paley-Wiener theorem. Chinese Ann. Math. Ser. B, 19(3):331–340, 1998. liwa03 [3144] Y. Liu and Y. Wang. The uniformity of non-uniform Gabor bases. Adv. Comput. Math., 18(2-4):345–355, 2003. lixu05 [3145] Y. Liu and Y. Xu. Piecewise linear spectral sequences. Proc. Amer. Math. Soc., 133(8):2297–2308, 2005. 276 liwa95 [3146] Y. M. Liu and G. G. Walter. Irregular sampling in wavelet subspaces. J. Fourier Anal. Appl., 2(2):181–189, 1995. geli03 [3147] A. D. Liveris and C. N. Georghiades. Exploiting faster-than-Nyquist signaling. IEEE Transactions on Communications, 51(9):1502–1511, 2003. liot80 [3148] P. I. Lizorkin and M. Otelbaev. Imbedding theorems and compactness for spaces of Sobolev type with weights. Math. USSR-Sb., 36:331–349, 1980. liot81 [3149] P. I. Lizorkin and M. Otelbaev. Imbedding theorems and compactness for spaces of Sobolev type with weights. II. Math. USSR-Sb., 40:51–77, 1981. ljso76 [3150] L. A. Ljusternik and W. I. Sobolew. Elemente der Funktionalanalysis. In deutscher Sprache herausgegeben von Konrad Gröger. Deutsche bersetzung: Klaus Fiedler. 5., bericht. Aufl. Mathematische Lehrbücher und Monographien. I. Abt. Band VIII. Berlin: AkademieVerlag. VIII, 375 S. m. 7 Abb. and M 34.00, 1976. lo07-3 [3151] M.-L. Lo. The Bargmann transform and windowed Fourier localization. Integr. Equ. Oper. Theory, 57(3):397–412, 2007. lelo99 [3152] P.-C. Lo and Y.-Y. Lee. Real-time implementation of the moving FFT algorithm. Signal Process., 79(3):251–259, 1999. lo77 [3153] M. Loeve. Probability Theory I., volume 45 of Graduate Texts in Mathematics. Springer-Verlag, New York - Heidelberg - Berlin, 4th ed. edition, 1977. lo78 [3154] M. Loeve. Probability Theory II., volume 46 of Graduate Texts in Mathematics. Springer-Verlag, New York - Heidelberg - Berlin, 4th ed. edition, 1978. lotr79 [3155] T. D. Long and H. Triebel. Equivalent norms and Schauder bases in anisotropic Besov spaces. Proc. R. Soc. Edinb., Sect. A, 84:177–183, 1979. lopasi07 [3156] Lonut Danaila, Pascal Joly, and Sidi Mahmoud Kaber : Marie Postel. An Introducation to Scientific Computing Twelve Computational Projects Solved with MATLAB. Springer, 2007. 277 lo53 [3157] L. Loomis. An Introduction to Abstract Harmonic Analysis. Van Nostrand and Co., 1953. dadalono07 [3158] I. Loris, G. Nolet, I. Daubechies, and F. A. Dahlen. Tomographic inversion using l1 -norm regularization of wavelet coefficients. Geophys. J. Internat., 170:359–370, 2007. lo79 [3159] V. Losert. Some properties of groups without the property p1 . Comment. Math. Helv.., 54:133–139, 1979. lo80 [3160] V. Losert. A characterization of the minimal strongly character invariant Segal algebra. Ann. Inst. Fourier (Grenoble), 30:129–139, 1980. lo82 [3161] V. Losert. A characterization of groups with the one-sided Wiener property. J. Reine Angew. Math., 331:47–57, 1982. lo83-1 [3162] V. Losert. Segal algebras with functional properties. Monatsh. Math., 96:209–231, 1983. lo84 [3163] V. Losert. Properties of the Fourier algebra that are equivalent to amenability. Proc. Amer. Math. Soc., 92:347–354, 1984. lo87 [3164] V. Losert. On the structure of groups with polynomial growth. Math. Z., 195(1):109–117, 1987. lo01-1 [3165] V. Losert. On the structure of groups with polynomial growth. II. J. London Math. Soc. (2), 63(3):640–654, 2001. lori81 [3166] V. Losert and H. Rindler. Almost invariant sets. Bull. Lond. Math. Soc., 13:145–148, 1981. lomari94 [3167] A. K. Louis, Maaß Peter, and A. Rieder. Wavelets. Theorie und Anwendungen. (Wavelets. Theory and Applications). B. G. Teubner, 1994. loXX [3168] Louis Nirenberg. Lectures on Linear Partial Differential Equations. lomi66 [3169] G. Loupias and S. Miracle Sole. C ∗ -alg‘ebres des syst‘emes canoniques. I. Comm. Math. Phys., 2:31–48, 1966. lomi67 [3170] G. Loupias and S. Miracle Sole. C ∗ -alg‘ebres des syst‘emes canoniques. II. 1967. 278 lo51 [3171] E. R. Love. A generalization of absolute continuity. J. London Math. Soc., 26:1–13, 1951. lo51-1 [3172] E. R. Love. More-than-uniform almost periodicity. J. London Math. Soc., 26:14–25, 1951. lo85 [3173] F. Low. Complete sets of wave packets. In C. DeTar, J. Finkelstein, and C. Tan, editors, A Passion for Physics - Essays in Honor of Geoffrey Chew, pages 17–22. World Scientific, Singapore, 1985. lo50 [3174] P. O. Löwdin. On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals. J. Chem. Phys., 18:365–375, 1950. lope06 [3175] Z. Lozanov Crvenkovic and D. Perisic. Tempered ultradistributions and their Hermite expansions. 2006. luya95 [3176] S. Lu and D. Yang. Embedding theorems for Herz spaces. Chinese Sci. Bull., 40(18):1497–1501, 1995. felumo97 [3177] Y. Lu, J. L. Morris, and H. G. Feichtinger. On a complementary condition to derivation of discrete Gabor expansions. IEEE Signal Proc. Letters, 4(1):12–14, 1997. lumo96 [3178] Y. Lu and J. M. Morris. On equivalent frame conditions for the Gabor expansion. Signal Process., 49(2):97–110, 1996. lu85 [3179] D. H. Luecking. Representation and duality in weighted spaces of analytic functions. Indiana Univ. Math. J., 34:319–336, 1985. lu86 [3180] D. H. Luecking. Erratum: Representation and duality in weighted spaces of analytic functions, Vol. 34 (1985), 319-335. Indiana Univ. Math. J., 35:927–928, 1986. lu87 [3181] D. H. Luecking. Trace ideal criteria for Toeplitz operators. J. Funct. Anal., 73:345–368, 1987. lu01 [3182] F. Luef. Perturbative Oscillation Theorems for Jacobi Operators. Master’s thesis, Dept. Mathematics, Univ. Vienna, 2001. lu05-1 [3183] F. Luef. Gabor Analysis meets Noncommutative Geometry. PhD thesis, University of Vienna, Nov./Dec. 2005. 279 lu06 [3184] F. Luef. On spectral invariance of non-commutative tori. In Operator Theory, Operator Algebras, and Applications, volume 414 of Contemp. Math., pages 131–146. Amer. Math. Soc., Providence, RI, 2006. lu07-2 [3185] F. Luef. Gabor analysis, noncommutative tori and Feichtinger’s algebra. In Gabor and wavelet frames, volume 10 of Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., pages 77–106. World Sci. Publ., Hackensack, 2007. lu09 [3186] F. Luef. Projective modules over non-commutative tori are multiwindow Gabor frames for modulation spaces. J. Funct. Anal., 257(6):1921–1946, 2009. lu15 [3187] F. Luef. On the existence of Gabor frames. preprint, 2015. luma09 [3188] F. Luef and Y. I. Manin. Quantum theta functions and Gabor frames for modulation spaces. Lett. Math. Phys., 88(1-3):131–161, 2009. lute04 [3189] F. Luef and G. Teschl. On the finiteness of the number of eigenvalues of Jacobi operators below the essential spectrum. J. Difference Equ. Appl., 10(3):299–307, 2004. lu84 [3190] D. G. Luenberger. Linear and Nonlinear Programming. AddisonWesley Publishing Company, Reading, Massachusetts, 2nd ed. edition, 1984. lu79 [3191] H. Lueneburg. Galoisfelder, Kreisteilungskoerper und Schieberregisterfolgen. Bibliograph. Inst., 1979. lu93 [3192] H. Lüneburg. Vorlesungen über Lineare Algebra: versehen mit der zu Ihrem Verständnis nötigen Algebra sowie einigen Bemerkungen zu ihrer Didaktik. (Lectures on Linear Algebra: Provided with some Algebra Necessary for its Unterstanding as well as some remarks on its did. Mannheim, 1993. lu07-3 [3193] S. Luo. Error estimation for non-uniform sampling in shift invariant space. Appl. Anal., 86(4):483–496, 2007. lu84-1 [3194] F. Lust Piquard. Les proprietes du majorant et du minorant dans les espaces de Banach. Bull. Sci. Math. (2), 108(1):69–71, 1984. 280 lu84-2 [3195] F. Lust Piquard. Opérateurs de Hankel 1-sommant de `1 (N) dans `∞ (N) et multiplicateurs de h1 (T). (1-summing Hankel operators from `1 (N) to `∞ (N) and multipliers of h1 (T)). C. R. Acad. Sci. Paris S’er. I Math., 299(18):915–918, 1984. ly84 [3196] R. Lyons. Une characterisation des mesures dont la transformee de Fourier-Stieltjes s’annule a l’infinie. volume III of Groupe de travail d’analyse harmonique, pages I.1–I.20. Université scientifique et medicale de Grenoble, laboratoire de mathématique pures associé au c.n.r.s., 1984. lyma05 [3197] Y. Lyubarskii and W. R. Madych. Irregular Poisson type summation. ESI preprints, 2005. ly92 [3198] Y. I. Lyubarskii. Frames in the Bargmann space of entire functions. In Entire and Subharmonic Functions, volume 11 of Adv. Sov. Math., pages 167–180. American Mathematical Society (AMS), Providence, RI, 1992. ly88 [3199] Y. I. Lyubich. Introduction to the Theory of Banach Representations of Groups. Transl. from the Russian by A. Jacob., volume 30 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 1988. ma00-1 [3200] C. R. MacCluer. Industrial Mathematics. Modeling in Industry, Science, and Government. Upper Saddle River, NJ: Prentice Hall. xii, 2000. mase79 [3201] R. A. Macias and C. Segovia. Lipschitz functions on spaces of homogeneous type. Adv. Math., 33:257–270, 1979. mati04 [3202] M. Mackenzie and K. Tieu. Gaussian filters and filter synthesis using a Hermite/Laguerre neural network. IEEE Trans. Neural Networks, 15(1):206–214, 2004. ma78 [3203] G. W. Mackey. Unitary Group Representations in Physics, Probability, and Number Theory. The Benjamin/Cummings Publishing Company, Inc, Massachusetts, 1978. ma92 [3204] G. W. Mackey. The Scope and History of Commutative and Noncommutative Harmonic Analysis. American Mathematical Society, Providence, RI, 1992. 281 ma98-1 [3205] G. W. Mackey. The relationship between classical mechanics and quantum mechanics. In Perspectives on Quantization, volume 214 of Contemp. Math., pages 91–109. Amer. Math. Soc., Providence, RI, 1998. ma99-1 [3206] W. R. Madych. Spline type summability for multivariate sampling. In et al. and W. O. Bray, editors, Analysis of Divergence Control and Management of Divergent Processes Proceedings of the 7th International Workshop in Analysis and its Applications, IWAA, Orono, ME, USA June 1-6, 1997, Applied and Numerical Harmonic Analysis, pages 475–512, Boston, MA, 1999. Birkhäuser. maomwe94 [3207] Y. e. . Maeda, H. e. . Omori, and A. e. . Weinstein. Symplectic Geometry and Quantization. Papers Presented at the 31st Taniguchi International Symposium on Symplectic Geometry and Quantization Problems held at Sanda, Japan, July 12-17, 1993 and a Satellite Symposium held at Keio University, Yokohama, Japan. Contemporary Mathematics. 179. Providence, RI: American Mathematical Society (AMS). ix, 1994. mamanayg93 [3208] E. Maghras, E. Mandridake, M. Najim, and A. Yger. Recovering a signal from its averages. 1993. ermaobtr55 [3209] W. Magnus, F. Oberhettinger, F. G. Tricomi, and A. Erdelyi. Higher Transcendental Functions. Vol. III. Bateman Manuscript Project, California Institute of Technology. McGraw-Hill Book Company, New York, 1955. ma98 [3210] S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, San Diego, CA, 1998. ma99 [3211] S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, San Diego, CA, 2nd ed. edition, 1999. mapazh98 [3212] S. Mallat, G. Papanicolaou, and Z. Zhang. Adaptive covariance estimation of locally stationary processes. Ann. Statist., 26(1):1–47, 1998. mazh93-1 [3213] S. Mallat and Z. Zhang. Adaptive time-frequency transform. In Acoustics, Speech, and Signal Processing, 1993. ICASSP-93., 1993 IEEE 282 International Conference on, volume 3, pages 241–244, Minneapolis, MN, USA, 1993. ma89-1 [3214] S. G. Mallat. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell., 11(7):674–693, 1989. ma89 [3215] S. G. Mallat. Multiresolution approximations and wavelet orthonormal bases of L2 (R). Trans. Amer. Math. Soc., 315(1):69–87, 1989. mazh93 [3216] S. G. Mallat and Z. Zhang. Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process., 41(12):3397–3415, 1993. ma59 [3217] P. Malliavin. Impossibilité de la synthèse spectrale sur les groupes abéliens non compacts. Publ. Math., Inst. Hautes tud. Sci., 2:61–68, 1959. ma59-1 [3218] P. Malliavin. Sur l’impossibilite de la synthese spectrale sur la droite. C. R. Math. Acad. Sci. Paris, 248(2):2155–2157, 1959. ma95 [3219] P. Malliavin. Integration and Probability. Springer, New York, 1995. ma90 [3220] H. S. Malvar. Lapped transforms for efficient transform/subband coding. IEEE Trans. Acoustics, Speech and Signal Processing, 38(6):969– 978, 1990. mapo90 [3221] R. Mammone and C. Podilchuck. Image General Recovery by Convex Projections Using a Least-squares. J. Opt. Soc. Amer., 7:517–521, Mar. 1990. maro87 [3222] R. Mammone and R. Rothacker. General Iterative Methods of Restoring Linearly Degraded Images. J. Opt. Soc. Amer. A, 4:208–215, Jan. 1987. ma95-1 [3223] V. Mandrekar. Mathematical work of Norbert Wiener. Notices Amer. Math. Soc., 42(6):664–669, 1995. ma90-3 [3224] Y. I. Manin. Quantized theta-functions. Progr. Theoret. Phys. Suppl., (102):219–228 (1991), 1990. ma01-1 [3225] Y. I. Manin. Theta functions, quantum tori and Heisenberg groups. Lett. Math. Phys., 56(3):295–320, 2001. 283 ma04-2 [3226] Y. I. Manin. Functional equations for quantum theta functions. Publ. Res. Inst. Math. Sci., 40(3):605–624, 2004. ma04-1 [3227] Y. I. Manin. Real multiplication and noncommutative geometry (ein Alterstraum). In The Legacy of Niels Henrik Abel, pages 685–727. Springer, Berlin, 2004. ma07-1 [3228] M. F. Mansour. On the Optimization of Oversampled DFT Filter Banks. IEEE Signal Processing Letters, 14(6):389–392, jun 2007. matr05 [3229] V. M. Manuilov and E. V. Troitsky. Hilbert C ∗ -modules. Translated from the Russian by the Authors. Providence, RI: American Mathematical Society (AMS). viii, 2005. homa03 [3230] P. Marchand and O. T. Holland. Graphics and GUIs with MATLAB. 3rd ed. Chapman and Hall/CRC, FL, 2003. ma79 [3231] J. Marcinkiewicz. Un remarque sur les espaces de A. S. Besicovitch. C. R. Acad. Sci., Paris, 208:157–159, 1979. mapi79 [3232] M. B. Marcus and G. Pisier. Random Fourier series on locally compact Abelian groups. pages 72–89, 1979. gigrheillama05 [3233] G. F. Margrave, P. C. Gibson, J. P. Grossman, D. C. Henley, V. Iliescu, and M. P. Lamoureux. The Gabor transform, pseudodifferential operators, and seismic deconvolution. Integrated Computer-Aided Engineering, 12(1):43–55, 2005. gigrheillaloma03 [3234] G. F. Margrave, L. Long, P. C. Gibson, J. P. Grossman, D. C. Henley, V. Iliescu, and M. P. Lamoureux. Gabor deconvolution: extending Wiener’s method to nonstationarity. The CSEG Recorder, 28:5–12, 2003. ma63 [3235] G. Marinescu. Espaces Vectoriels Pseudotopologiques et Theorie des Distributions. Hochschulbücher für Mathematik. 59. Berlin: VEB Deutscher Verlag der Wissenschaften. VIII, 232 p., 1963. damath98 [3236] Mark A. Hennings, Daniel A. Dubin, and Thomas B. Smith. Dequantization techniques for Weyl quantization. Publ. Res. Inst. Math. Sci., 34(4):325–354, 1998. 284 ma07 [3237] P. A. Markowich. Applied Partial Differential Equations: a Visual Approach. Springer and Berlin: Springer. ix, 206 p., 2007. ma91 [3238] R. J. I. Marks. Introduction to Shannon Sampling and Interpolation Theory. Springer Texts in Electrical Engineering. Springer-Verlag, New York etc., 1991. ma93 [3239] R. J. I. Marks. Advanced Topics in Shannon Sampling and Interpolation Theory. Springer Texts in Electrical Engineering. Springer, New York, NY, 1993. ma77 [3240] A. I. Markushevich. Theory of Functions of a Complex Variable. Three Vols. Translated and edited by Richard A. Silverman. 2nd rev. ed. Chelsea Publishing Company, New York, 1977. mara05 [3241] J. E. e. . Marsden and T. S. e. . Ratiu. The Breadth of Symplectic and Poisson Geometry. Festschrift in Honor of Alan Weinstein. Birkhäuser, 2005. ma90-2 [3242] J.-B. Martens. The Hermite transform - applications. IEEE Trans. Acoustics, Speech and Signal Processing, 38(9):1607–1618, 1990. ma90-1 [3243] J.-B. Martens. The Hermite transform - theory. IEEE Trans. Acoustics, Speech and Signal Processing, 38(9):1595–1606, 1990. ma69 [3244] J. T. Marti. Introduction to the Theory of Bases. Number 18 in Springer Tracts Nat. Philos. Springer, Berlin, 1969. ma02 [3245] A. Martinez. An Introduction to Semiclassical and Microlocal Analysis. Springer, NY, 2002. ma10-3 [3246] S. Martinez. Distributed interpolation schemes for field estimation by mobile sensor networks. Control Systems Technology, IEEE Transactions on, 18(2):491–500, 2010. ma03-1 [3247] J. L. Martı́nez Morales. The kernel theorem of Hilbert-Schmidt operators. J. Math. Anal. Appl., 279(1):71–77, 2003. ma01 [3248] F. Marvasti. Nonuniform Sampling. Theory and Practice. With 1 CD-ROM. Kluwer Academic Publishers, Dordrecht, 2001. 285 ma87-1 [3249] F. A. Marvasti. A unified approach to zero-crossing and nonuniform sampling of single and multi-dimensional systems. Nonuniform. P.O.Box 1505, Oak Park, IL 60304, 1987. cldogolima92 [3250] F. A. Marvasti, P. M. Clarkson, M. V. Dokic, U. Goenchanart, and C. Liu. Reconstruction of speech signals with lost samples. IEEE Trans. Signal Process., 40(12):2897 – 2903, 1992. mali90 [3251] F. A. Marvasti and C. Liu. Parseval relationship of nonuniform samples of one- and two-dimemsional signals. IEEE Trans. Acoust. Speech Signal Process., 38/6:1061–1063, 1990. ma06 [3252] M. Mashaal. Bourbaki: A Secret Society of Mathematicians. Transl. from the French by Anna Pierrehumbert. American Mathematical Society (AMS), Providence, RI, 2006. fema81 [3253] V. P. Maslov and M. V. Fedoryuk. Semi-classical Approximation in Quantum Mechanics. Transl. from the Russian by J. Niederle and J. Tolar., volume 7 of Mathematical Physics and Applied Mathematics. D. Reidel Publishing Company, Dordrecht -Boston - London, 1981. maov97 [3254] M. Mastylo and V. I. Ovchinnikov. On the relation between complex and real methods of interpolation. Studia Math., 125(3):201–218, 1997. lema94 [3255] S. Matej and R. M. Lewitt. Efficient 3D grids for image reconstruction using spherically-symmetric volume elements. In Proceedings of the 1994 IEEE Nuclear Science Symposium and, Norfolk, Virginia, 1994. lema01 [3256] S. Matej and R. M. Lewitt. 3D-FRP: direct Fourier reconstruction with Fourier reprojection for fully 3-D PET. IEEE Trans. Nuclear Science, 48(4):1378–1385, 2001. ma96-1 [3257] . Matheron. Remarques sur les pseudo-fonctions synthétisables du cercle unité. (Remarks about synthesizable pseudofunctions on the circle group). C. R. Acad. Sci. Paris S’er. I Math., 322(12):1187– 1190, 1996. ma03 [3258] J. Mattes. Hindsight Bias Free Model Selection and Stock Market Prediction Using Industry Portfolios. preprint, 2003. 286 ma04 [3259] J. Mattes. Size effect and default risk in the UK. preprint, 2004. ma07-3 [3260] E. Matusiak. Some aspects of Gabor analysis on elementary locally compact Abelian groups. PhD thesis, 2007. ma96 [3261] G. Matviyenko. Optimized local trigonometric bases. Appl. Comput. Harmon. Anal., 3:301–323, 1996. ma05 [3262] G. Matz. On non-WSSUS wireless fading channels. IEEE Transactions on Wireless Communications, 4(5):2465–2478, 2005. grhlmaskta06 [3263] G. Matz, K. Gröchenig, F. Hlawatsch, A. Klotz, G. Tauböck, and A. Skupch. Advanced mathematical models for the design and optimization of low-interference wireless multicarrier systems. 2006. hlma98 [3264] G. Matz and F. Hlawatsch. Time-frequency transfer function calculus (symbolic calculus) of linear time-varying systems (linear operators) based on a generalized underspread theory. J. Math. Phys., 39(8):4041–4070, 1998. hlkoma95 [3265] G. Matz, F. Hlawatsch, and W. Kozek. Weyl spectral analysis of nonstationary random processes. In TFTS’95 - Symposium on Applications of Time-Frequency and Time-Scale Methods University of, pages 120–127, Warwick, August 1995. hlkoma97 [3266] G. Matz, F. Hlawatsch, and W. Kozek. Generalized evolutionary spectral analysis and the Weyl spectrum of nonstationary random processes. IEEE Trans. Signal Process., 45(6):1520–1534, 1997. grhahlmasc07 [3267] G. Matz, D. Schafhuber, K. Gröchenig, M. Hartmann, and F. Hlawatsch. Analysis, optimization, and implementation of lowinterference wireless multicarrier systems. IEEE Trans. Wireless Comm., 6(4):1–11, 2007. ma80 [3268] K. Maurin. Analysis. Part II: Integration, Distributions, Holomorphic Functions, Tensor and Harmonic Analysis. Rev. transl. of Analiza. D. Reidel Publishing Company, Dordrecht, Boston, London, 1980. ma02-1 [3269] N. J. Mauser. (Semi)classical limits of Schrödinger-Poisson systems via Wigner transforms. Journees Equations aux derivees partielles, 2002. 287 ma87 [3270] M. Mayer. Eine Einführung in die verallgemeinerte Fouriertransformation. Master’s thesis, University of Vienna, 1987. ma00 [3271] M. Mayer. POCS-Methoden. PhD thesis, University of Vienna, 2000. masa99 [3272] M. Mayer and C. Saller. Simple motion systems and Banach spaces associated to uniformly bounded representations. Math. Proc. Cambridge Philos. Soc., 127(1):133–147, 1999. bridma04 [3273] V. Mazet, D. Brie, and J. Idier. Baseline spectrum estimation using half-quadratic minimization. In Proceedings of the European Signal Processing Conference EUSIPCO 2004, Vienna, Austria, 2004. lama88 [3274] J. E. Mazo and H. J. Landau. On the minimum distance problem for faster-than-Nyquist signaling. IEEE Trans. Inform. Theory, 34(6):1420–1427, 1988. masc95 [3275] V. Maz’ya and G. Schmidt. “Approximate approximations” and the cubature of potentials. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Mem. (9) Mat. Appl., 6(3):161–184, 1995. masc99 [3276] V. Maz’ya and G. Schmidt. Approximate wavelets and the approximation of pseudodifferential operators. Appl. Comput. Harmon. Anal., 6(3):287–313, 1999. mash01 [3277] V. Maz’ya and T. Shaposhnikova. Maximal Banach algebra in spaces of multipliers between Bessel potential spaces., 2001. mash04 [3278] V. Maz’ya and T. Shaposhnikova. Characterization of multipliers in pairs of Besov spaces., 2004. mash05 [3279] V. Maz’ya and T. Shaposhnikova. Traces of multipliers in pairs of weighted Sobolev spaces. J. Funct. Spaces Appl., 3(1):91–115, 2005. mash00 [3280] V. Maz’ya and T. O. Shaposhnikova. Maximal algebra of multipliers between fractional Sobolev spaces., 2000. ma85 [3281] V. G. Maz’ya. Sobolev Spaces. Transl. from the Russian by T. O. Shaposhnikova. Berlin etc.: Springer-Verlag. xix, 486 p., 1985. 288 ma03-2 [3282] A. L. Mazzucato. Besov-Morrey spaces: Function space theory and applications to nonlinear PDE. Trans. Amer. Math. Soc., 355(4):1297–1364, 2003. camc96 [3283] P. J. McCann and A. L. Carey. A discrete model of the integer quantum Hall effect. Publ. Res. Inst. Math. Sci., 32(1):117–156, 1996. mcra79 [3284] J. McClellan and C. Rader. Number Theory in Digital Signal Processing. Prentice - Hall, 1979. mc82 [3285] J. H. McClellan. Multidimensional spectral estimation. Proc. IEEE, 70(9):1029–1039, 1982. mcwi95 [3286] J. H. McClellan and J. M. Winograd. How to use a computer-algebra system for reconstruction of functions from parallel-line projections. Computers in Physics, 9(2):156 – 163, 1995. mc97 [3287] M. R. McClure. Matching Pursuits with a Wave-based Dictionary. IEEE Trans. Signal Process., 45(12):2912–2927, 1997. mc77 [3288] S. F. McCormick. The methods of Kaczmarz and row orthogonalization for solving linear equations and least squares problems in Hilbert space. Ind.Univers.Math.Jour., 26/NR.6:1137–1149, 1977. bacaholamamcviwi07 [3289] J. D. McEwen, P. Vielva, Y. Wiaux, R. B. Barreiro, L. Cayon, M. P. Hobson, A. N. Lasenby, and E. Martinez Gonzalez. Cosmological applications of a wavelet analysis on the sphere. J. Fourier Anal. Appl., 13:in press, 2007. klmc64 [3290] J. McKenna and J. R. Klauder. Continuous-representation theory. IV: Structure of a class of function spaces arising from quantum mechanics. J. Math. Phys., 5:878–896, 1964. mcXX [3291] K. McKennon. Multipliers, positive functionals, positive definite functions and Fourier–Stieltjes transforms. Mem. Amer. Math. Soc., 11. mc72 [3292] K. McKennon. Multipliers of type (p, p). Pacific J. Math., 43(2):429– 436, 1972. mc73 [3293] K. McKennon. Multipliers of type (p, p) and multipliers of the group lp -algebras. Pacific J. Math., 45(1):297–302, 1973. 289 mc75 [3294] K. McKennon. Correction to ‘Multipliers of type (p, p)’,‘Multipliers of type (p, p) and multipliers of the group Lp -algebras’,‘Multipliers and the group Lp -algebras’. Pacific J. Math., 61(2):603–606, 1975. mc77-1 [3295] K. McKennon. Quasi-multipliers. Trans. Amer. Math. Soc., 233:105– 123, 1977. mc80 [3296] K. McKennon. Sobolev multipliers. Czechoslovak Math. J., 1980. mcno82 [3297] K. McKennon and D. Novak. The algebra of test functions on a locally compact abelian group. Chinese J. Math., 10:129–148, 1982. frmc92 [3298] J. R. McMahon and R. Franke. Knot selection for least squares thin plate splines. SIAM J. Sci. Stat. Comput., 13(2):484–498, 1992. gohomc93 [3299] P. W. McOwan, M. S. Gordon, and W. J. Hossack. A switchable liquid crystal binary Gabor lens. Opt. Commun., 103(3-4):189–193, 1993. hlme97 [3300] W. e. Mecklenbräuker and F. e. Hlawatsch. The Wigner Distribution. Theory and Applications in Signal Processing. Amsterdam: Elsevier Science. xx, 459 p., 1997. me04 [3301] M. L. Mehta. Random Matrices. Academic Press, 2004. me72 [3302] R. Meidan. Translation varying linear operators. SIAM J. Appl. Math., 22:419–436, 1972. bumeva06 [3303] L. Meier, S. van de Geer, and P. Bühlmann. The group Lasso for logistic regression. preprint, 2006. me84 [3304] J. Meinguet. Surface spline interpolation: basic theory and computational aspects., 1984. mezi96 [3305] J. M. Melenk and G. Zimmermann. Functions with time and frequency gaps. J. Fourier Anal. Appl., 2(6):611–614, 1996. memi90 [3306] L. Melissaratos and E. Micheli Tzanakou. Comments on ‘Complete discrete 2-D Gabor transforms by neural networks for image analysis and compression’. IEEE Trans. Acoustics, Speech and Signal Processing, 38(11):2005, 1990. 290 me00-2 [3307] A. Melman. A recurrence relation for singular real symmetric Toeplitz matrices. IEEE Trans. Signal Process., 48(6):1829–1831, 2000. mepato09 [3308] S. Mendelson, A. Pajor, and N. Tomczak Jaegermann. Uniform uncertainty principle for Bernoulli and subgaussian ensembles. Constr. Approx., 28(3):277–289, 2009. mewa77 [3309] R. Mennicken and E. Wagenführer. Numerische Mathematik 1. Rowohlt Taschenbuch Verlag, Reinbek, 1977. mewa77-1 [3310] R. Mennicken and E. Wagenführer. Numerische Mathematik. II. Rowohlt Taschenbuch Verlag, Reinbek, 1977. kume04 [3311] J. K. Merikoski and R. Kumar. Inequalities for spreads of matrix sums and products. Appl. Math. E-Notes, 4:150–159, 2004. mest87 [3312] A. Meril and D. C. Struppa. Convolution equations in spaces of distributions supported by cones. Proc. Amer. Math. Soc., 100:70–74, 1987. menewi76 [3313] H. J. Mertens, R. J. Nessel, G. Wilmes, H. J. Mertens, R. J. Nessel, and G. Wilmes. Über Multiplikatoren zwischen verschiedenen BanachRäumen im Zusammenhang mit diskreten Orthogonalentwicklungen, volume 2599 of Forschungsberichte des Landes Nordrhein-Westfalen. Westdeutscher Verlag, Opladen, 1976. me99-1 [3314] A. Mertins. Image compression via edge-based wavelet transform. Opt. Eng., 38(6):991–1000, 1999. me99 [3315] A. Mertins. Signal Analysis. Wavelets, Filter Banks, Time-frequency Transforms and Applications. Chichester: Wiley. xii, 317 p., 1999. mepapr02 [3316] G. Metafune, D. Pallara, and E. Priola. Spectrum of OrnsteinUhlenbeck operators in lp spaces with respect to invariant measures. J. Funct. Anal., 196(1):40–60, 2002. bame90 [3317] S. Metej and I. Bajla. A High-speed Reconstruction from Projections Using Direct Fourier Methods with Optimized Parameters - an Experimental Analysis. IEEE Trans. Med. Imaging, 9:421–429, Dec. 1990. 291 me06 [3318] G. Meurant. The Lanczos and Conjugate Gradient Algoritms. From Theory to Finite Precision Computations. Software - Environments Tools 19. SIAM, 2006. meva01 [3319] K. Meyberg and P. Vachenauer. Hoehere Mathematik 1. Differentialund Integralrechnung. Vektor- und Matrizenrechnung. (Higher mathematics 1. Differential and integral calculus, vector and matrix calculus). 6., korrig. Aufl. Springer, Berlin, 2001. meva01-1 [3320] K. Meyberg and P. Vachenauer. Hoehere Mathematik 2. Differentialgleichungen, Funktionentheorie, Fourier-Analysis, Variationsrechnung. (Higher mathematics 2. Differential equations, function theory, Fourier analysis, calculus of variations). 4., korrig. Aufl. Springer, Berlin, 2001. me00 [3321] C. D. j. Meyer. Matrix Analysis and Applied Linear Algebra (incl. CD-ROM and Solutions Manual). SIAM, Society for Industrial and Applied Mathematics, PA, 2000. me07 [3322] R. B. Meyer. Continuous spectral decompositions of Abelian group actions on C*-algebras. arXiv, math.OA/0703282, 2007. me67 [3323] Y. Meyer. Ideaux fermes de L1 dans lesquels une suite approche I’identite. Math. Scand., 19:219–222, 1967. me81 [3324] Y. Meyer. Régularité des solutions des équations aux dérivées partielles non linéaires (d’apres J.-M. Bony). In Semin Bourbaki, 32e Annee, Vol 1979/80, Exp 16 560, volume 842 of Lecture Notes in Mathematics, pages 293–302. 1981. me85 [3325] Y. Meyer. Minimalité de certains espaces fonctionnels et applications à la théorie des opérateurs. (Minimality of certain functional spaces and applications to operator theory). Séminaire Equations aux dérivées partielles, pages 1–12, 1985. me86 [3326] Y. Meyer. De la recherche petrolière à la géometrie des espaces de Banach en passant par les paraproduite. (From petroleum research to Banach space geometry by way of paraproducts). In Séminaire sur les équations aux dérivées partielles, 1985 - 1986, Exp. No. I, page 11. Ecole Polytechnique, Palaiseau, 1986. 292 me87-1 [3327] Y. Meyer. Ondelettes, fonctions splines et analyses graduées. (Wavelets, spline functions and multiresolution analysis). Rend. Sem. Mat. Univ. Politec. Torino, 45(1):1–42, 1987. me87 [3328] Y. Meyer. Principe d’incertitude, bases hilbertiennes et algèbres d’opérateurs. (Uncertainty principle, Hilbert bases and algebras of operators). In Sémin. Bourbaki, 38ème année, Vol. 1985/86, volume 145/146 of Exp. Astérisque, pages 209–223. 1987. me87-2 [3329] Y. Meyer. Wavelets with compact support. 1987. me88 [3330] Y. Meyer. Constructions de bases orthonormées d’ondelettes. (Construction of orthonormal bases of wavelets). Rev. Mat. Iberoam., 4(1):31–39, 1988. me89 [3331] Y. Meyer. Ondelettes, filtres miroirs en quadrature et traitement numérique de l’image. (Wavelets, quadratic mirror filters and numerical treatment of the image). Gaz. Math., Soc. Math. Fr., 40:31–42, 1989. me90 [3332] Y. Meyer. Ondelettes et Operateurs I: Ondelettes. Hermann, Iditeurs des Sciences et des Arts, Paris, 1990. me90-1 [3333] Y. Meyer. Ondelettes et opérateurs. I: Ondelettes; II: Opérateurs de Calderón-Zygmund; III with Coifman,R.: Opérateurs multilinéaires. Hermann, Paris, 1990. me90-8 [3334] Y. Meyer. Ondelettes et Operateurs II: Operateurs de CalderonZygmund. (Wavelets and Operators II: Calderon-Zygmund Operators). Hermann, Editeurs des Sciences et des Arts, Paris, 1990. me91 [3335] Y. Meyer. Ondelettes sur l’intervalle. (Wavelets on the interval). Rev. Mat. Iberoam., 7(2):115–133, 1991. me92 [3336] Y. Meyer. Ondelettes et Algorithmes Concurrents. (Wavelets and Concurrent Algorithms). Hermann, Iditeurs des Sciences et des Arts, Paris, 1992. me95 [3337] Y. Meyer. Wavelets and Operators, volume 37 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, Transl. by D. H. Salinger edition, 1992. 293 me93 [3338] Y. Meyer. Wavelets: Algorithms and Applications. Transl. and rev. by Robert D. Ryan. SIAM, Philadelphia, PA, 1993. me98 [3339] Y. Meyer. Wavelets, Vibrations and Scalings (CRM Monograph Series). American Mathematical Society (AMS), 1998. me00-1 [3340] Y. Meyer. Le traitement du signal et l’analyse mathématique. Ann. Inst. Fourier (Grenoble), 50(2):593–632, 2000. me01 [3341] Y. Meyer. Oscillating patterns in image processing and nonlinear evolution equations. American Mathematical Society, 2001. come97 [3342] Y. Meyer and R. R. Coifman. Wavelets: Calderon–Zygmund and Multilinear Operators. Number 48 in Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1997. mero93 [3343] Y. Meyer and S. Roques. Progress in Wavelet Analysis and Applications. Proceedings of the 3rd International Conference on Wavelets and Applications, Toulouse, France, June 8-13, 1992. Editions Frontières, 1993. me01-1 [3344] U. Meyer Baese. Digital Signal Processing with Field Programming Gate Arrays. Incl. 1 CD-ROM. Springer, Berlin, 2001. me04-1 [3345] U. Meyer Bäse. Digital Signal Processing with Field Programmable Gate Arrays. Signals and Communication Technology. Springer, Berlin, 2nd ed. edition, 2004. heme93 [3346] Meyer L. B. and G. T. Herman. Algebraic Recunstruction Techniques Can Be Made Computationally Efficient. IEEE Trans. Med. Imaging, 12(3):600–609, September 1993. me70 [3347] N. G. Meyers. A theory of capacities for potentials of functions in Lebesgue classes. Math. Scand., 26:255–292, 1970. mhnawa01 [3348] H. N. Mhaskar, F. J. Narcowich, and J. Ward. Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature. Math. Comp., 70(235):1113 – 1130, 2001. misa78 [3349] A. G. Miamee and H. Salehi. Harmonizability, V-boundedness and stationary dilation of stochastic processes. Indiana Univ. Math. J., 27:37–50, 1978. 294 mi86 [3350] C. A. Micchelli. Interpolation of scattered data: distance matrices and conditionally positive definite functions. Constr. Approx., 2:11– 22, 1986. miri77 [3351] C. A. Micchelli and T. J. Rivlin, editors. Optimal Estimation in Approximation Theory. Proceedings of an International Symposium on Optimal Estimation in Approximation Theory held in Freudenstadt, Federal Republic of Germany, September 27-29, 1976. The IBM Research Symposia Series. Plenum Press, New York - London, 1977. gejemiyv07 [3352] Michel Misiti, Yves Misiti, Georges Oppenheim, and Jean-Michel Poggi, editors. Wavelets and Their Applications. 2007. mimi99 [3353] G. Micula and S. Micula. Handbook of Splines. Kluwer Academic Publishers, Dordrecht, 1999. miro99 [3354] R. Mikulevicius and B. L. Rozovskii. Fourier-Hermite expansions for nonlinear filtering. Theory Probab. Appl., 44(3):606–612, 1999. j.XX [3355] J. Mikusinski. Elementary Theory of Distribution. mi68 [3356] J. Mikusinski. On convergence of sequences of periodic distributions. Studia Math., 31:1–14, 1968. mi78 [3357] J. Mikusinski. The Bochner Integral. Birkhäuser, Stuttgart, 1978. mi82 [3358] N. Miller. Weighted Sobolev spaces and pseudodifferential operators with smooth symbols. Trans. Amer. Math. Soc., 269:91–109, 1982. mi91 [3359] W. j. Miller. Topics in harmonic analysis with applications to radar and sonar. In Radar and Sonar Pt I, Lect Notes IMA Summer Progr, Minneapolis/MN (USA) 1990, volume 32 of IMA Vol. Math. Appl., pages 66–168. 1991. mi76 [3360] M. Milman. Tensor products of function spaces. Bull. Amer. Math. Soc., 82:626–628, 1976. mi90 [3361] P. Milnes. Uniformity and uniformly continuous functions for locally compact groups. Proc. Amer. Math. Soc., 109(2):567–570, 1990. bomi79 [3362] P. Milnes and J. V. Bondar. A simple proof of a covering property of locally compact groups. Proc. Amer. Math. Soc., 73:117–118, 1979. 295 dami80 [3363] L. B. Milstein and P. K. Das. An analysis of a real-time transform domain filtering digital communication system. I: Narrow-band interference rejection. IEEE Trans. Comm., 28(6):816–824, 1980. gomi02 [3364] M. S. Min and D. Gottlieb. On the convergence of the Fourier approximation for eigenvalues and eigenfunctions of discontinuous problems. SIAM J. Numer. Anal., 40(6):2254–2269 (electronic) (2003), 2002. mi05 [3365] R. A. Minlos. Felix Alexandrovich Berezin (A brief scientific biography). Lett. Math. Phys., 74:5–19, 2005. mi85 [3366] F. Mintzer. Filters for distortion-free two-band multirate filter banks. IEEE Trans. Acoustics, Speech and Signal Processing, 33:626–630, 1985. mi66 [3367] H. Mirkil. The work of Shilov on commutative semi-simple Banach algebras. Technical report, Rio de Janeiro, 1966. mi94 [3368] M. Mitrea. Clifford Wavelets, Singular Integrals, and Hardy Spaces. Berlin: Springer-Verlag, 1994. mi78-1 [3369] H. Mitsch. Lineare Algebra und Geometrie. I. Skriptum zur Vorlesung. Prugg Verlag, Wien, 1978. mi79 [3370] H. Mitsch. Lineare Algebra und Geometrie. II. Skriptum zur Vorlesung. Prugg Verlag, Wien, 1979. mi72 [3371] T. Mizuhara. On Fourier multipliers of Lipschitz classes. Tohoku Math. J., 24:263–268, 1972. mo04 [3372] C. Moler. Numerical Computing with MATLAB. SIAM, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2004. moto05 [3373] S. Molla and B. Torrésani. A hybrid scheme for encoding audio signal using hidden Markov models of waveforms. Appl. Comput. Harmon. Anal., 18(2):137–166, 2005. mo97 [3374] H. Möller. Algorithmische Lineare Algebra. Eine Einführung für Mathematiker und Informatiker. (Algorithmic Linear Algebra. An Introduction for Mathematicians and Computer Scientists). Wiesbaden: Vieweg., 1997. 296 mo03 [3375] J. D. Monnier. Optical interferometry in astronomy. Reports on Progress in Physics, 66:789–857, 2003. gamo98 [3376] R. Montufar Chaveznava and F. Garcia Ugalde. Quantized high resolution pursuit. In Time-Frequency and Time-Scale Analysis, 1998. Proceedings of the IEEE-SP International Symposium on, pages 189– 192, Pittsburgh, PA, USA, oct 1998. mowo74 [3377] C. C. Moore and J. A. Wolf. Square integrable representations of nilpotent groups. Trans. Amer. Math. Soc., 185:445–462, 1974. mamo04 [3378] W. Moran and J. H. Manton. Group theory in radar and signal processing. In Computational Noncommutative Algebra and Applications, volume 136 of NATO Sci. Ser. II Math. Phys. Chem., pages 339–362. Kluwer Acad. Publ., Dordrecht, 2004. fomo05 [3379] M. Morandi Cecchi and M. Fornasier. Fast homogenization algorithm based on asymptotic theory and multiscale schemes. Numer. Algorithms, 40(2):171–186, 2005. mo79 [3380] J. D. Morgan. Schrödinger operators whose potentials have seperated singularities. J. Operator Theory, 1:109–115, 1979. mo06 [3381] F. Moricz. Absolutely convergent Fourier series and function classes. J. Math. Anal. Appl., 324(2):1168–1177, 2006. mo00 [3382] S. Moritoh. FBI transforms and function spaces. RIMS Kokyuroku, 1162:36–42, 2000. grmo93 [3383] J. Morlet and A. Grossmann. Wavelets, ten years ago. In Progress in Wavelet Analysis and Applications Proceedings of the 3rd International Conference on Wavelets and Applications, Toulouse, France. 1993. mo38 [3384] C. B. Morrey. On the solutions of quasi-linear elliptic partial differential equations. Trans. Amer. Math. Soc., 43:126–166, 1938. lumo94 [3385] J. M. Morris and Y. Lu. Discrete Gabor expansion of discrete-time signals in l2 (z) via frame theory. Signal Process., 40(2-3):155–181, 1994. 297 lumo96-1 [3386] J. M. Morris and Y. Lu. Generalized Gabor expansions of discretetime signals in l2 (z) via biorthogonal-like sequences. IEEE Trans. Signal Process., 44(6):1378 – 1391, 1996. mo80 [3387] S. A. Morris. Pontryagin duality and the structure of locally compact Abelian groups. (Dvojstvennost’ Pontryagina i stroenie lokal’no kompaktnykh abelevykh grupp). Transl. from the English. Moskva: Izdatel’stvo Mir. 102 p. R. 0.40, 1980. motr56 [3388] M. Morse and W. Transue. The representation of a c-bimeasure on a general rectangle. Proc. Natl. Acad. Sci. USA, 42:89–95, 1956. mo75 [3389] R. D. Mosak. Banach Algebras. The University of Chicago Press, Chicago, London, 1975. mo49 [3390] J. E. Moyal. Quantum mechanics as a statistical theory. Proc. Camb. Philos. Soc., 45:99–124, 1949. muzhzh04 [3391] L. Mu, Z. Zhang, and P. Zhang. On the higher-dimensional wavelet frames. Appl. Comput. Harmon. Anal., 16(1):44–59, 2004. mu68 [3392] B. Muckenhoupt. Conjugate functions for Hermite expansions. In Orthogonal Expansions Continuous Analog, Proc Conf Southern Illinois Univ Edwardsville 1967, 13-23. 1968. mu69-1 [3393] B. Muckenhoupt. Hermite conjugate expansions. Trans. Amer. Math. Soc., 139:243–260, 1969. mu69 [3394] B. Muckenhoupt. Poisson integrals for Hermite and Laguerre expansions. Trans. Amer. Math. Soc., 139:231–242, 1969. mu70-3 [3395] B. Muckenhoupt. Asymptotic forms for Laguerre polynomials. Proc. Amer. Math. Soc., 24:288–292, 1970. mu70-2 [3396] B. Muckenhoupt. Conjugate functions for Laguerre expansions. Trans. Amer. Math. Soc., 147:403–418, 1970. mu70 [3397] B. Muckenhoupt. Equiconvergence and almost everywhere convergence of Hermite and Laguerre series. SIAM J. Math. Anal., 1:295– 321, 1970. 298 mu70-1 [3398] B. Muckenhoupt. Mean convergence of Hermite and Laguerre series. I,II. Trans. Amer. Math. Soc., 147:419–431, 1970. muwe01 [3399] B. Muckenhoupt and D. W. Webb. Two-weight norm inequalities for Ces‘aro means of Laguerre expansions. Trans. Amer. Math. Soc., 353(3):1119–1149, 2001. muwe02 [3400] B. Muckenhoupt and D. W. Webb. Two-weight norm inequalities for the Cesàro means of Hermite expansions. Trans. Amer. Math. Soc., 354(11):4525–4537, 2002. dumusi94 [3401] N. Mukunda, R. Simon, and B. Dutta. Quantum Noise Matrix for Multimode Systems: U(n)-invariance, squezzing and normal forms. Phys. Rev. A, 49, 1994. mu84-1 [3402] H.-G. Müller. Smooth optimum kernel estimators of densities, regression curves and modes. Ann. Statist., 12:766–774, 1984. must87 [3403] H.-G. Müller and U. Stadtmüller. Variable bandwidth kernel estimators of regression curves. Ann. Statist., 15:182–201, 1987. muvi91 [3404] P. Müller and B. Vidakovic. Wavelets for Kids. A Tutorial Introduction. Technical report, Duke University, 1991. mu07-1 [3405] D. Mumford. Tata Lectures on Theta. I. Modern Birkhäuser Classics. Birkhäuser Boston Inc., Boston, MA, 2007. mu07 [3406] D. Mumford. Tata Lectures on Theta. II. Modern Birkhäuser Classics. Birkhäuser Boston Inc., Boston, MA, 2007. munono91 [3407] D. Mumford, M. Nori, and P. Norman. Tata Lectures on Theta. III. Birkhäuser, etc., 1991. mu82 [3408] D. Muraz. Le theoreme d’Orlicz-Paley-Sidon sur le tore. volume I of Groupe de travail d’analyse harmonique, pages III.1–III.3. Université scientifique et medicale de Grenoble, laboratoire de mathématique pures associé au c.n.r.s., 1982. mu77 [3409] G. Muraz. Multiplicateurs de Lp (g) dans Lp (g). 1977. 0 299 mu82-1 [3410] G. Muraz. Multiplicateurs sur les L1 (g)-modules. volume I of Groupe de travail d’analyse harmonique, pages V.1–V.12. Université scientifique et medicale de Grenoble, laboratoire de mathématique pures associé au c.n.r.s., 1982. mu84 [3411] G. Muraz. Transformation de Fourier et espaces solides. volume II of Groupe de travail d’analyse harmonique, pages II.1–II.12. Université scientifique et medicale de Grenoble, laboratoire de mathématique pures associé au c.n.r.s., 1984. musz97 [3412] G. Muraz and P. Szeptycki. Invariant subspaces of the maximal domain of the Fourier transform. Proc. Amer. Math. Soc., 125(11):3275– 3278, November 1997. must02 [3413] F. Murtagh and J.-L. Starck. Astronomical Image and Data Analysis. Springer, Berlin, 2002. muun74 [3414] K. G. N. Murthy and K. R. Unni. Multipliers on weighted spaces. In Functional Analysis and its Applications. International Conference, Madras 1973, volume 399 of Lect. Notes Math., pages 272–291. Springer, 1974. mutath02 [3415] C. Muscalu, T. Tao, and C. Thiele. Multi-linear operators given by singular multipliers. J. Amer. Math. Soc., 15(2):469–496, 2002. julemute05 [3416] A. Muschinski, V. Lehmann, L. A. Justen, and G. Teschke. Advanced Radar Wind Profiling. Meteorologische Zeitschrift, 14(5):609– 626, 2005. mu83 [3417] J. Musielak. Orlicz Spaces and Modular Spaces. Springer, Berlin, 1983. mu91 [3418] D. Mustard. Uncertainty principles invariant under the fractional Fourier transform. J. Austral. Math. Soc. Ser. B, 33(2):180–191, 1991. mu96 [3419] D. Mustard. The fractional Fourier transform and the Wigner distribution. J. Austral. Math. Soc. Ser. B, 38(2):209–219, 1996. mu98 [3420] D. Mustard. Fractional convolution. J. Austral. Math. Soc. Ser. B, 40(2):257–265, 1998. 300 mu06 [3421] H. J. Muthsam. Lineare Algebra und ihre Anwendungen. Spektrum Akademischer Verlag, Heidelberg, 2006. na81 [3422] L. Nachbin. Introduction to Functional Analysis: Banach Spaces and Differential Calculus. Transl. from the Portuguese by Richard M. Aron. Pure and Applied Mathematics, 60. New York, 1981. naru76 [3423] A. Nagel and W. Rudin. Moebius-invariant function spaces on balls and spheres. Duke Math. J., 43:841–865, 1976. nast79 [3424] A. Nagel and E. M. Stein. Some new classes of pseudo-differential operators. In Harmonic Analysis in Euclidean Spaces, Part 2, Williamstown/ Massachusetts 1978, volume 35 of Proc. Symp. Pure Math., pages 159–169, 1979. na06 [3425] V. Naibo. Bessel capacities and rectangular differentiation in Besov spaces. J. Math. Anal. Appl., 324(2):834–840, 2006. na59 [3426] M. A. Naimark. Normed Rings. Translated from the First Russian Edition by Leo F. Boron. Wolters-Noordhoff Publishing, Netherlands, 1959. nast82 [3427] M. A. Naimark and A. I. Stern. Theory of Group Representations. Transl. from the Russian by Elizabeth Hewitt, ed. by Edwin Hewitt. Springer, Berlin, Heidelberg, New York, 1982. bena90 [3428] S. Nakamura and J. Bellissard. Low energy bands do not contribute to quantum Hall effect. Comm. Math. Phys., 131(2):283–305, 1990. na80 [3429] V. Namias. The fractional order Fourier transform and its application to quantum mechanics. J. Inst. Math. Appl., 25:241–265, 1980. nara05 [3430] A. K. Nandakumaran and P. K. Ratnakumar. Schrödinger equation and the oscillatory semigroup for the Hermite operator. J. Funct. Anal., 224(2):371–385, 2005. na85 [3431] R. Narasimhan. Complex Analysis in One Variable. Birkhäuser, Boston, Basel, Stuttgart, 1985. nath01 [3432] E. K. Narayanan and S. Thangavelu. On the equisummability of Hermite and Fourier expansions. Proc. Indian Acad. Sci., Math. Sci., 111(1):95–106, 2001. 301 napewa06 [3433] F. Narcowich, P. Petrushev, and J. Ward. Decomposition of Besov and Triebel-Lizorkin spaces on the sphere. J. Funct. Anal., 238(2):530– 564, 2006. na87 [3434] F. J. Narcowich. The problem of moments in the phase-space formulation of quantum mechanics. J. Math. Phys., 28(iint underset tildeto psp junderset tildeto):2873–2882, 1987. na88 [3435] F. J. Narcowich. Conditions for the convolution of two Wigner distributions to be itself. J. Math. Phys., 29(9):2036–2041, 1988. na89 [3436] F. J. Narcowich. Distributions of hslash-positive type and applications. J. Math. Phys., 30(11):2565–2573, 1989. na90 [3437] F. J. Narcowich. Geometry and uncertainty. 31(2):354–364, 1990. J. Math. Phys., nao86 [3438] F. J. Narcowich and R. F. O’Connell. Necessary and sufficient conditions for a phase-space function. Phys. Rev. A (3), 34(1):1–6, 1986. nao88 [3439] F. J. Narcowich and R. F. O’Connell. A unified approach to quantum dynamical maps and Gaussian Wigner distributions. Phys. Lett. A, 133(4-5):167–170, 1988. nasiwa98 [3440] F. J. Narcowich, N. Sivakumar, and J. D. Ward. Stability Results for Scattered-Data Interpolation on Euclidean Spheres. Adv. Comput. Math., 8:137 – 163, 1998. na76 [3441] M. Nashed, editor. Generalized inverses and applications. Proceedings of an advanced seminar sponsored by the Mathematics Research Center. The University of Wisconsin, Madison, October 8-10, 1973. Academic Press, New York - San Francisco - London, 1976. nawa91 [3442] M. Z. Nashed and G. G. Walter. General sampling theorems for functions in reproducing kernel Hilbert spaces. Math. Control Signals Systems, 4(4):363–390, 1991. nasota06 [3443] S. Nasiri, Y. Sobouti, and F. Taati. Phase Space Quantum Mechanics - Direct. ArXiv Quantum Physics e-prints, 2006. 302 na64 [3444] I. P. Natanson. Constructive Function Theory. Vol. I: Uniform Approximation. Translated by Alexis N. Obolensky. Frederick Ungar Publishing Co., New York, 1964. na65-1 [3445] I. P. Natanson. Constructive Function Theory. Vol. II: Approximation in Mean. Frederick Ungar Publishing Co., New York, 1965. na65 [3446] I. P. Natanson. Constructive Function Theory. Vol. III: Interpolation and Approximation Quadratures. Frederick Ungar Publishing Co., New York, 1965. na95 [3447] B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM J. Comput., 24:227–234, 1995. na77 [3448] F. Natterer. Regularisierung schlecht gestellter Probleme durch Projektionsverfahren. Numer. Math., 28:329–341, 1977. na01 [3449] F. Natterer. The Mathematics of Computerized Tomography. SIAM, Phiadelphia, PA, 2001. nawu01 [3450] F. Natterer and F. Wübbeling. Mathematical Methods in Image Reconstruction., volume 5 of Monographs on Mathematical Modeling and Computation. SIAM, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2001. na68 [3451] B. Natzith. Tensor products of Banach algebras. Canad. Math. Bull., 11:691–701, 1968. napota98 [3452] R. Navarro, J. Portilla, and A. Tabernero. Duality between foveatization and multiscale local spectrum estimation. In B. E. Rogowitz and T. N. Pappas, editors, Human Vision and Electronic Imaging III, San Jose CA , (26/01/1998), volume 3299 of Proc. SPIE, pages 306–317, Bellingham WA, 1998. SPIE. crnata96 [3453] R. Navarro, A. Tabernero, and G. Cristobal. Image representation with Gabor wavelets and its applications. In P. W. Hawkes, editor, Advances in Imaging and Electron Physics, volume 97, pages 1–84. Academic Press, San Diego, CA, 1996. 303 hona03 [3454] B. Nazaret and M. Holschneider. An interpolation family between Gabor and wavelet transformations: Application to differential calculus and construction of anisotropic Banach spaces. In et al. and S. Albeverio, editors, Nonlinear Hyperbolic Equations, Spectral Theory, and Wavelet Transformations A Volume of Advances in Partial Differential Equations, volume 145 of Operator Theory, Advances and Applications, pages 363–394. Birkhäuser, Basel, 2003. napitrvo02 [3455] F. Nazarov, G. Pisier, S. Treil, and A. Volberg. Sharp estimates in vector Carleson imbedding theorem and for vector paraproducts. J. Reine Angew. Math., 542:147–171, 2002. natrvo99 [3456] F. Nazarov, S. Treil, and A. Volberg. The Bellman functions and two-weight inequalities for Haar multipliers. J. Amer. Math. Soc., 12(4):909–928, 1999. neve09-1 [3457] D. Needell and R. Vershynin. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Found. Comput. Math., 9(3):317–334, 2009. neve10 [3458] D. Needell and R. Vershynin. Signal recovery from incomplete and inaccurate measurements via regularized orthogonal matching pursuit. IEEE J. Sel. Topics Sig. Process., 4(2):310 – 316, April 2010. ne97-1 [3459] T. Needham. Visual Complex Analysis. The Clarendon Press Oxford University Press, New York, 1997. badene07 [3460] R. N. Neelamani, M. Deffenbaugh, and R. G. Baraniuk. Texas TwoStep: A Framework for Optimal Multi-Input Single-Output Deconvolution. IEEE Trans. Image Process., 16(11):2752–2765, 2007. ne95 [3461] E. R. Negrin. Operators with complex Gaussian kernels: boundedness properties. Proc. Amer. Math. Soc., 123(4):1185–1190, 1995. ne02 [3462] Y. A. Neretin. Plancherel formula for Berezin deformation of L2 on Riemannian symmetric space. J. Funct. Anal., 189(2):336–408, 2002. ne05 [3463] Y. A. Neretin. Perelomov Problem and Inversion of the SegalBargmann Transform. ESI preprints, 2005. 304 nanepota98 [3464] O. Nestares, R. Navarro, J. Portilla, and A. Tabernero. Efficient spatial-domain implementation of a multiscale image representation based on Gabor functions. J. Electronic Imaging, 7(1):166–173, 1998. ne99 [3465] H.-J. Neu. Contributions to the theory of classical and generalized random fields over a commutative hypergroup. (Beiträge zur Theorie klassischer und verallgemeinerter zufälliger Felder über einer kommutativen Hypergruppe.). Institute of Mathematical Statistics, University of Copenhagen, Copenhagen, 1999. ne02-2 [3466] M. Neuhauser. An explicit construction of the metaplectic representation over a finite field. Journal of Lie Theory, 12(1):15–30, 2002. ne02-1 [3467] M. Neuhauser. Neighbourhood graphs of Cayley graphs for finitelygenerated groups. European Journal of Combinatorics, 23(6):733–740, 2002. ne03 [3468] M. Neuhauser. Kazhdan constants and matrix coefficients of Sp(n,R). Journal of Lie Theory, 13(1):133–154, 2003. ne03-2 [3469] M. Neuhauser. Kazhdan constants for conjugacy classes of compact groups. Journal of Algebra, 270(2):564–582, 2003. ne03-1 [3470] M. Neuhauser. Kazhdan’s property T for the symplectic group over a ring. Bull. Belg. Math. Soc. Simon Stevin, 10(4):537–550, 2003. ne05-1 [3471] M. Neuhauser. Relative property (T) and related properties for wreath products. Mathematische Zeitschrift, 251(1):167–177, 2005. ne06 [3472] M. Neuhauser. Kazhdan constants for compact groups. Journal of the Australian Mathematical Society, 81(1):11–14, 2006. ne01 [3473] A. Neumaier. Introduction to Numerical Analysis. Cambridge University Press, 2001. ne97 [3474] E. Neuwirth. Musikalische Stimmungen. Springer, Wien, 1997. nere94 [3475] G. N. Newsam and N. J. Redding. Computation and conditioning of the finite-discrete Gabor transform. In IEEE International Conference on Acoustics, Speech, and Signal Processing, 1994. ICASSP-94., volume III, pages III/5–III/8, Adelaide, SA, Australia, 1994. 305 ng04 [3476] M. K. Ng. Iterative Methods for Toeplitz Systems. Numerical Mathematics and Scientific Computation. Oxford, NY: Oxford University Press. xiii, 2004. kwng05 [3477] M. K. Ng and W. C. Kwan. Image restoration by cosine transformbased iterative regularization. Appl. Math. Comput., 160(2):499–515, 2005. ng00 [3478] N. X. Nguyen. Numerical Algorithms for Image Superresolution. PhD thesis, Stanford University, 2000. ng12 [3479] T. Nguyen. Anisotropic function spaces and elliptic boundary value problems. Math. Nachr., first published online: 2 Jan.:20, 2012. ng88 [3480] Nguyen Minh Chuong. On the parabolic pseudodifferential operators of variable order in Sobolev spaces with weighted norms. Acta Math. Vietnam., 13(1):5–14, 1988. ni06 [3481] R. Nickl. Donsker-Type Theorems for Nonparametric Maximum Likelihood Estimators. 2006. ni06-1 [3482] R. Nickl. Empirical and Gaussian Processes on Besov Classes. 2006. ni06-2 [3483] R. Nickl. On Convergence and Convolutions of Random Signed Measures. 2006. nipo06 [3484] R. Nickl and B. M. Pötscher. Bracketing Metric Entropy Rates and Empirical Central Limit Theorems for Function Classes of Besov- and Sobolev-Type. 2006. sp07 [3485] Nico Spronk. Operator space structure on Feichtinger’s Segal algebra. J. Funct. Anal., 248:152–174, 2007. ni82 [3486] K. Niederdrenk. Die Endliche Fourier- und Walsh-Transformation mit einer Einführung in die Bildverarbeitung. Friedr Vieweg & Sohn, Wiesbaden, 1982. ni75-4 [3487] H. Niemi. On stationary dilations and the linear prediction of certain stochastic processes. Comm. Math. Phys., 45(4):111–130, 1975. 306 ni75-1 [3488] H. Niemi. On the support of a bimeasure and orthogonally scattered vector measures. Ann. Acad. Sci. Fenn. Ser. A I Math., 1:249–275, 1975. ni75 [3489] H. Niemi. Stochastic processes as Fourier transforms of stochastic measures. Ann. Acad. Sci. Fenn. Ser. A I Math., 591:1–47, 1975. ni76 [3490] H. Niemi. On the linear prediction problem of certain non-stationary stochastic processes. Math. Scand., 39:146–160, 1976. ni77 [3491] H. Niemi. On orthogonally scattered dilations of bounded vector measures. Ann. Acad. Sci. Fenn. Ser. A I Math., 3:44–51, 1977. ni82-1 [3492] H. Niemi. Diagonal measure of a positive definite bimeasure. In Measure Theory, Proc Conf, Oberwolfach 1981, Lect Notes Math 945, 237-246. 1982. ni84 [3493] H. Niemi. Grothendieck’s inequality and minimal orthogonally scattered dilations. In Probability Theory on Vector Spaces III, Proc Conf, Lublin/Pol 1983, volume 1080 of Lecture Notes in Mathematics, pages 175–187, 1984. ni02 [3494] N. K. Nikolski. Operators, Functions, and Systems: an easy Reading. Volume I: Hardy, Hankel, and Toeplitz., volume 92 of Mathematical Surveys and Monographs. American Mathematical Society (AMS), Providence, RI, Transl. from the French by Andreas Hartmann. edition, 2002. ni02-1 [3495] N. K. Nikolski. Operators, Functions, and Systems: An easy Reading. Volume II: Model Operators and Systems., volume 93 of Mathematical Surveys and Monographs. American Mathematical Society (AMS), Providence, RI, Transl. from the French by Andreas Hartmann. edition, 2002. ni75-3 [3496] S. M. Nikol’skij. Approximation of Functions of Several Variables and Imbedding Theorems. Translated from the Russian by J. M. Danskin. Grundlehren der math. Wiss., Band 205. Berlin-Heidelberg-New York: Springer-Verlag., 1975. ni73 [3497] L. Nirenberg. Lectures on Linear Partial Differential Equations., volume 17 of Conference Board of the Mathematical Sciences. Regional 307 Conference Series in Mathematics. American Mathematical Society, 1973. ni84-1 [3498] S.-i. Nishigaki. Weighted norm inequalities for certain pseudodifferential operators. Tokyo J. Math., 7:129–140, 1984. no76 [3499] B. Noble. Methods for computing the Moore-Penrose generalized inverse, and related matters. In M. Nashed, editor, Generalized Inverses and Applications, Proc Adv Semin, Madison 1973, pages 245–301. 1976. dano77 [3500] B. Noble and J. W. Daniel. Applied Linear Algebra. Prentice-Hall, Inc, Jersey, 1977. no04 [3501] S. P. Novikov. The second half of the 20th century and its conclusion: crisis in the physics and mathematics community in Russia and in the West. In et al. and V. M. Buchstaber, editors, Geometry, Topology, and Mathematical Physics Selected Papers from S P Novikov’s Seminar held in Moscow, Russia, 2002-2003, volume 55 of Translations. Series 2. American Mathematical Society. 212. Advances in the Mathematical Sciences, pages 1–24. American Mathematical Society (AMS), Providence, RI, 2004. no95 [3502] K. Nowak. Singular value estimates for certain convolution-product operators. J. Fourier Anal. Appl., 1(3):297–310, 1995. no06 [3503] K. Nowak. Excess of Gabor Frames. Master’s thesis, Dept. Mathematics, Univ. Vienna, April 2006. no84 [3504] Z. Nowak. Criteria for absolute convergence of multiple Fourier series. Ark. Mat., 22:25–32, 1984. no93 [3505] W. L. Nowinski. The speedup of parallel image reconstruction. Computers and Artificial Intelligence, 12(4):337–344, 1993. no99 [3506] D. Nowottny. Mathematik am Computer. (Mathematics at the Computer). Springer, Berlin, 1999. nu81 [3507] H. Nussbaumer. Fast Fourier Transform and Convolution Algorithms. Springer-Verlag, 1981. 308 nu83 [3508] H. J. Nussbaumer. Efficient algorithms for signal processing. In H. Schüssler, editor, Signal Processing II: Theories and Applications (Proc. EUSIPCO-83). Elsevier, 1983. nu90 [3509] A. H. Nuttall. Two-dimensional convolutions, correlations, and Fourier transforms of combinations of Wigner distribution functions and complex ambiguity functions. Technical report, Naval Underwater Systems Center, New London, CT, 1990. culioa90 [3510] J. P. Oakley, M. J. Cunningham, and G. Little. A Fourier-domain formula for the least-squares projection of a function onto a repetitive basis in N-dimensional space. IEEE Trans. Acoustics, Speech and Signal Processing, 38(1):114–120, 1990. ob92 [3511] M. Oberguggenberger. Multiplication of Distributions and Applications to Partial Differential Equations, volume 259 of Pitman Research Notes in Mathematics Series. Longman Scientific and Technical, Harlow, 1992. ob77 [3512] D. M. Oberlin. The derived space of Lp (g). In Anal Armon Spazi Funz Gruppi Localm Comp, Convegno 1976, volume 22 of Symp. math., pages 231–247, 1977. od92 [3513] A. Odzijewicz. Coherent states and geometric quantization. Comm. Math. Phys., 150(2):385–413, 1992. Oh99 [3514] C. Öhreneder. A similarity measure for global image matching based on the forward modelling principle. PhD thesis, University of Technology Vienna, April 1999. oi06 [3515] J. Oitmaa. Series Expansion Methods for Strongly Interacting Lattice Models. Cambridge University Press, 2006. okto91 [3516] Y. Okada and N. Tose. FBI transformation and second microlocalization equivalence of second analytic wave front sets and second singular spectrums. J. Math. Pures Appl. (9), 70(4):427–453, 1991. ok03 [3517] K. A. Okoudjou. Characterization of function spaces and boundedness of bilinear pseudodifferential operators through Gabor frames. PhD thesis, Georgia Institute of Technology, April 2003. 309 ok04 [3518] K. A. Okoudjou. Embedding of some classical Banach spaces into modulation spaces. Proc. Amer. Math. Soc., 132(6):1639–1647 (electronic), 2004. ok84 [3519] Y. Okuyama. Absolute Summability of Fourier Series and Orthogonal Series. Springer, Berlin, 1984. chol09 [3520] G. Olafsson and J. G. Christensen. Examples of coorbit spaces for dual pairs. Acta Appl. Math., 107(1-3):25–48, 2009. ol75 [3521] D. Olesen. On norm-continuity and compactness of spectrum. Math. Scand., 35:223–236, 1975. ol76 [3522] D. Olesen. On spectral subspaces and their applications to automorphism groups. In Symposia Mathematica, Vol. XX, INDAM,Rome, 1975), pages 253–296. Academic Press, London, 1976. olpe78 [3523] D. Olesen and G. K. Pedersen. Applications of the Connes spectrum to c∗ -dynamical systems. J. Funct. Anal., 30(2):179–197, 1978. olpe80 [3524] D. Olesen and G. K. Pedersen. Applications of the Connes spectrum to c∗ -dynamical systems. II. J. Funct. Anal., 36(1):18–32, 1980. olpe82 [3525] D. Olesen and G. K. Pedersen. Applications of the Connes spectrum to c∗ -dynamical systems. III. J. Funct. Anal., 45(3):357–390, 1982. olpeta80 [3526] D. Olesen, G. K. Pedersen, and M. Takesaki. Ergodic actions of compact abelian groups. J. Operator Theory, 3(2):237–269, 1980. ol97 [3527] A. Olevskii. Completeness in L2 (R) of almost integer translates. C. R. Math. Acad. Sci. Paris, 324:98–99, 1997. olul04 [3528] A. Olevskii and A. Ulanovskii. Almost integer translates. Do nice generators exist? J. Fourier Anal. Appl., 10(1):93–104, 2004. olst06-1 [3529] s. oliveira and D. Stewart. Writing Scientific Software: A Guide to Good Style. 2006. ol01-1 [3530] V. Olshevsky, editor. Structured Matrices in Mathematics, Computer Science, and Engineering II. Proceedings of an AMS-IMS-SIAM Joint Summer Research Conference, University of Colorado, Boulder, CO, USA, June 27–July 1, 1999., volume 281 of Contemporary Mathematics. American Mathematical Society (AMS), Providence, RI, 2001. 310 ol03 [3531] V. Olshevsky, editor. Fast algorithms for structured matrices: Theory and applications. AMS-IMS-SIAM joint summer research conference on fast algorithms in mathematics, computer science and engineering, August 5–9, 2001, South Hadley, Massachusetts., volume 323 of Contemporary Mathematics. American Mathematical Society (AMS) and Society for Industrial and Applied Mathematics (SIAM), Providence, RI, 2003. ol01 [3532] V. e. Olshevsky. Structured matrices in mathematics, computer science, and engineering I. Proceedings of an AMS-IMS-SIAM joint summer research conference, University of Colorado, Boulder, CO, USA, June 27–July 1, 1999., volume 280 of Contemporary Mathematics. American Mathematical Society (AMS), Providence, RI, 2001. olza92 [3533] T. E. Olson and R. A. Zalik. Nonexistence of a Riesz basis of translates. In Approximation Theory, Proc 6th Southeast Approximation Theory Conf, Memphis/TN (USA) 1991, volume 138 of Lect. Notes Pure Appl. Math., pages 401–408. 1992. ol74 [3534] F. W. J. Olver. Introduction to Asymptotics and Special Functions. Academic Press, 1974. om00 [3535] B. Ömer. Quantum Programming in QCL. Master’s thesis, Vienna University of Technology, 2000. on82 [3536] C. W. Onneweer. Generalized Lipschitz spaces and Herz spaces on certain totally disconnected groups. In Martingale Theory in Harmonic Analysis and Banach Spaces, Proc NSF-CBMS Conf, Cleveland/Ohio 1981, Lect Notes Math 939, 106-121. 1982. on84 [3537] C. W. Onneweer. The Fourier transforms of Herz spaces on certain groups. Monatsh. Math., 97:297–310, 1984. op06 [3538] R. Opfer. Tight frame expansions of multiscale reproducing kernels in Sobolev spaces. Appl. Comput. Harmon. Anal., 20(3):357–374, 2006. op67 [3539] Z. Opial. Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc., 73:591–597, 1967. 311 opsc89 [3540] A. V. Oppenheim and R. W. Schafer. Discrete-time Signal Processing. Prentice Hall, Englewood Cliffs, NJ, 1989. buopsc04 [3541] A. V. Oppenheim, R. W. Schafer, and J. R. Buck. Zeitdiskrete Signalverarbeitung. Pearson Studium, 2., überarbeitete Auflage edition, 2004. or90 [3542] J. M. Ortega. Numerical Analysis: A Second Course. SIAM, Phiadelphia, PA, 1990. jo94 [3543] J. M. Ortega and J. Fabrega. Mixed-norm spaces and interpolation. Studia Math., 109(3):233–254, 1994. gror99 [3544] J. M. Ortega and A. S. Grimshaw. An Introduction to C++ and Numerical Methods. Oxford University Press, Oxford, 1999. orse02 [3545] J. Ortega Cerdà and K. Seip. 155(3):789–806, 2002. Fourier frames. Ann. of Math., os75 [3546] M. S. Osborne. On the Schwartz-Bruhat space and the Paley-Wiener theorem for locally compact Abelian groups. J. Funct. Anal., 19:40– 49, 1975. ospy80 [3547] E. O. Oshobi and J. S. Pym. Banach algebra whose duals are multiplier algebras. Bull. Lond. Math. Soc., 13:66–68, 1980. os94 [3548] P. Oswald. Multilevel Finite Element Approximation. (Stuttgart), 1994. Teubner os94-1 [3549] P. Oswald. Stable subspace splittings for Sobolev spaces and domain decomposition algorithms. In Keyes, David E (ed) et al, Domain Decomposition Methods in Scientific and Engineering Computing Proceedings of the 7th International Conference on Domain Decomposition, October 27-30, 1993, Pennsylvania State University, PA, USA Providence, RI: Ameri. 1994. os97 [3550] P. Oswald. Frames and space splittings in Hilbert spaces. Technical report, 1997. os98 [3551] P. Oswald. Multilevel frames and Riesz bases in Sobolev spaces. Technical report, 1998. 312 ot88 [3552] N. Ottavy. Strong convergence of projection-like methods in Hilbert spaces. J. Optim. Theory Appl., 56(3):433–461, 1988. ou83 [3553] G. Ouyang. Multipliers of Segal algebras. Chinese Ann. Math. Ser. A, 4:639–644, 1983. ou88 [3554] G. Ouyang. Multipliers of Segal algebras. In Proceedings of the Analysis Conference, Singapore 1986., volume 150 of North-Holland Math. Stud., pages 203–217. North-Holland Publishing Company, 1988. ou91 [3555] G. Ouyang. Multipliers from L1 (G) to a reflexive Segal algebra. In et al. and M.-T. Cheng, editors, Harmonic Analysis Proceedings of the Special Program at the Nankai Institute of Mathematics, Tianjin, PR China, March- July, 1988, volume 1494 of Lecture Notes in Mathematics, pages 163–168. Springer-Verlag, Berlin etc., 1991. ov67 [3556] J. L. Ovaert. Factorisation dans les algebres et modules de convolution. C. R. Acad. Sci. Paris S’er. A-B, 265:A534–A535, 1967. ov84 [3557] V. I. Ovchinnikov. The method of orbits in interpolation theory, volume 1 of Mathematical Reports, Vol. 1, Part 2. harwood academic publishers, 1984. owti54 [3558] M. Owchar and A. J. Tingley. On the absolute convergence of a Fourier-Hermite expansion of nonlinear functionals. Proc. Amer. Math. Soc., 5:85–88, 1954. bameonoz94 [3559] H. M. Ozaktas, B. Barshan, D. Mendlovic, and L. Onural. Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms. J. Opt. Soc. Amer. A, 11(2):547–559, 1994. kumeoz99 [3560] H. M. Ozaktas, M. A. Kutay, and D. Mendlovic. Introduction to the fractional Fourier transform and its applications. volume 106 of Advances in Imaging and Electron Physics. Elsevier, 1999. proz04 [3561] M. Özaydin and T. Przebinda. An entropy-based uncertainty principle for a locally compact abelian group. J. Funct. Anal., 215(1):241–252, 2004. 313 pa94 [3562] J. Packer. Transformation group c∗ -algebras: a selective survey. In C a st-algebras: 1943–1993, volume 167 of Contemp. Math., pages 182– 217. Amer. Math. Soc., Providence, RI, 1994. pa86 [3563] J. A. Packer. k-theoretic invariants for c∗ -algebras associated to transformations and induced flows. J. Funct. Anal., 67(1):25–59, 1986. pa87 [3564] J. A. Packer. c∗ -algebras generated by projective representations of the discrete Heisenberg group. J. Operator Theory, 18(1):41–66, 1987. pa88-1 [3565] J. A. Packer. Flow equivalence for dynamical systems and the corresponding c∗ -algebras. In Special Classes of Linear Operators and Other Topics (Bucharest, 1986), volume 28 of Oper. Theory Adv. Appl., pages 223–242. Birkhäuser, Basel, 1988. pa88 [3566] J. A. Packer. Strong Morita equivalence for Heisenberg c∗ -algebras and the positive cones of their k0 -groups. Canad. J. Math., 40(4):833– 864, 1988. pa89 [3567] J. A. Packer. Twisted group c∗ -algebras corresponding to nilpotent discrete groups. Math. Scand., 64(1):109–122, 1989. pa96-1 [3568] J. A. Packer. Crossed product c∗ -algebras and algebraic topology. Rev. Math. Phys., 8(4):623–637, 1996. pa96-2 [3569] J. A. Packer. Moore cohomology and central twisted crossed product c∗ -algebras. Canad. J. Math., 48(1):159–174, 1996. pa04-4 [3570] J. A. Packer. Applications of the work of Stone and von Neumann to wavelets. In Operator Algebras, Quantization, and Noncommutative Geometry, volume 365 of Contemp. Math., pages 253–279. Amer. Math. Soc., Providence, RI, 2004. para89 [3571] J. A. Packer and I. Raeburn. Twisted crossed products of c∗ -algebras. Math. Proc. Cambridge Philos. Soc., 106(2):293–311, 1989. para90 [3572] J. A. Packer and I. Raeburn. Twisted crossed products of c∗ -algebras. II. Math. Ann., 287(4):595–612, 1990. para92 [3573] J. A. Packer and I. Raeburn. On the structure of twisted group c∗ algebras. Trans. Amer. Math. Soc., 334(2):685–718, 1992. 314 pari03 [3574] J. A. Packer and M. A. Rieffel. Wavelet filter functions, the matrix completion problem, and projective modules over C(Tn ). J. Fourier Anal. Appl., 9(2):101–116, 2003. pari04 [3575] J. A. Packer and M. A. Rieffel. Projective multi-resolution analyses for L2 (Rn ). J. Fourier Anal. Appl., 10(5):439–464, 2004. pa85 [3576] D. H. Pahk. On the convolution equations in the space of distributions of Lp –growth. PAMS, 94:81–86, 1985. dapa00 [3577] P. J. Pahl and R. Damrath. Mathematische Grundlagen der Ingenieurinformatik. (Mathematical Foundations of Engineering Computer Science). Springer, Berlin, 2000. dapa01 [3578] P. J. Pahl and R. Damrath. Mathematical Foundations of Computational Engineering. A Handbook. Transl. from the German by Felix Pahl. Springer, Berlin, 2001. paso88 [3579] L. Päivärinta and E. Somersalo. A generalization of the CalderónVaillancourt theorem to Lp and hp . Math. Nachr., 138:145–156, 1988. mepa06 [3580] A. Pajor and S. Mendelson. On singular values of matrices with independent rows. Bernoulli, 12(5):761–773, 2006. pa04 [3581] V. Palamodov. Reconstructive Integral Geometry. Birkhäuser, Basel, 2004. pawi33 [3582] R. E. A. C. Paley and N. Wiener. Notes on the theory and application of Fourier transforms. I-II. Trans. Amer. Math. Soc., 35:348–355, 1933. pawi33-1 [3583] R. E. A. C. Paley and N. Wiener. Notes on the theory and application of Fourier transforms. III, IV, V, VI, VII. Trans. Amer. Math. Soc., 35:761–791, 1933. pawi34 [3584] R. E. A. C. Paley and N. Wiener. Fourier Transforms in the Complex Domain., volume 19 of AMS Colloq. Publ. American Mathematical Society (AMS), New York, 1934. pawi64 [3585] R. E. A. C. Paley and N. Wiener. Fourier Transforms in the Complex Domain. Nauka, Moskau, 1964. 315 pa04-1 [3586] R. Paltanea. Approximation Theory Using Positive Linear Operators. Birkhäuser, Boston, MA, 2004. pa95 [3587] M. Paluszynski. Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss. Indiana Univ. Math. J., 44(1):1–17, 1995. kapa83 [3588] S. X. Pan and A. C. Kak. A computational study of reconstruction algorithms for diffraction tomography : Interpolation versus flitered backpropagation. IEEE Trans. Acoustics, Speech and Signal Processing, 31:1262–1275, October 1983. pa93 [3589] G. S. Pandey. A convolution structure for almost invariant operators on a homogeneous Banach space of distributions. General. Funct. and their Appl. - Plenum Press, pages 157–166, 1993. pa96 [3590] J. N. Pandey. The Hilbert Transform of Schwartz Distributions and Applications. John Wiley & Sons Inc., New York, NY, 1996. pa97-1 [3591] J. N. Pandey. The Hilbert transform of periodic distributions. Integral Transforms Spec. Funct., 5(1-2):117–142, 1997. pa04-3 [3592] J. N. Pandey. The Hilbert transform of almost periodic functions and distributions. J. Comput. Anal. Appl., 6(3):199–210, 2004. pa99 [3593] S. S. Pandey. Wavelet representation of modulated spaces on locally compact abelian groups. Ganita, 50(2):119–128, 1999. pa04-2 [3594] S. S. Pandey. Time-frequency localizations for modulation spaces on locally compact abelian groups. Int. J. Wavelets Multiresolut. Inf. Process., 2(2):149–163, 2004. pa92 [3595] M. Pannenberg. Approximate regularity of commutaive Beurling algebras and Korovkin approximation. Monatsh. Math., 113(4):275–310, 1992. pa06-1 [3596] S. V. Panyushkin. Generalized Fourier transform and its applications. Math. Notes, 79(3-4):537–550, 2006. pa00 [3597] B. Panzer. Optionen - Wahrscheinlichkeitstheoretische Grundlagen und Bewertung anhand des zeitdiskreten Modells von Cox, Ross und Rubinstein. Master’s thesis, University of Vienna, 2000. 316 pasc05 [3598] M. Pap and F. Schipp. Discrete orthogonality of Zernike functions. Math. Pannon., 16(1):137–144, 2005. pa02 [3599] A. Papandreou Suppappola, editor. Applications in Time-Frequency Signal Processing, volume 10 of Electrical Engineering & Applied Signal Processing Series. CRC Press, 2002. pa65 [3600] A. Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-Hill Book Company, New York, 1965. pa66 [3601] A. Papoulis. Error analysis in sampling theory. 54(7):947–955, 1966. pa75 [3602] A. Papoulis. A new algorithm in spectral analysis and band-limited extrapolation. IEEE Trans. Circuits and Systems, 22:735–742, 1975. pa77 [3603] A. Papoulis. Signal Analysis. McGraw-Hill Book Company, New York, 1977. paXX [3604] L. Papula. Collection of formulas for engineers and scientists. (Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler.) 4., verb. Aufl. Vieweg. pash88 [3605] T. W. Parks and Shenoy R. G. An optimal recovery approach to interpolation. pages 656–661, March 1988. pari02 [3606] K. H. e. . Parshall and A. C. e. . Rice. Mathematics Unbound: The Evolution of an International Mathematical Research Community, 1800–1945. American Mathematical Society (AMS), Providence, RI, 2002. pa69 [3607] K. R. Parthasarathy. Multipliers on Locally Compact Groups, volume 93 of Lecture Notes in Mathematics. Springer-Verlag, BerlinHeidelberg-New York, 1969. pa77-2 [3608] K. R. Parthasarathy. Segal Algebras - Some Explorations. PhD thesis, Indian Institute of Technology, Kanpur, 1977. pate79 [3609] K. R. Parthasarathy and U. B. Tewari. Isometric multiipliers of Segal algebras. Bull. Austral. Math. Soc., 20:105–114, 1979. 317 Proc. IEEE, pa97 [3610] J. R. Partington. Interpolation, Identification, and Sampling. Clarendon Press, Oxford, 1997. paun01 [3611] J. R. Partington and B. Unalmics. On the windowed Fourier transform and wavelet transform of almost periodic functions. Appl. Comput. Harmon. Anal., 10(1):45–60, 2001. pa84 [3612] L. Partzsch. Vorlesungen zum Eindimensionalen Wienerschen Prozeß. BSB B, Leipzig, 1984. pa73 [3613] W. L. Paschke. A factorable Banach algebra without bounded approximate unit. Pacific J. Math., 46:249–251, 1973. pa77-1 [3614] M. Päsler. Grundzüge der Vektor- und Tensorrechnung. Walter de Gruyter, 1977. pasisuth96 [3615] V. Pati, A. Sitaram, M. Sundari, and S. Thangavelu. An uncertainty principle for eigenfunction expansions. J. Fourier Anal. Appl., 2(5):427–433, 1996. krpare93 [3616] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal Matching Pursuit: Recursive Function Approximation with Applications to Wavelet Decomposition. In 1993 Conference Record of The TwentySeventh Asilomar Conference on Signals, Systems and Computers, Nov. 1-3, 1993., pages 40 – 44, 1993. bapa99 [3617] W. Paul and J. Baschnagel. Stochastic Processes. From Physics to Finance. Springer, Berlin, 1999. pa02-1 [3618] V. Paulsen. Completely Bounded Maps and Operator Algebras, volume 78 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2002. past07 [3619] M. Pawlak and U. Stadtmüller. Signal sampling and recovery under dependent errors. IEEE Trans. Inform. Theory, 53(7):2526–2541, jul 2007. pe79 [3620] G. K. Pedersen. C ∗ -algebras and their Automorphism Groups, volume 14 of London Mathematical Society Monographs. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1979. 318 pe80 [3621] G. K. Pedersen. Remarks on the Connes spectrum for c∗ -dynamical systems. J. Operator Theory, 3(1):143–148, 1980. pe59 [3622] J. Peetre. Une caractérisation abstraite des opérateurs différentiels. Math. Scand., 7:211–218, 1959. pe60 [3623] J. Peetre. Rectification à l’article Une caractérisation abstraite des opérateurs différentiels. Math. Scand., 8:116–120, 1960. pe66-1 [3624] J. Peetre. On convolution operators leaving Lp,λ spaces invariant. Ann. Mat. Pura Appl. (4), 72:295–304, 1966. pe66 [3625] J. Peetre. Pointwise convergence of singular convolution integrals. Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser., 20:45–61, 1966. pe69-1 [3626] J. Peetre. Sur la transformation de Fourier des fonctions à valeurs vectorielles. Rend. Sem. Mat. Univ. Padova, 42:15–26, 1969. pe76 [3627] J. Peetre. New thoughts on Besov spaces. Duke University Mathematics Series, No. 1. Mathematics Department, Duke University, 1976. pe85 [3628] J. Peetre. Paracommutators and minimal spaces. In Operators and Function Theory, Proc NATO Adv Study Inst, Lancaster/Engl 1984, NATO ASI Ser, Ser C 153, 163-224. 1985. pe89 [3629] J. Peetre. Some calculations related to Fock space and the Shale-Weil representation. Integr. Equ. Oper. Theory, 12(1):67–81, 1989. pesp72 [3630] J. Peetre and G. Sparr. Interpolation of normed Abelian groups. Ann. Mat. Pura Appl. (4), 92:217–262, 1972. pe85-1 [3631] R. L. Pego. Compactness in L2 and the Fourier transform. Proc. Amer. Math. Soc., 95:252–254, 1985. dipe07 [3632] S. C. Pei and J. Ding. Relations between Gabor transforms and fractional Fourier transforms and their applications for signal processing. IEEE Trans. Signal Process., 55(10):4839–4850, 2007. pe03 [3633] V. V. Peller. Hankel operators and their applications. (English). Springer Monographs in Mathematics. Springer, New York, NY, 2003. 319 pewa02 [3634] I. Peng and S. Waldron. Signed frames and Hadamard products of Gram matrices. Linear Algebra Appl., 347(1-3):131–157, 2002. pewa00 [3635] D. B. Percival and A. T. Walden. Wavelet Methods for Time Series Analysis. Cambridge University Press, Cambridge, 2000. pewa06 [3636] D. B. Percival and A. T. Walden. Wavelet Methods for Time Series Analysis. Cambridge University Press, 2006. pe71 [3637] A. M. Perelomov. On the completeness of a system of coherent states (English translation). Theoret. and Math. Phys., 6:156–164, 1971. pe72 [3638] A. M. Perelomov. Coherent states for arbitrary Lie group. Comm. Math. Phys., 26:222–236, 1972. pe86 [3639] A. M. Perelomov. Generalized Coherent States and their Applications. Springer, Berlin, 1986. peso00 [3640] S. Pérez and F. Soria. Operators associated with the OrnsteinUhlenbeck semigroup. J. Lond. Math. Soc. (2), 61(3):857–871, 2000. pvi00 [3641] S. Pérez Esteva and C. Villegas Blas, editors. 1st Summer School in Analysis and Mathematical Physics. Quantization, the SegalBargmann Transform and Semiclassical Analysis. Cuernavaca Morelos, Mexico, June 8–18, 1998., volume 260 of Contemporary Mathematics. American Mathematical Society (AMS) and Sociedad Matematica Mexicana (SMM), Providence, RI, 2000. pvi01 [3642] S. e. . Pérez Esteva and C. e. . Villegas Blas. Second Summer School in Analysis and Mathematical Physics. Topics in Analysis: Harmonic, Complex, Nonlinear and Quantization. Proceedings, Cuernavaca Morelos, Mexico, June 12–22, 2000. Contemporary Mathematics. Aportaciones Matemáticas. 289. Providence, RI: American Mathematical Society (AMS). xi, 2001. pera06 [3643] F. Perez González and J. Rättyä. Forelli-Rudin estimates, carleson measures and f (p, q, s)-functions. J. Math. Anal. Appl., 315(2):394– 414, 2006. gapepo05 [3644] G. Perez Villalón, A. Portal, and A. G. Garcı́a. Riesz bases in L2 (0, 1) related to sampling in shift-invariant spaces. J. Math. Anal. Appl., 308(2):703–713, 2005. 320 pe64 [3645] A. Persson. Compact linear mappings between interpolation spaces. Ark. Mat., 5:215–219, 1964. pe99 [3646] I. Pesenson. A reconstruction formula for band limited functions in l2 (rd ). Proc. Amer. Math. Soc., 127(12):3593–3600, 1999. pe04 [3647] I. Pesenson. Variational splines on Riemannian manifolds with applications to integral geometry. Adv. in Appl. Math., 33(3):548–572, 2004. pe06 [3648] I. Pesenson. Deconvolution of band limited functions on non-compact symmetric spaces. Houston J. Math., 32(1):183–204 (electronic), 2006. pe07 [3649] I. Pesenson. Plancherel Polya-type inequalities for entire functions of exponential type in Lp (rd ). J. Math. Anal. Appl., 330(2):1194–1206, 2007. peze95 [3650] N. Peterfreund and Y. Y. Zeevi. Nonuniform image representation in area-of-interest systems. IEEE Trans. Image Process., 4(9):1202 – 1212, September 1995. pewi98 [3651] T. M. Peters and J. Williams. The Fourier Transform in Biomedical Engineering. Dedicated to the Memory of Richard H. T. Bates. With Contributions from Jason H. T. Bates, G. Bruce Pike and Patrice Munger. Birkhäuser, Basel, 1998. pe83 [3652] B. E. Petersen. Introduction to the Fourier Transform and Pseudodifferential Operators. Pitman Advanced Publishing Program, Boston, London, Melbourne, 1983. pepiva78 [3653] N. Petridis, S. K. Pichorides, and N. Varopoulos. Harmonic Analysis, Iraklion 1978. Proceedings of a Conference held at the University of Crete, Iraklion, Greece, July 1978. Springer, Berlin, Heidelberg, New York, 1980. pevr78 [3654] H. Petzeltovà and P. Vrbovà. Factorization in the algebra of rapidly decreasing functions on rn . Commentat. Math. Univ. Carol., 19:489– 499, 1978. pesh95 [3655] G. Pevskir and A. N. Shiryaev. The Khintchine inequalities and martingale expanding sphere of their action. Russian Math. Surveys, 50(5):849–904, 1995. 321 pe69 [3656] A. Peyerimhoff. Lecture Notes in Mathematics. Springer Texts in Statistics. New York, NY: Springer. xxi, 1969. pf71 [3657] E. Pfaffelhuber. Sampling series for band-limited generalized functions, November 1971. pf99 [3658] G. E. Pfander. Periodic waveletgrams and periodicity detection. PhD thesis, University of Maryland at College Park, 1999. pf00 [3659] G. E. Pfander. Generalized Haar wavelets and frames. In A. Aldroubi, A. F. Laine, and M. A. Unser, editors, Proc. of SPIE’s 45th Annual Meeting, Wavelet Applications in Signal and Image Processing VIII, pages 528–535, San Diego, 2000. pf05-2 [3660] G. E. Pfander. Measurement of time–variant MIMO channels. 2005. pf05 [3661] G. E. Pfander. Two results on the invertibility of bi–infinite matrices with applications to Gabor analysis. 2005. pfrata08 [3662] G. E. Pfander, H. Rauhut, and J. Tanner. Identification of matrices having a sparse representation. IEEE Trans. Signal Process., 56(11):5376–5388, 2008. pfwa05-1 [3663] G. E. Pfander and D. F. Walnut. Operator identification and Feichtinger’s algebra. Sampl. Theory Signal Image Process., 5(2):183– 200, 2005. pfwa06 [3664] G. E. Pfander and D. F. Walnut. Measurement of time-variant channels. IEEE Trans. Inform. Theory, 52(11):4808–4820, November 2006. pfun68 [3665] E. Pflaumann and H. Unger. Funktionalanalysis I. Bibliographisches Institut, Mannheim, 1968. ph06 piwa92 [3666] Philippe Guillaume. Music and Acoustics. [3667] W. J. Pielemeier and G. H. Wakefield. Time-frequency and time-scale analysis for musical transcription. In Time-Frequency and Time-Scale Analysis, 1992., Proceedings of the IEEE-SP International Symposium, pages 421–424, Victoria, BC, oct 1992. 322 piwa96 [3668] W. J. Pielemeier and G. H. Wakefield. A high-resolution timefrequency representation for musical instrument signals. J. Acoust. Soc. Amer., 99(4):2382–2396, 1996. pi84 [3669] G. Pierra. Decomposition through formalization in a product space. Math. Program., 28:96–115, 1984. pi83 [3670] M. Pierre. Parabolic capacity and Sobolev spaces. SIAM J. Math. Anal., 14:522–533, 1983. pi78-1 [3671] A. Pietsch. Operator Ideals. senschaften, Berlin, 1978. pi80-4 [3672] A. Pietsch. Über die Verteilung von Fourierkoeffizienten und Eigenwerten. Nicht nur ein historischer überblick. Wiss. Z. FriedrichSchiller-Univ. Jena Math.-Natur. Reihe, 29:203–211, 1980. pi70 [3673] L. Pigno. A multiplier problem,. Pacific J. Math., 34:755–757, 1970. pi71 [3674] L. Pigno. Restrictions of lspp transforms. Proc. Amer. Math. Soc., 29:511–515, 1971. pi75 [3675] L. Pigno. Erratum to ’Restrictions of Lp transforms’. Proc. Amer. Math. Soc., 48(2):515, 1975. pite02-1 [3676] S. Pilipovic and N. Teofanov. On a symbol class of elliptic pseudodifferential operators. Bull. Cl. Sci. Math. Nat. Sci. Math., (27):57–68, 2002. pite02 [3677] S. Pilipovic and N. Teofanov. Wilson bases and ultramodulation spaces. Math. Nachr., 242:179–196, 2002. pite04 [3678] S. Pilipovic and N. Teofanov. Pseudodifferential operators on ultramodulation spaces. J. Funct. Anal., 208(1):194–228, 2004. pite05 [3679] S. Pilipovic and N. Teofanov. Multiresolution Expansions and Approximation Order of Tempered Distributions. ESI preprints, 2005. pite06 [3680] S. Pilipovic and N. Teofanov. Multiresolution expansion, approximation order and quasiasymptotic behavior of tempered distributions. J. Math. Anal. Appl., page to appear, 2006. 323 VEB Deutscher Verlag der Wis- pirate06 [3681] S. Pilipovic, N. Teofanov, and D. Rakic. Homogeneous distributions in DL0 q . 2006. pipo86 [3682] M. Pimsner and S. Popa. Entropy and index for subfactors. Ann. Sci. ’Ecole Norm. Sup. (4), 19(1):57–106, 1986. pipo88 [3683] M. Pimsner and S. Popa. Iterating the basic construction. Trans. Amer. Math. Soc., 310(1):127–133, 1988. pipo91 [3684] M. Pimsner and S. Popa. Finite-dimensional approximation of pairs of algebras and obstructions for the index. J. Funct. Anal., 98(2):270– 291, 1991. pivo80-1 [3685] M. Pimsner and D. Voiculescu. Exact sequences for k-groups and Ext-groups of certain cross-product c∗ -algebras. J. Operator Theory, 4(1):93–118, 1980. pivo80 [3686] M. Pimsner and D. Voiculescu. Imbedding the irrational rotation c∗ algebra into an AF-algebra. J. Operator Theory, 4(2):201–210, 1980. pi83-1 [3687] M. V. Pimsner. Embedding some transformation group c∗ -algebras into AF-algebras. Ergodic Theory Dynam. Systems, 3(4):613–626, 1983. pi99-1 [3688] M. V. Pimsner. Embedding covariance algebras of flows into AFalgebras. Ergodic Theory Dynam. Systems, 19(3):723–740, 1999. piza97 [3689] A. Pinkus and S. Zafrany. Fourier Series and Integral Transforms. Cambridge University Press, Cambridge, 1997. pi07 [3690] C. R. Pinnegar. Comments on The Inverse S-Transform in Filters With Time-Frequency Localization. IEEE Trans. Signal Process., 55(10):5117–5120, 2007. pi02 [3691] M. A. Pinsky. Introduction to Fourier Analysis and Wavelets. Brooks Cole, 2002. pipr96 [3692] M. A. Pinsky and C. Prather. Pointwise convergence of n-dimensional Hermite expansions. J. Math. Anal. Appl., 199(2):620–628, 1996. pimone08 [3693] M. Piotrowski, S. D. Moura, and S. Neves. Growth envelopes of anisotropic function spaces. Z. Anal. Anwend., 27(1):95–118, 2008. 324 pipisu07 [3694] M. Piotrowski, I. Piotrowska, and S. D. Moura. Non-smooth atomic decompositions of anisotropic function spaces and some applications. Studia Math., 180(2):169–190, 2007. pi75-1 [3695] H. S. Piper. Bounds for truncation error in sampling expansions of finite energy band-limited signals. IEEE Trans. Inform. Theory, 21(4):482–485, 1975. pi78 [3696] G. Pisier. Sur l’espace de Banach des series de Fourier aleatoires presque surement continues. In Seminaire sur la Geometrie des Espaces de Banach (1977-1978), volume Exp. No. 17-18, page 33. Ecole Polytechnique, Palaiseau, 1978. pi79 [3697] G. Pisier. A remarkable homogeneous Banach algebra. Israel J. Math., 34:38–44, 1979. pi79-1 [3698] G. Pisier. Some applications of the complex interpolation method to Banach lattices. J. Anal. Math., 35:264–281, 1979. pi99 [3699] G. Pisier. The volume of convex bodies and Banach space geometry. Cambridge Univ Press, 1999. pi03 [3700] G. Pisier, C. G. C. Pitts, and G. Pisier. Introduction to Operator Space Theory. London Mathematical Society Lecture Note Series 294. Cambridge: Cambridge University Press. vii, 478 p., Cambridge, 2003. gakapi98 [3701] S. Pittner, S. V. Kamarthi, and Q. Gao. Wavelet networks for sensor signal classification in flank wear assessment. Journal of Intelligent Manufactoring, 9:315–322, 1998. pi74 [3702] C. G. C. Pitts. An equiconvergence theorem for a class of eigenfunction expansions. Trans. Amer. Math. Soc., 189:337–350, 1974. odpi07 [3703] R. Piziak and P. L. Odell. Matrix Theory. Pure and Applied Mathematics (Boca Raton) 288. Boca Raton, FL:Chapman & Hall/CRC. xix, 2007. pl49 [3704] M. Plancherel. Integrales de Fourier et fonctions entieres. In Colloques Internat Centre Nat Rech Sci 15 (Analyse Harmonique, Nancy 152261947), 31-43. 1949. 325 ppl37 [3705] M. Plancherel, M. Plancherel, and G. Polya. Fonctions entieres et integrales de Fourier multiples. I, II. Commentarii Mathematici Helvetici, 10(1):110–163, December 1937. plpo37 [3706] M. Plancherel and G. Polya. Fonctions entieres et integrales de Fourier mutiples. Comment. Math. Helv., 9:224–248, 1937. plve00 [3707] K. N. Plataniotis and A. N. Venetsanopoulos. Color Image Processing and Applications. Springer, 2000. pl29 [3708] A. Plessner. Eine Kennzeichnung der totalstetigen Funktionen. J. Reine Angew. Math., 160:26–32, 1929. plrosw82 [3709] E. I. Plotkin, L. M. Roytman, and M. N. S. Swamy. Nonuniform sampling of band-limited modulated signals. Signal Process., 4(4):295– 303, 1982. plrosw84 [3710] E. I. Plotkin, L. M. Roytman, and M. N. S. Swamy. Reconstruction of nonuniformly sampled band-limited signals and jitter error reduction. Signal Process., 7:151–160, 1984. mamisath06 [3711] M. D. Plumbley, S. A. Abdallah, T. Blumensath, and M. E. Davies. Sparse representations of polyphonic music. Signal Process., 86(3):417–431, 2006. po80-1 [3712] D. Poguntke. Gewisse Segalsche Algebren auf lokalkompakten Gruppen. Arch. Math. (Basel), 33:454–460, 1980. po82 [3713] D. Poguntke. Einfache Moduln über gewissen Banachschen Algebren: ein Imprimitivitätssatz. Math. Ann., 259(2):245–258, 1982. po88-1 [3714] M. A. Poletti. Linearly swept frequency measurements, time-delay spectrometry, and the Wigner distribution. J. Audio Eng. Soc., 36(6):457–468, 1988. po91 [3715] N. Polyak. A New Method for Decomposition of Images on a Nonorthogonal Basis. PhD thesis, Elect.Computer,Systems Eng.Dept., Rensselaer Polytechnic Institute, Troy, New York 12180-3590, 1991. pepo92 [3716] N. Polyak and W. Pearlman. Stationarity of the Gabor basis and derivation of Janssens’s formula. In IEEE-SP Int.Symp. on 326 Time-Frequency and Time-Scale Analysis, Oct 4-6, ’92, Victoria/BC, Canada, 1992. pepo94 [3717] N. Polyak and W. Pearlman. A new method for nonorthogonal signal decomposition. Visual Communications, 5(3):236–244, 1994. po88 [3718] A. F. Polyakov. Thermo- and Laser Anemometry. Hemisphere Publishing Corporation, New York, 1988. po57 [3719] L. S. Pontrjagin. Topological groups. I. (Topologische Gruppen. I.). B. G. Teubner, Leipzig, 1957. po66-1 [3720] J. C. T. Pool. Mathematical aspects of the Weyl correspondence. J. Math. Phys., 7:66–76, 1966. po81 [3721] S. Poornima. Multipliers of Segal algebras and related classes on the real line. Indian J. Pure Appl. Math., 12:566–579, 1981. po82-1 [3722] S. Poornima. Sur les multiplicateurs d’une algèbre de Segal. C. R. Acad. Sci. Paris S’er. I Math., 294:75–77, 1982. po95 [3723] S. Popa. Classification of Subfactors and their Endomorphisms, volume 86 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, 1995. pofr92 [3724] B. Porat and B. Friedlander. Performance analysis of a class of Transient detection algorytms- A unified framework. IEEE Trans. Signal Process., 40/Nr.10:2536–2546, October 1992. po66 [3725] P. Porcelli. Linear Spaces of Analytic Functions. 1966. copo69 [3726] P. Porcelli and H. S. Collins. Ideals in group algebras. Studia Math., 33:223–226, 1969. po80 [3727] M. R. Portnoff. Time–frequency representation of digital signals and systems based on short-time Fourier analysis. IEEE Trans. Acoustics, Speech and Signal Processing, 28(1):55–69, 1980. po97 [3728] A. Potiopa. A problem of Lagarias and Wang. Master’s thesis, 1997. 327 postta01 [3729] D. Potts, G. Steidl, and M. Tasche. Fast Fourier Transforms for Nonequispaced Data: A Tutorial, chapter 12, pages 247 – 270. Birkhäuser, 2001. pora06 [3730] A. D. Poularikas and Z. M. Ramadan. Adaptive Filtering Primer with MATLAB. Boca Raton: CRC Press and Boca Raton, FL: Taylor & Francis., 2006. po04 [3731] A. M. Powell. Orthonormalized coherent states. In Heil, Christopher (ed) et al, Wavelets, Frames and Operator Theory Papers from the Focused Research Group Workshop, University of Maryland, College Park, MD, USA, January 15-21, 2003 Providence, RI: American Mathematical Society (AMS) Contemporary Ma. 2004. poXX [3732] M. J. D. Powell. Approximation Theory and Methods. po92 [3733] M. J. D. Powell. The theory of radial basis function approximation in 1990., 1992. po93 [3734] M. J. D. Powell. Truncated Laurent expansions for the fast evaluation of thin plate splines. Numer. Algorithms, 5(1-4):99–120, 1993. po94-1 [3735] M. J. D. Powell. Some algorithms for thin plate spline interpolation to functions of two variables., 1994. po94-2 [3736] M. J. D. Powell. The uniform convergence of thin plate spline interpolation in two dimensions. Numer. Math., 68(1):107–128, 1994. brgapo02 [3737] L. A. Poyneer, D. T. Gavel, and J. M. Brase. Fast wave-front reconstruction in large adaptive optics systems with use of the Fourier transform. J. Opt. Soc. Amer. A, 19(10):2100–2111, 2002. bopapr02 [3738] H. Prautzsch, W. Boehm, and M. Paluszny. Bezier and B-spline Techniques. Springer, Berlin, 2002. hulepr02 [3739] R. S. Prendergast, B. C. Levy, and P. J. Hurst. Multirate filter bank reconstruction of bandlimited signals from bunched samples. In Conference Record of the Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, 2002., pages 781– 785, 2002. flprte07 [3740] W. H. Press, S. A. Teukolsky, and B. P. Flannery. Numerical Recipes. 3rd edition, 2007. 328 flprteve92 [3741] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C. The Art of Scientific Computing.2nd ed. Cambridge University Press, Cambridge, 1992. prqurase03 [3742] J. Prestin, E. Quak, H. Rauhut, and K. Selig. On the connection of uncertainty principles for functions on the circle and on the real line. J. Fourier Anal. Appl., 9(4):387–409, 2003. pr04 [3743] E. Prestini. The Evolution of Applied Harmonic Analysis. Models of the Real World. Birkhäuser, 2004. pr02 [3744] W. Preuß. Funktionaltransformationen. Fourier-, Laplace- und Z-Transformation. (Functional Transformations. Fourier-, Laplaceand bf Z-transform). Mathematik-Studienhilfen. Leipzig: Fachbuchverlag Leipzig. 174 S. EUR 9.90, 2002. pr83 [3745] J. F. Price. Inequalities and local uncertainty principles. J. Math. Phys., 24(7):1711–1714, 1983. pr84 [3746] J. F. Price. Position versus momentum. Phys. Lett. A, 105(7):343– 345, 1984. prsi88 [3747] J. F. Price and A. Sitaram. Functions and their Fourier transforms with supports of finite measure. J. Funct. Anal., 79(1):166–182, 1988. pr91 [3748] M. B. Priestley. Spectral Analysis and Time Series. Volume 1: Univariate Series. Volume 2: Multivariate Series, Prediction and Control. Reprinted with Corrections. Probability and Mathematical Statistics. London etc.: Academic Press Inc., Harcourt Brace Jovanovich. xviii, 1991. pr96 [3749] P. Prinz. Calculating the dual Gabor window for general sampling sets. IEEE Trans. Signal Process., 44(8):2078–2082, 1996. pr96-1 [3750] P. Prinz. Theory and Algorithms for Discrete 1-Dimensional Gabor Frames. Master’s thesis, University of Vienna, 1996. pr02-1 [3751] J. G. Proakis, C. M. Rader, F. Ling, C. L. Nikias, M. Moonen, and I. K. Proudler. Algorithms for Statistical Signal Processing. PrenticeHall, Inc, 2002. 329 prsa03 [3752] J. G. Proakis and M. Salehi. Grundlagen der Kommunikationstechnik. Pearson Studium, 2. Aufl. edition, 2003. kiprrauh98 [3753] A. Prochazka, J. Uhlmr, P. J. W. Rayner, and N. G. Kingsbury. Signal Analysis and Prediction. Based Upon Selected Contributions Presented at the 1st European Conference on Signal Analysis and Prediction, ECSAP-97, Prague, Czech Republic. Birkhäuser, Boston, 1998. prsi77 [3754] S. Prößdorf and B. Silbermann. Projektionsverfahren und die Näherungsweise Lösung Singulärer Gleichungen. BSB B, Leipzig, 1977. gopr77 [3755] R. Prost and R. Goutte. Deconvolution when the convolution kernel has no inverse. IEEE Trans. Acoustics, Speech and Signal Processing, 25:542–549, 1977. pr85 [3756] G. Provost. 100 Ways to Improve Your Writing. Mentor, 1985. pr80 [3757] A. J. Pryde. Spaces with homogeneous norms. Bull. Austral. Math. Soc., 21:189–205, 1980. pu06 [3758] F. Pukelsheim. Optimal Design of Experiments. SIAM, 2006. pu01 [3759] M. Puschnigg. Excision in cyclic homology theories. Invent. Math., 143(2):249–323, 2001. pu02 [3760] M. Puschnigg. The Kadison-Kaplansky conjecture for wordhyperbolic groups. Invent. Math., 149(1):153–194, 2002. pu90 [3761] I. F. Putnam. The invertible elements are dense in the irrational rotation c∗ -algebras. J. Reine Angew. Math., 410:160–166, 1990. qast06 [3762] S. A. Qazi and L. K. Stergioulas. Higher order nested Wigner distributions: Properties and applications. IEEE Trans. Signal Process., 54(12):4662–4674, 2006. qi03 [3763] L. Qian. On the regularized Whittaker-Kotelnikov-Shannon sampling formula. Proc. Amer. Math. Soc., 131(4):1169–1176, 2003. qi07 [3764] L. Qian. Localization operator based on sampling multipliers. Appl. Comput. Harmon. Anal., 22(2):217–234, 2007. 330 crqi06 [3765] L. Qian and D. B. Creamer. Localization of the generalized sampling series and its numerical application. SIAM J. Numer. Anal., 43(6):2500–2516, 2006. qi02 [3766] S. Qian. Introduction to Time-Frequency and Wavelet Transforms. Prentice-Hall, Inc, Upper Saddle River, NJ, 2002. qi96-2 [3767] S. Qian and D. Chen. Joint Time-Frequency Analysis (Methods and Applications). Prentice Hall, - 302 Seiten - Prentice Hall PTR, 1996. chqi99 [3768] S. Qian and D. Chen. Joint time-frequency analysis. IEEE Signal Processing Magazine, 16(2):52–67, 1999. chliqi92 [3769] S. Qian, K. Chen, and S. Li. Optimal biorthogonal functions for finite discrete-time Gabor expansion. Signal Process., 27(2):177–185, 1992. qi04 [3770] T. Qian. Paley-Wiener theorems and Shannon sampling in the Clifford analysis setting, volume 34 of Progress in mathematical physics, pages 115–124. Birkhäuser Boston, 2004. kaqi05 [3771] T. Qian and K.-I. Kou. Shannon sampling in the Clifford analysis setting. Z. Anal. Anwend., 24(4):825–842, 2005. qiya07 [3772] T. Qian and Y. Yang. Co-dimension-p Shannon sampling theorems. Complex Var. Elliptic Equ., 52(1):9–20, 2007. huqi04 [3773] X. Qian and X. Huang. Reconstruction of surfaces of revolution with partial sampling. J. Comput. Appl. Math., 163(1):211–217, 2004. qiXX [3774] S. Qiu. Mathematical Methods for Gabor Expansions. qi95-3 [3775] S. Qiu. Block-circulant Gabor-matrix structure and Gabor transforms. Opt. Eng., 34(10):2872–2878, 1995. qi95-1 [3776] S. Qiu. Characterizations of Gabor-Gram matrices and efficient computations of discrete Gabor coefficients. In A. F. Laine, M. A. Unser, and V. Wickershauser, editors, Proc. SPIE Wavelet Applications in Signal and Image Processing III, volume 2569, pages 678–688, 1995. qi95 [3777] S. Qiu. Structural properties of the Gabor transform and numerical algorithms. Proc. SPIE, vol. 2491, Wavelet Applications for Dual Use, pages 980–991, 1995. 331 qi95-2 [3778] S. Qiu. Super-fast Computations of dual and tight Gabor atoms. In F. Laine, M. A. Unser, and V. Wickershauser, editors, Proc. SPIE Wavelet Applications in Signal and Image Processing III, volume 2569, pages 464–475, 1995. qi96-1 [3779] S. Qiu. Gabor Transform with Undersampling. Proc. IEEE-SP Int. Symp. Time-Frequency and Time-Scale Analysis, pages 317–320, 1996. qi96 [3780] S. Qiu. Generalized Dual Gabor Atoms and Best Approximations by Gabor Family. Signal Process., 49:167–186, 1996. qi97 [3781] S. Qiu. Gabor-type matrix algebra and fast computations of dual and tight Gabor wavelets. Opt. Eng., 36(1):276–282, 1997. qi98 [3782] S. Qiu. Discrete Gabor transforms: The Gabor-Gram matrix approach. J. Fourier Anal. Appl., 4(1):1–17, 1998. qi98-1 [3783] S. Qiu. The undersampled discrete Gabor transform. IEEE Trans. Signal Process., 46(5):1221–1228, 1998. qi00 [3784] S. Qiu. Matrix approaches to discrete Gabor transform. PhD thesis, Dept. Mathematics, Univ. Vienna, June 2000. feqi94 [3785] S. Qiu and H. G. Feichtinger. The structure of the Gabor matrix and efficient numerical algorithms for discrete Gabor expansion. In Proc. SPIE VCIP94, SPIE 2308, pages 1146–1157, Chicago, 1994. feqi95 [3786] S. Qiu and H. G. Feichtinger. Discrete Gabor structures and optimal representation. IEEE Trans. Signal Process., 43(10):2258–2268, October 1995. feqist94 [3787] S. Qiu, H. G. Feichtinger, and T. Strohmer. Inexpensive Gabor decompositions. In Proc. SPIE’94: Wavelets Applications in Signal and Image Processing, pages 286–294, San Diego, 1994. crqizh99 [3788] S. Qiu, F. Zhou, and P. E. Crandall. Discrete Gabor transform with complexity O(NlogN). Signal Process., 77:159–170, 1999. maqusatezh02 [3789] M. Quante, G. Teschke, M. Zhariy, P. Maass, and K. Sassen. Extraction and Analysis of Structural Features in Cloud Radar and Lidar Data Using Wavelet Based Methods. Proc. ERAD Delft, 2002. 332 qusasa00 [3790] A. Quarteroni, R. Sacco, and F. Saleri. Numerical Mathematics. Springer, New York, NY, 2000. qusasa02 [3791] A. Quarteroni, R. Sacco, and F. Saleri. Numerische Mathematik 1. Aus dem Engl. übers. von L. Tobiska. (Numerical Mathematics). Springer, Berlin, 2002. qusasa02-1 [3792] A. Quarteroni, R. Sacco, and F. Saleri. Numerische Mathematik 2. Übers. aus dem Engl. von L. Tobiska. Springer, Berlin, 2002. qu03 [3793] M. Quattromini. Hermite filtering and form factors. Appl. Math. Comput., 141(1):131–142, 2003. qu89 [3794] F. Quehenberger. Spektralsynthese und die Segalalgebra s0 (rm ). Master’s thesis, University of Vienna, 1989. qu86 [3795] T. S. Quek. Multipliers of certain vector valued function spaces. J. Math. Anal. Appl., 115:406–421, 1986. quya79 [3796] T. S. Quek and L. Y. H. Yap. Multipliers from l1 (g) to a Lipschitz space. J. Math. Anal. Appl., 69(2):531–539, 1979. quya80 [3797] T. S. Quek and L. Y. H. Yap. Absolute convergence of VilenkinFourier series. J. Math. Anal. Appl., 74:1–14, 1980. quya81 [3798] T. S. Quek and L. Y. H. Yap. Factorization of Lipschitz functions and absolute convergence of Vilenkin-Fourier series. Monatsh. Math., 92:221–229, 1981. quya81-1 [3799] T. S. Quek and L. Y. H. Yap. Multipliers from LR (G) to a LipschitzZygmund class. J. Math. Anal. Appl., 81:278–289, 1981. quya88-1 [3800] T. S. Quek and L. Y. H. Yap. A test for membership in Lorentz spaces and some applications. Hokkaido Math. J., 17(3):279–288, 1988. quya88 [3801] T. S. Quek and L. Y. H. Yap. Cardinal numbers connected with approximate identities in Segal algebras. J. Math. Anal. Appl., 130(2):420–425, 1988. bogoqu04 [3802] D. E. Quevedo, G. C. Goodwin, and H. Bölcskei. Multi-step optimal quantization in oversampled filter banks. In IEEE Conference on Decision and Control, volume 2, pages 1442 – 1447, dec 2004. 333 qu08 [3803] A. Quinquis. Digital Signal Processing Using MATLAB. WILEYVCH Verlag, February 2008. ra88 [3804] R. Rabenstein. Minimization of transient signals in recursive time– varying digital filters. SIGPRO, 7(3):345–359, 1988. ra90 [3805] L. R. Rabiner. Speech recognition based on pattern recognition approaches. In L. Auslander and et al., editors, Signal Processing, volume 22, chapter Part I: Signal Processing Theory, pages 335–368,. IMA Vol. Math. Appl., Springer Verlag, New York, 1990. alra79 [3806] L. R. Rabiner and J. B. Allen. Short-time Fourier analysis techniques for FIR system identification and power spectrum estimation. IEEE Trans. Acoustics, Speech and Signal Processing, 27(2):182–192, 1979. alra80 [3807] L. R. Rabiner and J. B. Allen. On the implementation of a shorttime spectral analysis method for system identification. IEEE Trans. Acoustics, Speech and Signal Processing, 28:69–78, 1980. 04 [3808] V. Rabinovich, S. Roch, and B. Silbermann. Limit Operators and their Applications in Operator Theory. Number 0. Operator Theory: Advances and Applications 150. Basel: Birkhäuser., 2004. raro06 [3809] V. S. Rabinovich and S. Roch. Reconstruction of input signals in timevarying filters. Numer. Funct. Anal. Optimization, 27(5-6):697–720, 2006. rarosi98 [3810] V. S. Rabinovich, S. Roch, and B. Silbermann. Fredholm theory and finite section method for band-dominated operators. Integr. Equ. Oper. Theory, 30(4):452–495, 1998. rarosi01-1 [3811] V. S. Rabinovich, S. Roch, and B. Silbermann. Algebras of approximation sequences: Finite sections of band-dominated operators. Acta Appl. Math., 65(1-3):315–332, 2001. rarosi01 [3812] V. S. Rabinovich, S. Roch, and B. Silbermann. Band-dominated operators with operator-valued coefficients, their Fredholm properties and finite sections. Integr. Equ. Oper. Theory, 40(3):342–381, 2001. rarosi04 [3813] V. S. Rabinovich, S. Roch, and B. Silbermann. Limit Operators and Their Applications in Operator Theory., volume 150 of Operator Theory: Advances and Applications. Birkhäuser, Basel, 2004. 334 ra81 [3814] G. Racher. Remarks on a paper of Bachelis and Gilbert. Monatsh. Math., 92:47–60, 1981. ra83 [3815] G. Racher. A Hausdorff-Young equality for compact groups. In Functions, Series, Operators, Proc Int Conf, Budapest 1980, Vol II, Colloq Math Soc János Bolyai 35, 999-1014. 1983. ra71 [3816] J. M. Radcliffe. Some properties of coherent spin states. J. Phys. A: Math. Gen., 4:313–323, 1971. rath04 [3817] R. Radha and S. Thangavelu. Hardy’s inequalities for Hermite and Laguerre expansions. Proc. Amer. Math. Soc., 132(12):3525–3536, 2004. rath04-1 [3818] R. Radha and S. Thangavelu. Multipliers for Hermite and Laguerre Sobolev spaces. J. Anal., 12:183–191, 2004. ra05-8 [3819] I. Raeburn. Graph Algebras. CBMS Regional Conference Series in Mathematics 103. Providence, RI: American Mathematical Society (AMS). vii, 2005. rawi98 [3820] I. Raeburn and D. P. Williams. Morita Equivalence and Continuoustrace C ∗ -algebras. American Mathematical Society (AMS), RI, 1998. ra78 [3821] M. Rains. On the upper majorant property for locally compact abelian groups. Canad. J. Math., 30:915–925, 1978. falara00 [3822] K. Rajamani, Y.-S. Lai, and C. W. Farrow. An efficient algorithm for sample rate conversion from CD to DAT. IEEE Signal Processing Letters, 7(10):288–290, 2000. rava99 [3823] D. Ramakrishnan and R. J. Valenza. Fourier Analysis on Number Fields. Springer, New York, 1999. ra98 [3824] J. Ramanathan. Methods of Applied Fourier Analysis. Birkhäuser, Boston, 1998. rast95 [3825] J. Ramanathan and T. Steger. Incompleteness of sparse coherent states. Appl. Comput. Harmon. Anal., 2(2):148–153, 1995. rato93-1 [3826] J. Ramanathan and P. Topiwala. Time-Frequency Localization and the Gabor Transform. 1993. 335 rato93 [3827] J. Ramanathan and P. Topiwala. Time-frequency localization via the Weyl correspondence. SIAM J. Math. Anal., 24(5):1378–1393, 1993. rato94 [3828] J. Ramanathan and P. Topiwala. Time-frequency localization and the spectrogram. Appl. Comput. Harmon. Anal., 1(2):209–215, 1994. deodra84 [3829] E. Ramis, C. Deschamps, and J. Odoux. Analyse. Exercices avec Solutions. 1. Masson, Paris, 1984. rate06 [3830] R. Ramlau and G. Teschke. A projection iteration for nonlinear operator equations with sparsity constraints. Numer. Math., 104:177–203, 2006. rate07 [3831] R. Ramlau and G. Teschke. An iterative algorithm for nonlinear inverse problems with joints sparsity constraints in vector valued regimes and an application to color imaging. preprint, 2007. rasi05 [3832] J. O. Ramsay and B. W. Silverman. Functional Data Analysis. 2nd ed. Springer, NY, 2005. nara93 [3833] I. K. Rana and K. G. Navada. Integrable Mean Pericodic Functions on Locally Abelian Groups. American. Math. Soc., 117/No.2, Feb. 1993. gora01 [3834] S. Rangan and V. K. Goyal. Recursive consistent estimation with bounded noise. IEEE Trans. Inform. Theory, 47(1):457–464, 2001. ra84 [3835] T. J. Ransford. A short elementary proof of the Bishop-StoneWeierstrass theorem. Math. Proc. Cambridge Philos. Soc., 96:309– 311, 1984. bera92-1 [3836] K. R. Rao and J. Ben Arie. Restoration with equivalence to nonorthogonal image expansion for feature extraction and edge detection. SPIE Visual Comm. and Image Processing, 1818:187–189, 1992. rabe94 [3837] K. R. Rao and J. Ben Arie. Multiple template matching using the expansion filter. IEEE Trans.on circuits and systems for video technology, 4/Nr.5:490–503, October 1994. rayi90 [3838] K. R. Rao and P. Yip. Discrete Cosine Transform. Algorithms, Advantages, Applications. Academic Press., Boston, MA, 1990. 336 ra81-1 [3839] M. M. Rao. Representation of weakly harmonizable processes. Proc. Natl. Acad. Sci. USA, 78:5288–5289, 1981. ra82-1 [3840] M. M. Rao. Harmonizable processes: Structure theory. L’Enseign. Math., 28:295–351, 1982. rarath97 [3841] P. K. Ratnakumar, R. Rawat, and S. Thangavelu. A restriction theorem for the Heisenberg motion group. Studia Math., 126(1):1–12, 1997. rath98 [3842] P. K. Ratnakumar and S. Thangavelu. Spherical means, wave equations, and Hermite-Laguerre expansions. J. Funct. Anal., 154(2):253– 290, 1998. rorateve05 [3843] M. Rätsch, S. Romdhani, G. Teschke, and T. Vetter. Overcomplete Wavelet Approximation of a Support Vector Machine for Efficient Classification. In W. G. Kropatsch, R. Sablatnig, and A. Hanbury, editors, Pattern Recognition, Springer Lecture Notes in Computer Science, page 351. 27th DAGM Symposium, Vienna, 2005. rorateve06 [3844] M. Rätsch, G. Teschke, S. Romdhani, and T. Vetter. Wavelet Frame Accelerated Reduced Support Vector Machine. under review, 2006. ra05 [3845] H. Rauhut. Banach frames in coorbit spaces consisting of elements which are invariant under symmetry groups. Appl. Comput. Harmon. Anal., 18(1):94–122, 2005. ra05-5 [3846] H. Rauhut. Best time localized trigonometric polynomials and wavelets. Adv. Comput. Math., 22(1):1–20, 2005. ra05-6 [3847] H. Rauhut. Time-frequency and wavelet analysis of functions with symmetry properties. PhD thesis, 2005. ra05-1 [3848] H. Rauhut. Wavelet transforms associated to group representations and functions invariant under symmetry groups. Int. J. Wavelets Multiresolut. Inf. Process., 3(2):167–188, 2005. ra06 [3849] H. Rauhut. Radial time-frequency analysis and embeddings of radial modulation spaces. Sampl. Theory Signal Image Process., 5(2):201– 224, 2006. 337 ra07 [3850] H. Rauhut. Coorbit Space Theory for Quasi-Banach Spaces. Studia Math., 180(3):237–253, 2007. ra07-1 [3851] H. Rauhut. Random sampling of sparse trigonometric polynomials. Appl. Comput. Harmon. Anal., 22(1):16–42, 2007. ra07-4 [3852] H. Rauhut. Wiener amalgam spaces with respect to quasi-Banach spaces. Colloq. Math., 109(2):345–362, 2007. ra08-1 [3853] H. Rauhut. On the impossibility of uniform sparse reconstruction using greedy methods. Sampl. Theory Signal Image Process., 7(2):197– 215, 2008. ra08 [3854] H. Rauhut. Stability results for random sampling of sparse trigonometric polynomials. IEEE Trans. Information Theory, 54(12):5661– 5670, 2008. pfra10 [3855] H. Rauhut and G. E. Pfander. Sparsity in time-frequency representations. J. Fourier Anal. Appl., 16(2):233–260, 2010. raro05 [3856] H. Rauhut and M. Rösler. Radial multiresolution in dimension three. Constr. Approx., 22(2):167–188, 2005. rascva08 [3857] H. Rauhut, K. Schnass, and P. Vandergheynst. Compressed sensing and redundant dictionaries. IEEE Trans. Inform. Theory, 54(5):2210 – 2219, 2008. ra94 [3858] M. Rauth. Numerical simulations of areographic formations in comparison with terrestrial surface structures. Master’s thesis, University of Vienna, June 1994. ra95-2 [3859] M. Rauth. Application of 2D methods for scattered data approximation to geophysical data sets. In SampTA - Sampling Theory and Applications, pages 38–43, Riga/Latvia, 1995. ra98-1 [3860] M. Rauth. Gridding of geophysical potential fields from noisy scattered data. PhD thesis, University of Vienna, 1998. rast97 [3861] M. Rauth and T. Strohmer. A frequency domain approach to the recovery of geophysical potentials. In Proc. Conf. SampTA’97, Aveiro/Portugal, pages 109–114, 1997. 338 rast98 [3862] M. Rauth and T. Strohmer. Smooth approximation of potential fields from noisy scattered data. Geophys. J. Internat., 63(1):85–94, 1998. ra95-1 [3863] H. N. Razafinjatovo. Discrete Irregular Sampling with Larger Gaps. Linear Algebra and Appl., pages 351–372, 1995. ra95 [3864] H. N. Razafinjatovo. Iterative reconstruction in irregular sampling with derivatives. J. Fourier Anal. Appl., 1:281–295, 1995. rewa02 [3865] R. Reams and S. Waldron. Isometric tight frames. Electron. J. Linear Algebra, 9(9):122–128 (electronic), 2002. re00 [3866] L. Rebollo Neira. Frames of cross ambiguity functions. IEEE Signal Processing Letters, 7(10):293–296, 2000. re06 [3867] L. Rebollo Neira. Constructive updating/downdating of oblique projectors. 2006. anre06 [3868] L. Rebollo Neira and M. Andrle. A swapping-based refinement of orthogonal matching pursuit strategies. Signal Process., 86(3):480– 495, March 2006. fere99 [3869] L. Rebollo Neira and J. Fernandez Rubio. On the inverse windowed Fourier transform. IEEE Trans. Inform. Theory, 45(7):2668–2671, 1999. resi75 [3870] M. Reed and B. Simon. Methods of Modern Mathematical Physics. II: Fourier Analysis, Self- Adjointness. Academic Press, New York San Francisco - London, 1975. resi78 [3871] M. Reed and B. Simon. Methods of Modern Mathematical Physics. IV: Analysis of Operators. Academic Press, New York - San Francisco - London, 1978. resi79 [3872] M. Reed and B. Simon. Methods of Modern Mathematical Physics. III: Scattering Theory. Academic Press, New York, San Francisco, London, 1979. resi80 [3873] M. Reed and B. Simon. Methods of Modern Mathematical Physics. I: Functional Analysis. Rev. and enl. ed. Academic Press, New York etc., 1980. 339 re92 [3874] T. R. Reed. Image Sequence Coding using Spatial/Spatial-frequency Representations. In Proceedings of the SPIE/IS+T Symposium on Electronic Imaging ’92: Human Vision, Visual Processing, and Digital Display III, pages 216–226, 1992. re93-1 [3875] T. R. Reed. High-Quality Image Compression Using the Gabor Transform. In Proceedings of the SID ’93 International Symposium Seminar and Exhibit, pages 792–795, 1993. re93-2 [3876] T. R. Reed. Image Sequence Representation and Coding using the 3-D Gabor Transform. In Proceedings of the 1993 Picture Coding Symposium, 1993. re93 [3877] T. R. Reed. Local Frequency Representations for Image Sequence Processing and Coding, pages 3–12. MIT Press, 1993. re96 [3878] T. R. Reed. Motion Analysis using the 3-D Gabor Transform. In Proceedings of the Thirtieth Annual Asilomar Conference on Signals, pages 506–509, November 1996. re97 [3879] T. R. Reed. Spatiotemporal/Spatiotemporal-frequency Representations for the Integrated Analysis of Dynamic Scenes. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics 1997, pages 518–523, October 1997. re97-1 [3880] T. R. Reed. The Analysis of Motion in Natural Scenes using a Spatiotemporal/Spatiotemporal-frequency Representation. In Proceedings of the IEEE International Conference on Image Processing 1997, volume 1, pages 93–96, October 1997. blre96 [3881] T. R. Reed and J. A. Bloom. A Gaussian derivative-based transform. IEEE Trans. Image Process., 5(3):551–553, March 1996. chre97 [3882] T. R. Reed and T. T. Chinen. A performance analysis of fast Gabor transform methods. Graphical Models and Image Processing, 59(3):117–127, May 1997. reso94 [3883] T. R. Reed and A. E. Soohoo. Low-Bit-Rate Coding of Sequences using the Gabor Transform. In Proceedings of the SID ’94 International Symposium and Exhibition, pages 641–644, 1994. 340 reso95 [3884] T. R. Reed and A. E. Soohoo. Very-Low-Bit-Rate Coding of Image Sequences using the Gabor Transform. Journal of the Society for Information Display, 3(2):77–81, 1995. reshst81 [3885] C. S. Rees, S. M. Shah, and C. V. Stanojevic. Theory and applications of Fourier analysis. Pure and Applied Mathematics. A series of Monorgaphs and Textbooks V. 59. Marcel Dekker, New York, Basel, 1981. re07 [3886] A. H. Register. A Guide to MATLAB Object-Oriented Programming. Chapman & Hall/ CRC, 2007. re90 [3887] M. Reimer. Constructive Theory of Multivariate Functions: with an Application to Tomography. Mannheim etc.: B.I.-Wissenschaftsverlag. 280 p. DM 38.00, 1990. reso77 [3888] F. Reinhardt and H. Soeder. Dtv-Atlas zur Mathematik. Tafeln und Texte. Band 2: Analysis und Angewandte Mathematik. Deutscher Taschenbuch Verlag, München, 1977. reso78 [3889] F. Reinhardt and H. Soeder. Dtv-Atlas zur Mathematik. Tafeln und Texte. Bd. I: Grundlagen, Algebra und Geometrie. 3. Aufl. Deutscher Taschenbuch Verlag, München, 1978. re68 [3890] H. Reiter. Classical Harmonic Analysis and Locally Compact Groups. Clarendon Press, Oxford, 1968. re71 [3891] H. Reiter. L1 -algebras and Segal Algebras. Springer, Berlin, Heidelberg, New York, 1971. re78 [3892] H. Reiter. Über den Satz von Weil–Cartier. Monatsh. Math., 86:13– 62, 1978. re89 [3893] H. Reiter. Metaplectic Groups and Segal Algebras. Lect. Notes in Mathematics. Springer, Berlin, 1989. re93-3 [3894] H. Reiter. On the Siegel-Weil formula. Monatsh. Math., 116:299–330, 1993. rest00 [3895] H. Reiter and J. D. Stegeman. Classical Harmonic Analysis and Locally Compact Groups. 2nd ed. Clarendon Press, Oxford, 2000. 341 a.k.k.m.05 [3896] K. Rheinberger, M. Baubin, K. Unterkofler, and A. Amann. Removal of Artefacts from Ventricular Fibrillation ECG Signals Using Kalman Methods. In Proceedings of the 32 Annual International Conference on Computers in Cardiology, volume 32, pages 555–558, Lyon, 2005. ambaklrhstun08 [3897] K. Rheinberger, T. Steinberger, K. Unterkofler, M. Baubin, A. Klotz, and A. Amann. Removal of CPR Artifacts from the Ventricular Fibrillation ECG by Adaptive Regression on Lagged Reference Signals. IEEE Trans. Biomedical Engineering, 55(1), 2008. giri06 [3898] A. Ribeiro and G. B. Giannakis. Bandwidth-constrained distributed estimation for wireless sensor Networks-part I: Gaussian case. IEEE Trans. Signal Process., 54(3):1131–1143, 2006. giri06-1 [3899] A. Ribeiro and G. B. Giannakis. Bandwidth-constrained distributed estimation for wireless sensor networks-part II: unknown probability density function. IEEE Trans. Signal Process., 54(7):2784–2796, 2006. ri75 [3900] F. Ricci. Multiplication of pseudomeasures. Boll. Un. Mat. Ital., 11:174–182, 1975. rita83 [3901] F. Ricci and M. H. Taibleson. Boundary values of harmonic functions in mixed norm spaces and their atomic structure. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 10:1–54, 1983. ri60 [3902] C. E. Rickart. General Theory of Banach Algebras. The University Series in Higher Mathematics. D. van Nostrand Co., Inc., 1960. baclri05 [3903] L. Ridgway Scott, T. Clark, and B. Bagheri. Scientific Parallel Computing. Princeton University Press, NJ, 2005. ri67 [3904] M. A. Rieffel. Induced Banach representations of Banach algebras and locally compact groups. J. Funct. Anal., 1:443–491, 1967. ri69-1 [3905] M. A. Rieffel. Multipliers and tensor products of Lp -spaces of locally compact groups. Studia Math., 33:71–82, 1969. ri69 [3906] M. A. Rieffel. On the continuity of certain intertwining operators, centralizers,; positive linear functionals. Proc. Amer. Math. Soc., 20:455– 457, 1969. 342 ri72-2 [3907] M. A. Rieffel. On the uniqueness of the Heisenberg commutation relations. Duke Math. J., 39:745–752, 1972. ri74 [3908] M. A. Rieffel. A commutation theorem and duality for free Bose fields. Comm. Math. Phys., 39:153–164, 1974. ri76 [3909] M. A. Rieffel. Strong Morita equivalence of certain transformation group c∗ -algebras. Math. Ann., 222:7–22, 1976. ri78 [3910] M. A. Rieffel. Regularly related lattices in Lie groups. Duke Math. J., 45:691–699, 1978. ri79-1 [3911] M. A. Rieffel. Unitary representations of group extensions; an algebraic approach to the theory of Mackey and Blattner. In Studies in Analysis, volume 4 of Advances in Mathematics Supplementary Studies, pages 43–82. 1979. ri81 [3912] M. A. Rieffel. C*-algebras associated with irrational rotations. Pacific J. Math., 93:415–429, 1981. ri81-1 [3913] M. A. Rieffel. Von Neumann algebras associated with pairs of lattices in Lie groups. Math. Ann., 257:403–418, 1981. ri82-1 [3914] M. A. Rieffel. Applications of strong Morita equivalence to transformation group C*- algebras. In Operator Algebras and Applications, Proc Symp Pure Math 38, Part 1, 299-310. 1982. ri82 [3915] M. A. Rieffel. Morita equivalence for operator algebras. In Operator Algebras and Applications, Proc Symp Pure Math 38, Part 1, Kingston/Ont 1980, pages 285–298. 1982. ri83-1 [3916] M. A. Rieffel. Dimension and stable rank in the K-theory of C ∗ algebras. Proc. Lond. Math. Soc., III. Ser., 46:301–333, 1983. ri83 [3917] M. A. Rieffel. The cancellation theorem for projective modules over irrational rotation C ∗ -algebras. Proc. Lond. Math. Soc., III. Ser., 47:285–302, 1983. ri85 [3918] M. A. Rieffel. Vector bundles over higher dimensional noncommutative tori. In Operator Algebras and their Connections with Topology and Ergodic Theory, Proc Conf, Busteni/Rom 1983, Lect Notes Math 1132, 456-467. 1985. 343 ri87-2 [3919] M. A. Rieffel. Non-stable K-theory and non-commutative tori. In Operator Algebras and Mathematical Physics, Proc Summer Conf, Iowa City/Iowa 1985, Contemp Math 62, 267-279. 1987. ri87 [3920] M. A. Rieffel. The homotopy groups of the unitary groups of noncommutative tori. J. Operator Theory, 17:237–254, 1987. ri88 [3921] M. A. Rieffel. Projective modules over higher-dimensional noncommutative tori. Canad. J. Math., 40(2):257–338, 1988. ri89 [3922] M. A. Rieffel. Continuous fields of C ∗ -algebras coming from group cocycles and actions. Math. Ann., 283(4):631–643, 1989. ri89-2 [3923] M. A. Rieffel. Deformation quantization of Heisenberg manifolds. Comm. Math. Phys., 122(4):531–562, 1989. ri90 [3924] M. A. Rieffel. Non-commutative tori - a case study of noncommutative differentiable manifolds. In Geometric and Topological Invariants of Elliptic Operators, Proc AMS- IMS-SIAM Jt Summer Res Conf, Brunswick/ME (USA) 1988, Contemp Math 105, 191-211. 1990. ri93-1 [3925] M. A. Rieffel. Deformation quantization for actions of Rd . Mem. Amer. Math. Soc., 506:93 p., 1993. ri94 [3926] M. A. Rieffel. Quantization and C ∗ -algebras. Studia Math., 167:67–97, 1994. ri02 [3927] M. A. Rieffel. Group C ∗ -algebras as compact quantum metric spaces. Doc. Math., J. DMV, 7:605–651, 2002. ri04-2 [3928] M. A. Rieffel. Compact quantum metric spaces. In Doran, Robert S (ed) et al, Operator Algebras, Quantization, and Noncommutative Geometry A Centennial Celebration Honoring John von Neumann and Marshall H Stone Proceedings of the AMS Special Session, Baltimore, MD, USA, January 15-16, 2003 Provide. 2004. ri04-1 [3929] M. A. Rieffel. Gromov-Hausdorff distance for quantum metric spaces matrix algebras converge to the sphere for quantum GromovHausdodorff distance. Mem. Am. Math. Soc, 168(796):1–65 67–91, 2004. 344 ri04 [3930] M. A. Rieffel. Integrable and proper actions on C ∗ -algebras, and square-integrable representations of groups. Exposition. Math., 22(1):1–53, 2004. ri87-1 [3931] M. A. Rieffel and A. Connes. Yang-Mills for non-commutative twotori. In Operator Algebras and Mathematical Physics, Proc Summer Conf, Iowa City/Iowa 1985, Contemp Math 62, 237-266. 1987. jirish90 [3932] S. D. Riemenschneider, R. Q. Jia, and Z. Shen. Multivariate splines and dimensions of kernels of linear operators. In W. Haussman and K. Jetter, editors, Multivariate Approximation and Interpolation, Proc Int Workshop, Duisburg/FRG 1989, volume 94 of ISNM Int. Ser. Numer. Math., pages 261–274, Basel, 1990. Birkhäuser. rish91 [3933] S. D. Riemenschneider and Z. Shen. Box splines, cardinal series, and wavelets. In C. K. Chui, editor, Approximation Theory and Functional Analysis., pages 133–149. Academic Press, New York, 1991. rish92 [3934] S. D. Riemenschneider and Z. Shen. Wavelets and pre-wavelets in low dimensions. J. Approx. Theory, 71(1):18–38, 1992. rish95 [3935] S. D. Riemenschneider and Z. Shen. General interpolation on the lattice hzs: Compactly supported fundamental solutions. Numer. Math., 70(3):331–351, 1995. rish97 [3936] S. D. Riemenschneider and Z. Shen. Multidimensional interpolatory subdivision schemes. SIAM J. Numer. Anal., 34(6):2357–2381, 1997. rish99 [3937] S. D. Riemenschneider and Z. Shen. Construction of compactly supported biorthogonal wavelets. In N. E. Mastorakis, editor, Physics and Modern Topics in Mechanical and Electrical Engineering, Mathematics and Computers in Science and Engineering. A Series of Reference Books and Textbooks., pages 201–206. World Scientific Engineering Society Press, Athens, 1999. rish99-1 [3938] S. D. Riemenschneider and Z. Shen. Construction of compactly supported biorthogonal wavelets in l2 (rd ) II. In A. Aldroubi, A. F. Laine, and M. A. Unser, editors, Wavelet Applications Signal and Image Processing VII, volume 3813 of Proceedings of SPIE, pages 264–272, 1999. 345 rish00 [3939] S. D. Riemenschneider and Z. Shen. Interpolatory wavelet packets. Appl. Comput. Harmon. Anal., 8(3):320–324, 2000. risz56 [3940] F. Riesz and B. SZ. Nagy. Vorlesung über Funktionalanalysis. VEB Deutscher Verlag der Wissenschaften, 1956. ri33 [3941] M. Riesz. Sur les ensembles compacts de fonctions sommables. Acta Litt. Sci. Szeged, 6:136–142, 1933. ri72-1 [3942] R. Rigelhof. Tensor products of locally convex modules and applications to the multiplier problem. Trans. Amer. Math. Soc., 164:295– 307, 1972. ri68 [3943] A. W. Rihaczek. Signal energy distribution in time and frequency. IEEE Trans. Inform. Theory, 14:369–374, 1968. ri89-1 [3944] M. D. Riley. Speech Time Frequency Representations. The Kluwer International Series in Engineering and Computer Science. VLSI, Computer Architecture and Digital Signal Processing. Kluwer Academic Publishers, Boston, Dordrecht, London, 1989. ri78-1 [3945] H. Rindler. Approximate units in ideals of group algebras. Proc. Amer. Math. Soc., 71:62–64, 1978. riti87 [3946] A. H. G. Rinnooy Kan and G. T. Timmer. Stochastic global optimization methods. I: Clustering methods. Math. Program., 39:27–56, 1987. riti87-1 [3947] A. H. G. Rinnooy Kan and G. T. Timmer. Stochastic global optimization methods. II: Multi level methods. Math. Program., 39:57–78, 1987. ri58 [3948] J. Riordan. An Introduction to Combinatorial Analysis. Wiley, New York, London, 1958. ri92 [3949] O. Rioul. Simple regularity criteria for subdivision schemes. SIAM J. Math. Anal., 23(6):1544–1576, 1992. ri93 [3950] O. Rioul. A Discrete-Time Multiresolution Theory. IEEE Trans. Signal Process., 41/Nr.8:2591–2606, August 1993. 346 ri93-2 [3951] O. Rioul. Regular wavelets: A discrete-time approach. IEEE Trans. Signal Process., 41(12):3572–3579, 1993. alpaXX [3952] P. Ripka and A. Tipek, editors. Modern Sensors. ri81-2 [3953] T. J. Rivlin. An Introduction to the Approximation of Functions. Dover Books on Advanced Mathematics. Dover Publications, Inc., New York, Corr. reprint of the 1969 orig. edition, 1981. ro95 [3954] J. W. Robbin. Matrix Algebra. Using MINImal MATlab. Incl. 1 Disk. Wellesley-Cambridge Press, Wellesley, MA, 1995. ro76-3 [3955] A. Robert. A short proof of the Fourier inversion formula. Proc. Amer. Math. Soc., 59:287–288, 1976. ro83 [3956] A. Robert. Introduction to the Representation Theory of Compact and Locally Compact Groups. Cambridge University Press, Cambridge, 1983. ro04-1 [3957] Robert E. White. Computational Mathematics: Models, Methods, and Analysis with MATLAB and MPI. 2004. coro04 [3958] Robert L. Borrelli and Courtney S. Coleman. Differential Equations: A Modeling Perspective, 2nd Edition. 2004. ro87 [3959] D. H. Roberts. Time Series Analysis with Clean I. Derivation of a Spectrum. Astronom. J., 93:968–989, 1987. ro66 [3960] J. E. Roberts. Rigged Hilbert spaces in quantum mechanics. Comm. Math. Phys., 3:98–119, 1966. roro67 [3961] A. P. Robertson and W. Robertson. Topologische Vektorräume. Bibliographisches Institut, Mannheim, 1967. ro29 [3962] H. P. Robertson. The uncertainty principle. Phys. Rev. A, 34:163–164, 1929. roXX-1 [3963] A. G. Robinson. Corporate Creativity: How Innovation and Improvement Actually Happen. ro89-1 [3964] D. W. Robinson. Lipschitz Operators. J. Funct. Anal., 85:179–211, 1989. 347 ro83-1 [3965] E. A. Robinson. Seismic Velocity Analysis and the Convolutional Model. International Human Resources Development Corporation, Boston, MA, 1983. rosi99 [3966] S. Roch and B. Silbermann. Continuity of generalized inverses in Banach algebras. Studia Math., 136(3):197–227, 1999. ro82-2 [3967] R. Rochberg. Interpolation by functions in Bergman spaces. Michigan Math. J., 29:229–236, 1982. ro82-1 [3968] R. Rochberg. Trace ideal criteria for Hankel operators and commutators. Indiana Univ. Math. J., 31:913–925, 1982. ro85 [3969] R. Rochberg. Decomposition theorems for Bergman spaces and their applications. Operators and function theory, Proc. NATO Adv. Study Inst., Lancaster/Engl. 1984, NATO ASI Ser., Ser. C 153, 225-277 (1985)., 1985. ro92 [3970] R. Rochberg. A correspondence principle for Toeplitz and CalderónToeplitz operators. In et al. and M. Cwikel, editors, Interpolation Spaces and related Topics Proceedings of a Workshop held at the Technion in Haifa, Israel, June 27-July 3, 1990, volume 5 of Isr. Math. Conf. Proc., pages 229–243. Bar-Ilan University, Bar-Ilan, Israel, 1992. rota98 [3971] R. Rochberg and K. Tachizawa. Pseudodifferential operators, Gabor frames, and local trigonometric bases. In H. G. Feichtinger and T. Strohmer, editors, Gabor Analysis and Algorithms: Theory and Applications, pages 171–192, 453–488. Birkhäuser, Boston, 1998. ro97 [3972] R. T. Rockafellar. Convex Analysis. Princeton University Press, reprint edition, 1997. rowe98 [3973] R. T. Rockafellar and R. J. B. Wets. Variational Analysis, volume 317 of Grundlehren der Mathematischen Wissenschaften [Fundamental. Springer-Verlag, Berlin, 1998. buporeroro04 [3974] D. N. Rockmore, P. Burk, L. Polansky, M. Roberts, and D. Repetto. Music and Computers: A Theoretical and Historical Approach. Key College Publishing, 2004. 348 hero04 [3975] D. N. Rockmore and D. M. Healy Jr. Modern Signal Processing. Cambridge University Press, Cambridge, 2004. ro76-1 [3976] B. A. Rogozin. Banach algebras of measures on a straight line, connected with asymptotic behavior of the measures at infinity. Siberian Math. J., 17:674–681, 1976. ro76-2 [3977] B. A. Rogozin. Banach-Algebren von Maßen auf einer Geraden, welche mit dem asymptotischen Verhalten der Maße im Unendlichen zusammenhängen. Sib. Mat. Zh., 17:897–906, 1976. ro77-1 [3978] B. A. Rogozin. Asymptotic behavior of the coefficients of functions of power series and Fourier series. Sib. Mat. Zh., 17(3):640–647, 1977. ro77 [3979] B. A. Rogozin. Banach algebras of measures on a straight line, connected with asymptotic behavior of the measures at infinity. 1977. rosg78 [3980] B. A. Rogozin and M. S. Sgibnev. Banach algebras of absolutely continuous measures on a straight line. Funct. Anal. Appl., 11:239– 241, 1978. rosg79 [3981] B. A. Rogozin and M. S. Sgibnev. Banach algebras of absolutely continuous measures on the straight line. Siberian Math. J., 20:86– 92, 1979. rosg79-2 [3982] B. A. Rogozin and M. S. Sgibnev. Banach-Algebren von absolutstetigen Maßen auf der Geraden. Sib. Mat. Zh., 20:119–127, 1979. rosg79-1 [3983] B. A. Rogozin and M. S. Sgibnev. Maximal ideals of Banach algebras of measures on the real line. Math. Notes, 24:669–671, 1979. rosg80 [3984] B. A. Rogozin and M. S. Sgibnev. Banach algebras of measures on the line. Siberian Math. J., 21:265–273, 1980. rosg99-1 [3985] B. A. Rogozin and M. S. Sgibnev. Banach algebras of measures on the real line with a given asymptotics of distributions at infinity. Siberian Math. J., 40(3):565–576, 1999. rosg99 [3986] B. A. Rogozin and M. S. Sgibnev. Strongly subexponential distributions and Banach algebras of measures. Siberian Math. J., 40(5):963– 971, 1999. 349 ro74 [3987] V. A. Rogozin. Asymptotics of the coefficients in the Levi-Wiener theorems on absolutely convergent trigonometric series. Sib. Mat. Zh., 14(6):1304–1312, 1974. ro88 [3988] C. Rohrmoser. Mathematische Grundlagen der digitalen Audiotechnik. Master’s thesis, University of Vienna, 1988. ro05 [3989] C. Rohwer. Nonlinear Smoothing and Multiresolution Analysis. Birkhäuser, Basel Basel, 2005. roshty06 [3990] V. Rokhlin, Y. Shkolnisky, and M. Tygert. Approximation of bandlimited functions. Appl. Comput. Harmon. Anal., 21(3):413–420, November 2006. ro06 [3991] Roland Opfer. Multiscale kernels. Adv. Comput. Math., 25(4):357– 380, 2006. ro76 [3992] S. Rolewicz. Funktionalanalysis und Steuerungstheorie. Übersetzt aus dem Polnischen von D. Pallaschke. Hochschultext. Berlin-HeidelbergNew York: Springer-Verlag. XI, 442 S. mit 10 Abb. DM 36.00, 1976. ro07 [3993] Rolf Berndt. Representations of Linear Groups. Vieweg, 2007. bachro01 [3994] J. K. Romberg, H. Choi, and R. G. Baraniuk. Bayesian tree-structured image modeling using wavelet-domain hidden Markov models. IEEE Trans. Image Process., 10(7):1056–1068, 2001. ro04 [3995] E. Romero. A complete Gabor system of zero Beurling density. Sampl. Theory Signal Image Process., 3:299–304, 2004. ro80 [3996] J. G. Romo. Spectral synthesis in Banach modules. I. Tamkang Journal of Mathematics, 11(1):91–109, 1980. ro89 [3997] A. Ron. A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution. Constr. Approx., 5(3):297–308, 1989. ro90 [3998] A. Ron. Factorization theorems for univariate splines on regular grids. Israel J. Math., 70(1):48–68, 1990,. ro95-1 [3999] A. Ron. Approximation orders of and approximation maps from local principal shift-invariant spaces. J. Approx. Theory, 81(1):38–65, 1995. 350 ro01 [4000] A. Ron. Introduction to shift-invariant spaces I: linear independence. In N. Dyn et al., editor, Multivariate Approximation and Applications, pages 112–151. Cambridge Univ. Press, Cambridge, UK, 2001. rosh93 [4001] A. Ron and Z. Shen. Frames and stable bases for subspaces of L2 (Rd ): the duality principle of Weyl-Heisenberg sets. In M. Chu, R. Plemmons, D. Brown, and D. Ellison, editors, Proceedings of the Lanczos Centenary Conference Raleigh, NC., pages 422–425. SIAM, 1993. rosh95 [4002] A. Ron and Z. Shen. Frames and stable bases for shift-invariant subspaces of L2 (Rd ). Canad. J. Math., 47(5):1051–1094, 1995. rosh95-1 [4003] A. Ron and Z. Shen. Gramian analysis of affine bases and affine frames. In C. K. Chui and L. L. Schumaker, editors, Approximation Theory VIII Vol 2 Wavelets and Multilevel Approximation Papers from the 8th Texas International Conference, College Station, TX, USA, January 8–12, 1995, volume 6 of World Scientific. Ser. Approx. Decompos., pages 375–382. World Scientific, Singapore, 1995. rosh97-2 [4004] A. Ron and Z. Shen. Affine systems in l2 (Rd ). II: Dual systems. J. Fourier Anal. Appl., 3(5):618–637, 1997. rosh97-1 [4005] A. Ron and Z. Shen. Affine systems in L2 (Rd ): The analysis of the analysis operator. J. Funct. Anal., 148(2):408–447, 1997. rosh97 [4006] A. Ron and Z. Shen. Weyl-Heisenberg frames and Riesz bases in L2 (Rd ). Duke Math. J., 89(2):237–282, 1997. rosh98 [4007] A. Ron and Z. Shen. Compactly supported tight affine spline frames in L2 (Rd ). Math. Commun., 67(221):191–207, 1998. rosh98-1 [4008] A. Ron and Z. Shen. Construction of compactly supported affine frames in L2 (rd ). In K.-S. Lau, editor, Advances in Wavelets, pages 27–49. Springer-Verlag, 1998. rosh00 [4009] A. Ron and Z. Shen. The Sobolev regularity of refinable functions. J. Approx. Theory, 106(2):185–225, 2000. rosh03 [4010] A. Ron and Z. Shen. The wavelet dimension function is the trace function of a shift-invariant system. Proc. Amer. Math. Soc., 131(5):1385– 1398, 2003. 351 rosh04 [4011] A. Ron and Z. Shen. Generalized shift-invariant systems. Constr. Approx., pages OF1–OF45, 2004. rosh05 [4012] A. Ron and Z. Shen. Generalized shift-invariant systems. Constr. Approx., 22:1–45, 2005. roshto01 [4013] A. Ron, Z. Shen, and K.-C. Toh. Computing the Sobolev regularity of refinable functions by the Arnoldi method. SIAM J. Matrix Anal. Appl., 23(1):57–76, 2001. ro05-1 [4014] B. J. Rosenberg. Technical Writing for Engineers and Scientists. 2005. ro67 [4015] H. P. Rosenthal. On the existence of approximate identities in idelas of group algebras. Ark. Mat., 7:185–191, 1967. rotawi99 [4016] J. Rossmann, P. Takác, and G. Wildenhain. The Maz’ya Anniversary Collection. Vol. 1: On Maz’ya’s Work in Functional Analysis, Partial Differential Equations and Applications. Birkhäuser, Basel, 1999. ro77-2 [4017] A. Royer. Wigner function as the expectation value of a parity operator. Phys. Rev. A, 15(2):449–450, 1977. ro59 [4018] Y. A. Rozanov. Spectral analysis of abstract functions. Theor. Probability Appl., 4:271–287, 1959. ro82 [4019] Y. A. Rozanov. Markov Random Fields. Transl. from the Russian by Constance M. Elson. Springer, New York, Heidelberg, Berlin, 1982. ru98 [4020] F. Ruadulescu. The gamma-equivariant form of the Berezin quantization. Mem. Amer. Math. Soc., 133(630):viii+70, 1998. ru80-1 [4021] S. G. Rubanovich. Hölder spaces with weight and pseudodifferential operators. Dokl. Akad. Nauk Arm. SSR, 71:267–274, 1980. ruta69 [4022] L. A. Rubel and B. A. Taylor. Functional analysis proofs of some theorems in function theory. Amer. Math. Monthly, 76:483–489, 1969. ru81 [4023] J. L. Rubio de Francia. Boundedness of maximal functions and singular integrals in weighted lspp spaces. Proc. Amer. Math. Soc., 83:673– 679, 1981. 352 ru06-1 [4024] M. Rudelson and R. Vershynin. Sparse reconstruction by convex relaxation: Fourier and Gaussian measurements. In Proc. CISS 2006 (40th Annual Conference on Information Sciences and Systems), 2006. ruve08 [4025] M. Rudelson and R. Vershynin. On sparse reconstruction from Fourier and Gaussian measurements. Comm. Pure Appl. Math., 61:1025– 1045, 2008. ru62 [4026] W. Rudin. Fourier Analysis on Groups. Interscience Publishers, New York, London, 1962. ru62-1 [4027] W. Rudin. Trigonmetric series with gaps. J. Math. Mech., 9:203–229, 1962. ru66 [4028] W. Rudin. Real and Complex Analysis. McGraw-Hill Book Company, New York, 1966. ru73 [4029] W. Rudin. Functional Analysis. McGraw-Hill Book Company, New York, 1973. ru03 [4030] A. M. C. Ruedin. A nonseparable multiwavelet for edge detection. In M. A. Unser, A. Aldroubi, and A. F. Laine, editors, Wavelets: Applications in Signal and Image Processing X., volume 5207 of Proceedings of the SPIE, pages 700–709, 2003. baleru05 [4031] L. Rugini, P. Banelli, and G. Leus. Simple equalization of time-varying channels for OFDM. IEEE Comm. Letters, 9(7):619– 621, July 2005. ruto85 [4032] F. J. Ruiz and J.-L. Torrea. A unified approach to Carleson measures and ap weights. II. Pacific J. Math., 120:189–197, 1985. argulaleruru04 [4033] J. Ruiz, E. Aramendi, S. Ruiz de Gauna, A. Lazkano, L. A. Leturiendo, and J. Guti’errez. Ventricular Fibrillation Detection in Ventricular Fibrillation Signals Corrupted by Cardiopulmonary Resuscitation Artifacts. Computers in Cardiology, pages 221–224, 2004. goru00 [4034] G. Ruiz Goldstein and J. A. Goldstein. The best generalized inverse. J. Math. Anal. Appl., 252(1):91–101, 2000. becodamameraru92 [4035] M. B. Ruskai, G. Beylkin, R. R. Coifman, I. Daubechies, S. Mallat, Y. Meyer, and L. A. Raphael. Wavelets and their Applications. Jones and Bartlett Publishers, Boston, 1992. 353 ru80 [4036] A. M. Russell. A commutative Banach algebra of functions of bounded variation. Amer. Math. Monthly, 87:39–40, 1980. ru05 [4037] L. Russo. The Forgotten Revolution or the Rebirth of Ancient Science. Transl. from the Italian by Giangiacomo Feltrinelli. (Die vergessene Revolution oder die Wiedergeburt des Antiken Wissens). Berlin: Springer. ix, 545 p. EUR 29.95, 2005. ru06 [4038] A. Ruszczynski. Nonlinear Optimization. Princeton University Press, 2006. krru61 [4039] Y. B. Rutitskij and M. Krasnoselskij. Convex Functions and Orlicz Spaces. Groningen-The Netherlands: P. Noordhoff Ltd. IX, 249 p., 1961. ry02 [4040] R. A. Ryan. Introduction to Tensor Products of Banach Spaces. Springer Monographs in Mathematics. Springer, London, 2002. rz01 [4041] Z. Rzeszotnik. Calderón’s condition and wavelets. Collect. Math., 52(2):181–191, 2001. rzsp02 [4042] Z. Rzeszotnik and D. Speegle. On wavelets interpolated from a pair of wavelet sets. Proc. Amer. Math. Soc., 130(10):2921–2930, 2002. rzzh04 [4043] Z. Rzeszotnik and X. Zhang. Unitary operators preserving wavelets. Proc. Amer. Math. Soc., 132(5):1463–1471, 2004. sa03 [4044] Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2nd ed. edition, 2003. sastwa05 [4045] I. e. . Sabadini, D. C. e. . Struppa, and D. F. e. . Walnut. Harmonic Analysis, Signal Processing, and Complexity. Festschrift in Honor of the 60th Birthday of Carlos A. Berenstein. Papers from the Conference in Berenstein’s Honor held at George Mason University, Fairfax, VA, USA, May 17–20, 2004. Progress in Mathematics 238. Boston, MA: Birkhäuser. xiv, 2005. sa79 [4046] C. Sadosky. Interpolation of Operators and Singular Integrals. An Introduction to Harmonic Analysis. Marcel Dekker, New York, Basel, 1979. 354 sa01 [4047] L. Sadun. Applied Linear Algebra: the Decoupling Principle. Prentice Hall, Upper Saddle River, NJ, 2001. sa70 [4048] R. Saeks. Causality in Hilbert space. SIAM Rev., 12:357–383, 1970. sa01-1 [4049] B. Saffari. Some polynomial extremal problems which emerged in the twentieth century. In Twentieth Century Harmonic Analysis, volume 33 of NATO Sci. Ser. II Math. Phys. Chem., pages 201–233. Kluwer Acad. Publ., Dordrecht, 2001. c.n.y.06 [4050] C. Sagiv, N. A. Sochen, and Y. Y. Zeevi. The Uncertainty Principle: Group Theoretic Approach, Possible Minimizers and Scale-Space Properties. 2006. sawo97 [4051] A. I. Saichev and W. A. Woyczynski. Distributions in the Physical and Engineering Sciences. Vol. 1: Distributional and Fractal Calculus, Integral Transforms and Wavelets. Birkhäuser, Boston, 1997. sa91-1 [4052] X. Saint Raymond. Elementary Introduction to the Theory of Pseudodifferential Operators. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1991. resa06 [4053] N. Saito and J.-F. Remy. The polyharmonic local sine transform: A new tool for local image analysis and synthesis without edge effect. Appl. Comput. Harmon. Anal., 20(1):41–73, 2006. sa79-1 [4054] K. Saka. Besov spaces and Sobolev spaces on a nilpotent Lie group. Tohoku Math. J., 31(4):383–437, 1979. sa64 [4055] S. Sakai. Weakly compact operators on operator algebras. Pacific J. Math., 14:659–664, 1964. sa84 [4056] Y. Sakai. Spectral orders and convolution. Analysis Mathematica, 10:301–310, 1984. sa61 [4057] E. J. Saletan. Contraction of Lie groups. J. Math. Phys., 2(1):1–21, 1961. masa95 [4058] S. Samaddar and R. J. Mammone. Image Restoration Using a Row Action Projection Method with Adaptive Smoothing. Opt. Eng., 34(4):1132–1147, 1995. 355 sa06 [4059] S. Samarah. Nonlinear approximation with Gabor frame. East Journal on Approximations, 12(1):53–62, 2006. sa80 [4060] N. Samaris. Some remarks on the Lp (Rn ) spaces. Boll. Unione Mat. Ital., V. Ser., A, 17:509–515, 1980. drnasa76 [4061] G. Sampson, A. Naparstek, and V. Drobot. (lp , lq ) mapping properties of convolution transforms. Studia Math., 55:41–70, 1976. gusa05 [4062] A. Sandiki and A. T. Gürkanli. On some properties and multipliers of weighted Segal algebras. Int. J. Appl. Math., 17(3):241–256, 2005. besa00 [4063] S. G. Sankaran and A. A. L. Beex. Convergence behavior of affine projection algorithms. IEEE Trans. Signal Process., 48(4):1086–1096, 2000. sa06-1 [4064] G. Sapiro. Geometric Partial Differential Equations and Image Analysis. Cambridge University Press, 2006. sa91 [4065] D. Sarason. New Hilbert spaces from old. In et al. and J. H. Ewing, editors, Paul Halmos Celebrating 50 Years of Mathematics, pages 195– 204. Springer-Verlag, New York, 1991. sase06 [4066] R. P. Sarkar and J. Sengupta. Beurling’s Theorem for sl(2, r). 2006. defesa07 [4067] M. Sartipi, F. Delgosha, and F. Fekri. Two-Dimensional Half-Rate Codes Using Two-Dimensional Finite-Field Filter Banks. IEEE Trans. Signal Process., 55(12):5846–5853, 2007. sa81 [4068] S. Sato. Entropy and almost everywhere convergence of Fourier series. Tohoku Math. J., 33:593–597, 1981. bosa93 [4069] Sauer Ken and Bouman Charles. A Local Update Strategy for Iterative Reconstruction from Projections. IEEE Trans. Signal Process., 41(2):534–548, 1993. sata05 [4070] Y. Sawano and H. Tanaka. Morrey spaces for non-doubling measures. Acta Math. Sin. (Engl. Ser.), 21(6):1535–1544, 2005. sa07 [4071] Say Song Goh, editor. GABOR AND WAVELET FRAMES. August 2007. 356 sa07-1 [4072] Say Song Goh, editor. Gabor and Wavelt Frames. August 2007. sc05 [4073] R. Schaback, , and H. Wendland. Numerical Mathematics. (Numerische Mathematik) 5th Completely new Revised ed. SpringerVerlag, 2004. sc99 [4074] R. Schaback. Native Hilbert spaces for radial basis functions. I. In et al. and M. Müller, editors, New Developments in Approximation Theory 2nd International Dortmund Meeting (IDoMAT) ’98, Germany, February 23-27, 1998, volume 132 of ISNM, Int. Ser. Numer. Math., pages 255–282, Basel, 1999. Birkhäuser. sc00-2 [4075] R. Schaback. A unified theory of radial basis functions. Native Hilbert spaces for radial basis functions. II. J. Comput. Appl. Math., 121(12):165–177, 2000. sc08 [4076] R. Schaback. Recovery of functions from weak data using unsymmetric meshless kernel-based methods. Appl. Numer. Math., 58(5):726– 741, May 2008. scwawe05 [4077] R. Schaback, E. Wagenführer, and H. Wendland. Numerical Mathematics. (Numerische Mathematik) 5th Completely New Revised ed. Springer-Verlag, Berlin, 2005. scwe92 [4078] R. Schaback and H. Werner. Numerische Mathematik. (Numerical Mathematics). 4., Vollst. Überarb. Aufl. Springer, Berlin, 1992. scwu97 [4079] R. Schaback and Z. Wu. Construction techniques for highly accurate quasi-interpolation operators. J. Approx. Theory, 91(3):320–331, 1997. nesc06 [4080] H. Schade and K. Neemann. Tensoranalysis. de Gruyter Lehrbuch. Walter de Gruyter, Berlin, 2nd revised ed. edition, 2006. sc71 [4081] H. H. Schaefer. Topological Vector Spaces. Springer, Berlin, Heidelberg, New York, 1971. sc74 [4082] H. H. Schaefer. Banach Lattices and Positive Operators., volume 215 of Die Grundlehren der mathematischen Wissenschaften. SpringerVerlag, Berlin-Heidelberg-New York, 1974. 357 sc59-1 [4083] J. J. Schäffer. Addendum: Function spaces with translations. Math. Ann., 138:141–144, 1959. sc59 [4084] J. J. Schäffer. Function spaces with translations. Math. Ann., 137:209– 262, 1959. bomasc04 [4085] D. Schafhuber, H. Bölcskei, and G. Matz. System capacity of wideband OFDM communications over fading channels without channel knowledge. In Information Theory, 2004. ISIT 2004. Proceedings. International Symposium on, pages 389–389, 2004. sc50 [4086] R. Schatten. A Theory of Cross-spaces., volume 26 of Annals of Mathematics Studies. Princeton University Press, Princeton, N. J., 1950. sc60 [4087] R. Schatten. Norm ideals of completly continous operators. Ergebnisse der Mathematik und ihrer Grenzgebiete, 27, 1960. sc70-1 [4088] R. Schatten. Norm Ideals of Completely Continuous Operators, volume 27 of Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, Berlin-Heidelberg-New York, 2nd printing edition, 1970. sc01 [4089] M. Schechter. Principles of Functional Analysis. 2nd ed. American Mathematical Society (AMS), RI, 2001. sc05-2 [4090] R. Scheithauer. Signale und Systeme. Grundlagen für die Mess- und Regelungstechnik und Nachrichtentechnik. B. G. Teubner, Stuttgart, 2., durchges. Aufl. edition, 2005. sc82 [4091] W. Schempp. Radar reception and nilpotent harmonic analysis. I. C. R. Math. Acad. Sci., Soc. R. Can., 4:43–48, 1982. sc84 [4092] W. Schempp. Radar ambiguity functions, the Heisenberg group, and holomorphic theta series. Proc. Amer. Math. Soc., 92:103–110, 1984. sc85 [4093] W. Schempp. Analog radar signal design and digital signal processinga Heisenberg Nilpotent lie group approach. Math. Forschungsberichte, 147:2–28, 1985. sc86 [4094] W. Schempp. Harmonic Analysis on the Heisenberg Nilpotent Lie Group, with Applications to Signal Theory. Longman Scientific and Technical, Harlow, Essex, England, 1986. 358 drsc80 [4095] W. Schempp and B. Dreseler. Einführung in die Harmonische Analyse. B. G. Teubner, Stuttgart, 1980. sc98 [4096] W. J. Schempp. Magnetic Resonance Imaging. Mathematical Foundations and Applications. Wiley-Liss., New York, NY, 1998. scst98 [4097] O. Scherzer and T. Strohmer. A multi-level algorithm for the solution of moment problems. Numer. Funct. Anal. Optim., 19(3-4):353–375, 1998. gasc05 [4098] M. Schimmel and J. Gallart. The inverse S-transform in filters with time-frequency localization. IEEE Trans. Signal Process., 53(11):4417–4422, 2005. gasc07 [4099] M. Schimmel and J. Gallart. Authors Reply to Comments on The Inverse S-Transform in Filters With Time-Frequency Localization. IEEE Trans. Signal Process., 55(10):5120–5121, 2007. sc05-3 [4100] F. Schlenk. Embedding Problems in Symplectic Geometry, volume 40 of de Gruyter Expositions in Mathematics. Walter de Gruyter GmbH & Co. KG, Berlin, 2005. sc87 [4101] H.-J. Schmeisser. Vector-valued Sobolev and Besov spaces. In Semin. Analysis, Berlin/GDR 1985/86, volume 96 of Teubner-Texte Math., pages 4–44. Teubner, 1987. sctr87 [4102] H.-J. Schmeisser and H. Triebel. Topics in Fourier Analysis and Function Spaces. Akademische Verlagsgesellschaft, Leipzig, 1987. sc99-1 [4103] A. U. Schmidt. Asymptotic Hyperfunctions, Tempered Hyperfunctions and Asymptotic Expansions (Asymptotische Hyperfunktionen, Temperierte Hyperfunktionen und Asymptotische Entwicklungen). PhD thesis, Johann Wolfgang Goethe - Universität, Frankfurt am Main, Berlin, 1999. sc70 [4104] F. Schmidt. Spektraldarstellung und Extrapolation einer Klasse von stationären stochastischen Prozessen. Math. Nachr., 47:101–119, 1970. sc99-2 [4105] G. Schmidt. Approximate approximations and their applications. In et al. and J. Rossmann, editors, The Maz’ya Anniversary Collection 359 Vol 1: On Maz’ya’s Work in Functional Analysis, Partial Differential Equations and Applications Based on Talks Given at the Conference, Rostock, Germany, August 31-September 4, 1998, volume 109 of Oper. Theory, Adv. Appl., pages 111–136. Birkhäuser, Basel, 1999. sctr98 [4106] K. Schmidt and G. Trenkler. Moderne Matrix-Algebra. Mit Anwendungen in der Statistik. (Modern Matrix Algebra. With Applications to Statistics). Springer, Berlin, 1998. sc97 [4107] W. Schmidt. On Reconstruction of Images from Structured Sampling Sets: Classification, Morphology, TILS, POCS and Applications. Master’s thesis, Dept. Mathematics, Univ. Vienna, Vienna / Austria, 1997. sc04-2 [4108] K. Schnass. Gabor Multipliers. A Self-contained Survey. Master’s thesis, University of Vienna, 2004. sc07 [4109] A. Schocher. Die Kegelschnitte in der Schule. Master’s thesis, Dept. Mathematics, Univ. Vienna, 2007. sc46 [4110] I. J. Schoenberg. Contributions to the problem of approximation of equidistant data by analytic functions. Part A: On the problem of smoothing or graduation. A first class of analytic approximation formulae. Part B: On the problem of osculatory interpolation. A second clas. Quart. Appl. Math., 4:45–99 / 112–141, 1946. sc73 [4111] I. J. Schoenberg. Cardinal Spline Interpolation., volume 12 of CBMSNSF Regional Conference Series in Applied Mathematics. SIAM, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1973. scsismva98 [4112] B. Schölkopf, P. Simard, A. Smola, and V. N. Vapnik. Prior knowledge in support vector kernels. In M. Jordan, M. Kearns, and S. Solla, editors, Advances in Neural Information Processing Systems 10, pages 640–646, Cambridge, MA, 1998. MIT Press. buginiposcsuva97 [4113] B. Schölkopf, K.-K. Sung, C. J. C. Burges, F. Girosi, P. Niyogi, T. Poggio, and V. N. Vapnik. Comparing support vector machines with Gaussian kernels to radialbasis function classifiers. IEEE Trans. Signal Process., 45(11):2758–2765, 1997. 360 sc90 [4114] D. Schott. Convergence statements for projection type linear iterative methods with relaxations. Z. Anal. Anwend., 9(4):327–341, 1990. sc04 [4115] D. Schott. Engineering Mathematics with MATLAB. Algebra and Analysis for Engineers. (Ingenieurmathematik mit MATLAB. Algebra und Analysis für Ingenieure). Fachbuchverlag Leipzig, Leipzig, 2004. sc04-3 [4116] B. M. Schreiber. Asymptotically stationary processes on amenable groups. Stochastic Anal. Appl., 22(6):1525–1551, 2004. sc26 [4117] E. Schrödinger. Der stetige übergang von der Mikro- zur Makromechanik. Naturwissenschaften, 14:664–666, 1926. sc30 [4118] E. Schrodinger. Zum Heisenbergschen Unschaerfeprinzip. Berliner Berichte:296–303, 1930. sc00-3 [4119] J. Schulte. Zur Harmonischen Analyse auf endlichen HeisenbergGruppen. PhD thesis, 2000. sc04-4 [4120] J. Schulte. Harmonic analysis on finite Heisenberg groups. European J. Combin., 25(3):327–338, 2004. sc33 [4121] G. Schulz. Iterative Berechnung der reziproken Matrix. ZAMM Z. Angew. Math. Mech., 13(1):57–59, 1933. sc95-1 [4122] H. Schulz Mirbach. Anwendung von Invarianzprinzipien zur Merkmalgewinnung in der Mustererkennung. VDI-Verlag, Düsseldorf, 1995. sc07-2 [4123] L. L. Schumaker. Spline Functions: Basic Theory. Cambridge Mathematical Library. Cambridge: Cambridge University Press. xv, 582 p., 2007. sc98-1 [4124] A. P. Schuster. The homogeneous approximation property in the Bergman space. Houston J. Math., 24(4):707–722, 1998. sc00-1 [4125] A. P. Schuster. On Seip’s description of sampling sequences for Bergman spaces. Complex Var. Theory Appl., 42(4):347–367, 2000. scva02 [4126] A. P. Schuster and D. Varolin. Sampling sequences for Bergman spaces for p < 1. Complex Var. Theory Appl., 47(3):243–253, 2002. 361 sc07-1 [4127] T. Schuster. The Method of Approximate Inverse: Theory and Applications. Lecture Notes in Mathematics 1906. Berlin: Springer. xiii, 198 p., 2007. sc00 [4128] H. Schwab. test-demo a sup b. vol(num):pages, 1000. sc96 [4129] H. Schwab. Regularisierung schlecht gestellter Probleme und einige Anwendungen auf das irregular sampling Problem. Master’s thesis, University of Vienna, 1996. sc03 [4130] H. Schwab. Reconstruction from Averages. PhD thesis, Dept. Mathematics, Univ. Vienna, 2003. sc04-1 [4131] H. Schwab. Fast density estimation from histograms in shift invariant spaces. Sampl. Theory Signal Image Process., 3(2):157–173, 2004. scye05 [4132] S. Schwabik and G. Ye. Topics in Banach Space Integration. Series in Real Analysis 10. Hackensack, NJ: World Scientific. 312 p., 2005. sc51 [4133] L. Schwartz. Analyse et synthese harmoniques dans les espace de distributions. Canad. J. Math., 3:503–512, 1951. sc57-2 [4134] L. Schwartz. Théorie des distributions à valeurs vectorielles. Ann. Inst. Fourier (Grenoble), 7:1–141, 1957. sc57 [4135] L. Schwartz. Théorie des Distributions. (Distribution Theory). Nouveau Tirage. Vols. 1. Paris: Hermann. xii, 420 p. FF 230.00, 1957. sc57-1 [4136] L. Schwartz. Théorie des Distributions. (Distribution Theory). Nouveau Tirage. Vols. 2. Paris: Hermann. xii, 420 p. FF 230.00, 1957. sc58 [4137] L. Schwartz. Théorie des distributions à valeurs vectorielles. II. Ann. Inst. Fourier (Grenoble), 8:1–209, 1958. sc59-2 [4138] L. Schwartz. Theorie des Distributions. 1959. sc93 [4139] L. Schwartz. Analyse IV: Applications ‘ la thiorie de la mesure. Avec la collab. de K. Zizi. (Analysis IV: Applications of measure theory). Hermann and Cie, Paris, 1993. sc01-1 [4140] A. Schwarz. Theta functions on noncommutative tori. Lett. Math. Phys., 58(1):81–90, 2001. 362 sc88 [4141] H. R. Schwarz. Numerische Mathematik. (Numerical Mathematics). 2. Durchges. Aufl. B. G. Teubner, Stuttgart, 1988. sc92 [4142] L. B. Schweitzer. A short proof that mn (a) is local if a is local and Fr’echet. Int. J. Math., 3:581–589, 1992. sc05-1 [4143] W. Schweizer. MATLAB Kompakt. Oldenbourg, 2005. sc60-2 [4144] J. Schwinger. The special canonical group. Proc. Natl. Acad. Sci. USA, 46:1401–1415, 1960. sc60-1 [4145] J. Schwinger. Unitary operator bases. Proc. Natl. Acad. Sci. USA, 46:570–579, 1960. sc06 [4146] Scott T. Smith. Advance GUI Development. 2006. se87 [4147] I. Sedig. A note on Lipschitz functions and spectral synthesis. Ark. Mat., 25:141–145, 1987. se00 [4148] A. M. Sedletskii. Fourier Transforms and Approximations. GauthierVillars, Amsterdam, 2000. se03 [4149] H. Seferouglu. A spectral mapping theorem for Banach modules. Studia Math., 156(2):99–103, 2003. se41 [4150] I. E. Segal. The group ring of a locally compact group I. Proc. Nat. Acad. Sci., 27:348–352, 1941. se47 [4151] I. E. Segal. The group algebra of a locally compact group. Trans. Amer. Math. Soc., 61:69–105, 1947. se59 [4152] I. E. Segal. Foundations of the theory of dynamical systems of infinitely many degrees of freedom. I. Mat.-Fys. Medd. Danske Vid. Selsk., 31:1–39, 1959. se61 [4153] I. E. Segal. Foundations of the theory of dynamical systems of infinitely many degrees of freedom. II. Canad. J. Math., 13:1–18, 1961. kuse78 [4154] I. E. Segal and R. A. Kunze. Integrals and Operators. 2nd rev. and enl. ed. Springer, Berlin, Heidelberg, New York, 1978. 363 se92 [4155] K. Seip. Density theorems for sampling and interpolation in the Bargmann-Fock space. Bull. Amer. Math. Soc. (N.S.), 26(2):322–328, 1992. se92-1 [4156] K. Seip. Density theorems for sampling and interpolation in the Bargmann-Fock space. I. J. Reine Angew. Math., 429:91–106, 1992. se93 [4157] K. Seip. Beurling type density theorems in the unit disk. Invent. Math., 113(1):21–39, 1993. se98-2 [4158] K. Seip. Developments from nonharmonic Fourier series, 1998. se04 [4159] K. Seip. Interpolation and Sampling in Spaces of Analytic Functions. University Lecture Series 33. Providence, RI: American Mathematical Society (AMS). xii, 2004. sewa92 [4160] K. Seip and R. Wallstén. Density theorems for sampling and interpolation in the Bargmann-Fock space. II. J. Reine Angew. Math., 429:107–113, 1992. ivmapese88 [4161] B. Sendov, P. Petrushev, K. Ivanov, and R. Maleev. Constructive Theory of Functions. Proceedings of the International Conference held in Varna, May 24-May 31, 1987. Publishing House of the Bulgarian Academy of Sciences, Sofia, 1988. se98 [4162] C. Sengupta. Algorithms and Architectures for Channel Estimation in Wireless CDMA Communication Systems. PhD thesis, 1998. seta69 [4163] F. D. Sentilles and D. C. Taylor. Factorization in Banach algebras and the general strict topology. Trans. Amer. Math. Soc., 142:141– 152, 1969. lase85 [4164] J. Serra and B. Lay. Square to hexagonal lattices conversion. Signal Process., 9(1):1–13, 1985. se02 [4165] D. Serre. Linear Algebra. Springer, 2002. se05 [4166] T. Severini. Elements of Distribution Theory. Cambridge: Cambridge University Press. xii, 515 p., 2005. 364 sest82 [4167] M. Sezan and H. Stark. Image Restoration by the Method of Convex Projections: Part 2 - Application and Numerical Results. IEEE Trans. Med. Imaging, MI-1(2):95–101, Oct. 1982. sest84 [4168] M. Sezan and H. Stark. Tomographic Image Reconstruction from Incomplete View Data by Convex Projections and Direct Fourier Inversion. IEEE Trans. Med. Imaging, MI-3(2):91–98, Jun. 1984. sete90 [4169] M. Sezan and A. Tekalp. Adaptive Image Restoration with Artifact Suppression Using the Theory of Convex Projections. IEEE Trans. Acoust. Speech Signal Process., 38(1):181–185, Jan. 1990. seteoz94 [4170] M. Sezan, A. Tekalp, and M. K. Özkan. POCS-Based Restoration of Space-Varying Blurred Images. IEEE Trans. Image Process., 3(4):450–454, July 1994. shst03 [4171] R. Shakarchi and E. M. Stein. Fourier Analysis: An Introduction. Princeton Lectures in Analysis. Princeton University Press, 2003. shst05 [4172] R. Shakarchi and E. M. Stein. Real Analysis: Measure Theory, Integration, and Hilbert Spaces, volume 3 of Princeton Lectures in Analysis. Princeton University Press, Princeton, NJ, 2005. sh62 [4173] D. Shale. Linear symmetries of free Boson fields. Trans. Amer. Math. Soc., 103:149–167, 1962. shzi85 [4174] R. Shambayati and Zielezny Z. Convolution equations in spaces of distributions with one–sided bounded support. Trans. Amer. Math. Soc., 289:707–713, 1985. shsuzh07 [4175] Z. Shang, W. Sun, and X. Zhou. Vector sampling expansions in shift invariant subspaces. J. Math. Anal. Appl., 325(2):898–919, 2007. shzh07 [4176] Z. Shang and X. Zhou. Dual generators for weighted irregular wavelet frames and reconstruction error. Appl. Comput. Harmon. Anal., 22:356–367, 2007. sh48-1 [4177] C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379–423 and 623–656, July,October 1948. sh49 [4178] C. E. Shannon. Communication in the presence of noise. Proc. IRE, 37(1):10–21, January 1949. 365 shwe49 [4179] C. E. Shannon and W. Weaver. The Mathematical Theory of Communication. Urbana, Ill.: University of Illinois Press. V, 1949. sh68-1 [4180] H. S. Shapiro. A Tauberian theorem related to approximation theory. Acta Math., 120:279–292, 1968. sh68 [4181] H. S. Shapiro. Some Tauberian theorems with applications to approximation theory. Bull. Amer. Math. Soc., 74:500–504, 1968. sh69 [4182] H. S. Shapiro. Smoothing and Approximation of Functions. Van Nostrand Reinhold Co., New York, 1969. sh71 [4183] H. S. Shapiro. Topics in Approximation Theory, volume 187 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1971. sh75 [4184] H. S. Shapiro. Majorant problems for Fourier coefficients. Quart. J. Math. Oxford Ser. (2), 26:9–18, 1975. sh80 [4185] H. S. Shapiro. On some Fourier and distribution-theoretic methods in approximation theory. In Approximation Theory III, Proc Conf Hon G G Lorentz, Austin/Tex 1980, 87-124. 1980. sh93 [4186] J. M. Shapiro. Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. Signal Process., 41(12):3445–3462, 1993. shsh06 [4187] L. Shen and Z. Shen. Compression with time-frequency localization filters. In G. Chen and M. Lai, editors, Wavelets and Splines, Athens, 2005., pages 428–443. Nashboro Press, 2006. shwa05 [4188] X. Shen and G. G. Walter. A sampling expansion for nonbandlimited signals in chromatic derivatives. IEEE Trans. Signal Process., 53(4):1291– 1298, 2005. sh90 [4189] Z. Shen. Birkhoff interpolation by Chebyshevian splines. Approx. Theory Appl., 6(3):59–77, 1990. sh91 [4190] Z. Shen. Dimension of certain kernel spaces of linear operators. Proc. Amer. Math. Soc., 112(2):381–390, 1991. sh95 [4191] Z. Shen. Nontensor Product Wavelet Packets inl2 (BbbRs ). SIAM J. Math. Anal., 26:1061–1074, 1995. 366 sh97 [4192] Z. Shen. Extension of matrices with laurent polynomial entries. In A. Syclow, editor, Proceedings of the 15th IMACS World Congress on Scientific Computation Modeling and Applied Mathematics, Vol 1., pages 57–61, 1997. sh98 [4193] Z. Shen. Refinable function vectors. SIAM J. Math. Anal., 29(1):235– 250, 1998. shxu95 [4194] Z. Shen and Y. Xu. Degenerate kernel schemes by wavelets for nonlinear integral equations on the real line. Appl. Anal., 59(1-4):163–184, 1995. krsh78 [4195] L. A. Shepp and J. B. Kruskal. Computerized tomography: The new medical X-ray technology. Amer. Math. Monthly, 85:420–439, 1978. sh51 [4196] G. E. Shilov. Homogeneous rings of functions. Uspehi Mat. Nauk, 41:91–137, 1951. shvo96 [4197] H.-T. Shim and H. Volkmer. On the Gibbs phenomenon for wavelet expansions. J. Approx. Theory, 84(1):74–95, 1996. shvowa07 [4198] H.-T. Shim, H. Volkmer, and G. G. Walter. Gibbs’ phenomenon in higher dimensions. J. Approx. Theory, 145(1):20–32, 2007. sh00 [4199] Y. Shimizu. Computed Tomography - Advances in the Direct Fourier Method. Master’s thesis, University of Vienna, 2000. sh03 [4200] Y. Shimizu. Advanced Image Reconstruction and Sata Analysis in functional MRI. PhD thesis, 2003. shzh03 [4201] D. Shklyarov and G. Zhang. Berezin transform on the quantum unit ball. J. Math. Phys., 44(9):4344–4373, 2003. sh01 [4202] M. A. Shubin. Pseudodifferential Operators and Spectral Theory. Transl. from the Russian by Stig I. Andersson. 2nd ed. Springer, Berlin, 2001. sh83 [4203] D. S. Shucker. Square integrable representations of unimodular groups. Proc. Amer. Math. Soc., 89:169–172, 1983. sh03-1 [4204] K. L. Shuman. Complete signal processing bases and the Jacobi group. J. Math. Anal. Appl., 278(1):203–213, 2003. 367 si91 [4205] W. Sickel. Some remarks on trigonometric interpolation on the nTorus. Z. Anal. Anwend., 10.Apr:551–562, 1991. si92 [4206] W. Sickel. Characterization of Besov-Triebel-Lizorkin spaces via approximation by Whittaker’s Cardinal series and related unconditional Schauer bases. Constr. Approx., 8:257–274, 1992. rusi96 [4207] W. Sickel and T. Runst. Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. De Gruyter series in nonlinear analysis and applications - 3. Berlin: de Gruyter, 1996. harosi98 [4208] B. Silbermann, R. Hagen, and S. Roch. c∗ -algebra techniques – A powerful tool in numerical analysis. In et al. and M. Bach, editors, Analysis, Numerics and Applications of Differential and Integral Equations Dedication to Wolfgang L Wendland on the Occasion of his 60th Birthday, volume 379 of Pitman Res. Notes Math. Ser., pages 214–218. Addison Wesley Longman, Harlow, 1998. kasi96 [4209] J. A. Sills and E. W. Kamen. Time–varying matched filters. Circuits, Systems, Signal Processing, 15(5):609–630, 1996. si71-1 [4210] G. Silverman. Note on Köthe spaces. Math. Ann., 193:109–113, 1971. si72 [4211] G. Silverman. Strong convergence of functions on Köthe spaces. Trans. Amer. Math. Soc., 165:27–35, 1972. si90 [4212] S. R. Simanca. Pseudo-differential Operators., volume 236 of Pitman Research Notes in Mathematics. Longman Scientific and Technical and John Wiley & Sons Ltd., Harlow; New York, 1990. si71 [4213] B. Simon. Distributions and their Hermite expansions. J. Math. Phys., 12:140–148, 1971. si79 [4214] B. Simon. Trace Ideals and their Applications. Cambridge University Press, Cambridge, 1979. si80 [4215] B. Simon. The classical limit of quantum partition functions. Comm. Math. Phys., 71(3):247–276, 1980. si81 [4216] B. Simon. Pointwise domination of matrices and comparison of sp norms. Pacific J. Math., 97:471–475, 1981. 368 misi75 [4217] B. Simon and Michael Reed. Fourier Analysis, Self-Adjointness. Academic Press, London, 1975. dagahemascsive07 [4218] C. Simon, S. Ventosa, M. Schimmel, A. Heldring, J. J. Danobeitia, J. Gallart, and A. Manuel. The S-Transform and Its Inverses: Side Effects of Discretizing and Filtering. IEEE Trans. Signal Process., 55(10):4928–4937, 2007. musisu87-1 [4219] R. Simon, E. C. G. Sudarshan, and N. Mukunda. Gaussian Wigner distributions: a complete characterization. Phys. Lett. A, 124(45):223–228, 1987. musisu87 [4220] R. Simon, E. C. G. Sudarshan, and N. Mukunda. Gaussian-Wigner distributions in quantum mechanics and optics. Phys. Rev. A (3), 36(8):3868–3880, 1987. musisu88 [4221] R. Simon, E. C. G. Sudarshan, and N. Mukunda. Gaussian pure states in quantum mechanics and the symplectic group. Phys. Rev. A (3), 37(8):3028–3038, 1988. si79-1 [4222] A. M. Sinclair. Cohen elements in Banach algebras. Proc. R. Soc. Edinb., Sect. A, 84:55–70, 1979. situ74 [4223] A. M. Sinclair and A. W. Tullo. Noetherian Banach algebras are finite dimensional. Math. Ann., 211:151–153, 1974. si70 [4224] I. Singer. Bases in Banach Spaces. I. Number 154 in Grundlehren Math. Wiss. Springer, Berlin, 1970. kasi83 [4225] R. Sinha and V. Kant. Homogeneous Banach spaces of distributions. Ann. Soc. Math. Polon. Ser. I Comment. Math. Prace Mat., 23:309– 314, 1983. scsi98 [4226] A. M. Sintes and B. Schutz. Coherent Line Removal: Filtering Out Harmonically Related Line Interference from Experimental Data, with Application to Gravitational Wave Detectors. Phys. Rev. D, 58:122003, 1998. scsi99 [4227] A. M. Sintes and B. F. Schutz. Removing Nonstationary, Nonharmonic External Interference from Gravitational Wave Interferometer Data. Phys. Rev. D, 60:062001, 1999. 369 sisuth95 [4228] A. Sitaram, M. Sundari, and S. Thangavelu. Uncertainty principles on certain Lie groups. Proc. Indian Acad. Sci., Math. Sci., 105(2):135– 151, 1995. si96 [4229] R. Sivaramakrishna. Separation of image parts using 2-D parallel form recursive filters. IEEE Trans. Image Process., 5(1):175–178, jan 1996. sj94 [4230] J. Sjöstrand. An algebra of pseudodifferential operators. Math. Res. Lett., 1(2):185–192, 1994. sj95 [4231] J. Sjöstrand. Wiener type algebras of pseudodifferential operators. Séminaire sur les ´Equations aux Dérivées Partielles, 1994–1995, École Polytech. Palaiseau.:Exp. No. IV, 21, 1995. sk01 [4232] V. A. Skopin. The equivalence of causal and ordinary invertibility for integral convolution operators. Differ. Equ., 37(9):1331–1339, 2001. skbe07 [4233] L. Skrzypczak and T. Bernadeta. Entropy of Sobolev embeddings of radial functions and radial eigenvalues of Schrödinger operators on isotropic manifolds. Math. Nachr., 280,(5-6):654 – 675, März 2007. sl72 [4234] J. Slawny. On factor representations and the cspast-algebra of. Comm. Math. Phys., 24:151–170, 1972. sl80 [4235] G. L. G. Sleijpen. The support of the Wiener algebra on stips. I. Indag. Math., 42:61–74, 1980. sl80-1 [4236] G. L. G. Sleijpen. The support of the Wiener algebra on stips. II. Indag. Math., 42:75–82, 1980. sl76 [4237] D. Slepian. On bandwidth. Proc. IEEE, 64(3):292–300, 1976. sl78 [4238] D. Slepian. Prolate spheroidal wave functions, Fourier analysis, and uncertainty–V:The discrete Case. The Bell System Technical Journal, 57(5):1371–1430, May/June 1978. sl83 [4239] D. Slepian. Some comments on Fourier Analysis and Uncertainty and Modelling. SIAM Rev., 25/Nr.3:379–393, 1983. posl61 [4240] D. Slepian and H. O. Pollak. Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty –I. Bell System Tech. J., 40(1):43– 63, 1961. 370 slsuva01 [4241] D. Sloan, E. Süli, and S. Vandewalle. Partial Differential Equations. Elsevier, Amsterdam, The Netherlands, 2001. josl94 [4242] I. H. Sloan and S. Joe. Lattice Methods for Multiple Integration. At the Clarendon Press, Oxford, 1994. slXX [4243] N. J. A. Sloane. On-Line Encyclopedia of Integer Sequences. urlhttp://www.research.att.com/ njas/sequences. sl70 [4244] T. A. Slobko. Algebra norms on C(G). Amer. J. Math., 92:381–388, 1970. smzh04 [4245] S. Smale and D.-X. Zhou. Shannon sampling and function reconstruction from point values. Bull. Amer. Math. Soc. (N.S.), 41(3):279–305, April 2004. smzh05 [4246] S. Smale and D.-X. Zhou. Shannon sampling. II: Connections to learning theory. Appl. Comput. Harmon. Anal., 19(3):285–302, 2005. smzh07 [4247] S. Smale and D.-X. Zhou. Learning Theory Estimates via Integral Operators and Their Approximations. Constr. Approx., 26(2):153– 172, 2007. sm98 [4248] H. F. F. Smith. A Hardy space for Fourier integral operators. J. Geom. Anal., 8(4):629–653, 1998. sm90 [4249] K. T. Smith. The uncertainty principle on groups, IMA. SIAM J. Appl. Math., 50(3):875–882, 1990. basm84 [4250] M. J. T. Smith and T. P. Barnwell III. A procedure for defining exact reconstruction filter banks for tree-structured subband coders. In ICASSP ’84, IEEE Internat. Conf. on Acoustics, Speech, and Signal Processing,, volume 9, pages 421–424, 1984. smsp05 [4251] R. R. Smith and N. Spronk. Representations of group algebras in spaces of completely bounded maps. Indiana Univ. Math. J., 54(3):873–896, 2005. smth03 [4252] C. Smitha and S. Thangavelu. On Strichartz’s uncertainty inequality for the Heisenberg group. Tohoku Math. J., 55(3):451–466, 2003. 371 sn61 [4253] I. N. Sneddon. Fourier Series. Routledge and Kegan Paul., London, 1961. so82 [4254] G. Soares de Souza. The dyadic special atom space. In Harmonic Analysis, Proc Conf, Minneapolis 1981, volume 908 of Lect. Notes Math., pages 297–299. Springer, 1982. so84 [4255] G. Soares de Souza. Spaces formed by special atoms. I. Rocky Mountain J. Math., 14:423–431, 1984. so84-1 [4256] G. Soares de Souza. Spaces formed by special atoms. II. In Functional Analysis, Holomorphy and Approximation Theory, Proc Semin, Rio de Janeiro 1981, volume 86 of North-Holland Math. Stud., pages 413– 425. North-Holland, 1984. so85 [4257] G. Soares de Souza. The atomic decomposition of Besov-BergmanLipschitz spaces. Proc. Amer. Math. Soc., 94:682–685, 1985. osaso86 [4258] G. Soares de Souza, R. O’Neil, and G. Sampson. Several characterizations for the special atom spaces with applications. Rev. Mat. Iberoam., 2:333–355, 1986. kimaso98 [4259] N. A. Sochen, R. Kimmel, and R. Malladi. A general framework for low level vision. IEEE Trans. Image Process., 7(3):310–318, March 1998. so93 [4260] C. D. Sogge. Fourier Integrals in Classical Analysis., volume 105 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1993. so05 [4261] P. L. Sondergaard. Gabor frames by sampling and periodization. Adv. Comput. Math., 2005. so07-1 [4262] P. L. Sondergaard. Finite Discrete Gabor Analysis. PhD thesis, Technical University of Denmark, 2007. kiliscso06 [4263] J. Song, Q. H. Liu, K. Kim, and W. R. J. Scott. High-Resolution 3-D Radar Imaging through Nonuniform Fast Fourier Transform (NUFFT). Commun. Comput. Phys., 1(1):176–191, 2006. 372 so88 [4264] M. Soumekh. Band-limited Interpolation from Unevenly Spaced Sampled Data. IEEE Trans. Acoust. Speech Signal Process., 36(1):110– 122, Jan. 1988. sp03 [4265] J. C. Spall. Introduction to Stochastic Search and Optimization. Estimation, Simulation, and Control. Wiley-Interscience Series in Discrete Mathematics and Optimization. Hoboken, NJ: Wiley., 2003. sp80 [4266] K. Spallek. Kurven und Karten. Mannheim, Wien, Zürich, 1980. sp76 [4267] F. O. Speck. Úber verallgemeinerte Faltungsoperatoren und ihre Symbole. In Funct. Theor. Meth. Part. Differ. Equat., Proc. Int. Symp., Darmstadt 1976, volume 561 of Lect. Notes Math., pages 459–471. 1976. sp77 [4268] F.-O. Speck. Eine Erweiterung des Satzes von Rakovcik und ihre Anwendung in der Simonenko-Theorie. Math. Ann., 228:93–100, 1977. sp65 [4269] R. Spector. Espaces de mesures et de fonctions invariants par les isomorphismes locaux de groupes ab’eliens localement compacts. Ann. Inst. Fourier (Grenoble), 15(2):325–343, 1965. sp69 [4270] R. Spector. Groupes localement isomorphes et transformation de Fourier avec poids. Ann. Inst. Fourier (Grenoble), 19(1):195–217, 1969. sp70 [4271] R. Spector. Sur la structure locale des groupes abéliens localement compacts. Bull. Soc. Math. France, Memoire 24, 1970. sp87 [4272] H. Speyer. Spektralzerlegung von Operatoren und Algebren mit Hilfe von Kernhilberträumen. (Spectral decomposition of operators and algebras by means of kernel Hilbert spaces). PhD thesis, Marburg (FRG): Univ. Marburg, Fachbereich Mathematik, Diss. viii, 120 S., 1987. sp78 [4273] W. Splettstösser. On Generalized Sampling Sums Based on Convolution Integrals. Arch. Elek. bertr., 32, Bd.7:267–275, 1978. sp79 [4274] W. Splettstösser. Error Estimates for Sampling Approximation of Non-Bandlimited Functions. Math. Methods Appl. Sci., 1:127–137, 1979. 373 Bibliographisches Institut, spstwi81 [4275] W. Splettstösser, R. L. Stens, and G. Wilmes. On approximation by the interpolating series of G. Valiron. Funct. Approx. Comment. Math., 11:39–56, 1981. sp97 [4276] F. Sprengel. Interpolation und Waveletzerlegung Multivariater Periodischer Funktionen. (Interpolation and Wavelet Decomposition of Multivariate Periodic Functions). Springer, Berlin, Heidelberg, New York, 1997. sp04 [4277] N. Spronk. Measurable Schur multipliers and completely bounded multipliers of the Fourier algebras. Proc. London Math. Soc. (3), 89(1):161–192, 2004. aldist02 [4278] A. Stamoulis, S. N. Diggavi, and N. Al Dhahir. Intercarrier interference in MIMO OFDM. IEEE Trans. Signal Process., 50(10):2451– 2464, October 2002. bostwi06 [4279] S. Stanczak, M. Wiczanowski, and H. Boche. Resource Allocation in Wireless Networks - Theory and Algorithms,, volume 4000 of Lecture Notes in Computer Science. Springer-Verlag, 2006. alprst06 [4280] Stanley M. Dunn, C. Alkis, and Prabhas V. Moghe. Numerical Methods in Biomedical Engineering. 2006. bimust00 [4281] J.-L. Starck, F. D. Murtagh, and A. Bijaoui. Image Processing and Data Analysis. The Multiscale Approach. Cambridge: Cambridge University Press. 297 p., 2000. st87 [4282] H. Stark. Image Recovery: Theory and Application. Academic Press, Orlando etc., 1987. st95-1 [4283] H. Stark. A Remark on Signal Reconstruction from Wavelet Transform Extrema., 1995. clst95 [4284] H. Stark and P. Clarkson, editors. Signal Processing Methods for Audio, Images and Telecommunications. Signal Processing and its Applications. Academic Press, 1995. stya98 [4285] H. Stark and Y. Yang. Vector Space Projections, a Numerical Approach to Signal and Image Processing, Neural Nets and Optics. Wiley Series in Telecommunications and Signal Processing. John Wiley & Sons, Inc., 1998. 374 st00-1 [4286] R. Stasinski. Set theoretic approach to interpolation of irregularly sampled images. In Galkowski, Krzysztof (ed) et al, NDS-2000 The 2nd Workshop on Multidimensional (nD) Systems, Czocha Castle, Poland, June 27-30, 2000 Zielona Góra: Technical University Press 149-152. 2000. st04 [4287] J. M. Steele. The Cauchy-Schwarz Master Class: An Introduction to the Art of Inequalities. Cambridge University Press, 2004. lipapisjst02 [4288] S. Steen, Q. Liao, L. Pierre, A. Paskevicius, and T. Sjoberg. Evaluation of LUCAS, a new device for automatic mechanical compression and active decompression resuscitation. Resuscitation, 55(3):285–99, 2002. lipapisjst03 [4289] S. Steen, Q. Liao, L. Pierre, A. Paskevicius, and T. Sjoberg. The critical importance of minimal delay between chest compressions and subsequent defibrillation: a haemodynamic explanation. Resuscitation, 58(3):249–58, 2003. st06-1 [4290] K.-G. Steffens. The History of Approximation Theory. From Euler to Bernstein. Basel: Birkhäuser. xx, 219 p., 2006. st85 [4291] C. Stegall. Applications of Descriptive Topology in Functional Analysis. Technical report, Institut für Mathematik, Johannes Kepler Universität Linz, 1985. st76 [4292] J. D. Stegeman. Wiener - Ditkin sets for certain Beurling algebras. Monatsh. Math., 82:337–340, 1976. st98 [4293] G. Steidl. A note on fast Fourier transforms for nonequispaced grids. Adv. Comput. Math., 9(3-4):337–353, 1998. st70 [4294] E. M. Stein. Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton, N.J., 1970. st93 [4295] E. M. Stein. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, 1993. rast03 [4296] E. M. Stein and Rami Shakarchi. Complex Analysis. Princeton University Press, 2003. 375 shst03-1 [4297] E. M. Stein and R. Shakarchi. Complex Analysis, volume 2 of Princeton Lectures in Analysis. Princeton University Press, Princeton, NJ, 2003. stwe71 [4298] E. M. Stein and G. Weiss. Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton, N.J., 1971. stzy85 [4299] E. M. Stein and A. Zygmund. Boundedness of translation invariant operators on Hölder spaces and Lp spaces. Ann. of Math., 67:337–349, 1985. st99 [4300] M. L. Stein. Interpolation of Spatial Data. Some Theory for Kriging. Springer, New York, NY, 1999. st05 [4301] O. Steinbach. Solution Methods for Linear Systems of Equations. Algorithms and Applications. (Lösungsverfahren für Lineare Gleichungssysteme. Algorithmen und Anwendungen). Mathematik für Ingenieure und Naturwissenschaftler. Wiesbaden: Teubner. 200 p. EUR 29.90, 2005. st91-1 [4302] K. Stempak. Almost everywhere summability of Laguerre series. Studia Math., 100(2):129–147, 1991. st92 [4303] K. Stempak. Almost everywhere summability of Laguerre series. II. Studia Math., 103(3):317–327, 1992. st94-1 [4304] K. Stempak. Heat-diffusion and Poisson integrals for Laguerre expansions. Tohoku Math. J., 46, 1994. st95-2 [4305] K. Stempak. On connections between Hankel, Laguerre and Heisenberg multipliers. J. Lond. Math. Soc. (2), 51(2):286–298, 1995. st96-1 [4306] K. Stempak. Equiconvergence for Laguerre function series. Studia Math., 118(3):285–300, 1996. st96 [4307] K. Stempak. Transplanting maximal inequalities between Laguerre and Hankel. Monatsh. Math., 122(2):187–197, 1996. st01 [4308] K. Stempak. Divergent Laguerre series. Proc. Amer. Math. Soc., 129(4):1123–1126, 2001. 376 st02 [4309] K. Stempak. On connections between Hankel, Laguerre and Jacobi transplantations. Tohoku Math. J., 54(4):471–493, 2002. stto03 [4310] K. Stempak and J.-L. Torrea. Poisson integrals and Riesz transforms for Hermite function expansions with weights. J. Funct. Anal., 202(2):443–472, 2003. stto05-1 [4311] K. Stempak and J.-L. Torrea. BMO results for operators associated to Hermite expansions. Ill. J. Math., 49(4):1111–1131, 2005. stto05 [4312] K. Stempak and J.-L. Torrea. On g-functions for Hermite function expansions. Acta Math. Hungar., 109(1-2):99–125, 2005. sttr94 [4313] K. Stempak and W. Trebels. On weighted transplantation and multipliers for Laguerre expansions. Math. Ann., 300(2):203–219, 1994. st99-1 [4314] M. B. Stenzel. The Segal-Bargmann transform on a symmetric space of compact type. J. Funct. Anal., 165(1):44–58, 1999. st06-2 [4315] M. B. Stenzel. An inversion formula for the Segal Bargmann transform on a symmetric space of non-compact type. J. Funct. Anal., 240(2):592–608, 2006. st78 [4316] V. D. Stepanov. On convolution integral operators. Sov. Math., Dokl., 19:1334–1337, 1978. stvo98 [4317] L. K. Stergioulas and A. Vourdas. Robust quantum state engineering using coherent states on a truncated von Neumann lattice. J. Modern Opt., 45(6):1155–1161, 1998. stvo04-1 [4318] L. K. Stergioulas and A. Vourdas. The Bargmann analytic representation in signal analysis. J. Comput. Appl. Math., 167(1):183–192, 2004. stwa96 [4319] A. Sterian and G. H. Wakefield. Robust automated music transcription systems. In Proceedings of the Intenational Computer Music Conference 1996, Hong Kong, 1996. st99-2 [4320] A. D. Sterian. Model-based Segmentation of Time-Frequency Images for Musical Transcription. PhD thesis, University of Michigan, 1999. 377 st83 [4321] F. Stettinger. Banachräume von Funktionen und Oszillation. (Banach spaces of functions and oscillation). PhD thesis, Universität Wien. 81 S., 1983. st03-1 [4322] R. Stevenson. Adaptive solution of operator equations using wavelet frames. SIAM J. Numer. Anal., 41(3):1074–1100, 2003. st04-1 [4323] E. G. Steward. Fourier Optics. An Introduction. Dover Publications Inc, Republication of the corrected reprint of the 1987 second edition edition, 2004. olst06 [4324] D. Stewart and S. Oliveira. Writing Scientific Software. Cambridge Univ. Press, 2006. st79 [4325] J. Stewart. Fourier transforms of unbounded measures. Canad. J. Math., 31:1281–1292, 1979. stwa85 [4326] J. Stewart and S. Watson. Math. Soc., 93, 1985. stwa86 [4327] J. Stewart and S. Watson. Irregular amalgams. Int. J. Math. Math. Sci., 9:331–340, 1986. st78-2 [4328] B. Stöckert. Multiplikatoren in gewichteten anisotropen L(p,Omega)Räumen ganzer analytischer Funktionen exponentiellen Typs. Math. Nachr., 86:33–40, 1978. st78-1 [4329] B. Stöckert. Ungleichungen vom Plancherel-Polya-Nikol’skij-Typ in gewichteten L(p,Omega)-Räumen mit gemischten Normen. Math. Nachr., 86:19–32, 1978. lomast96 [4330] R. G. Stockwell, L. Mansinha, and R. P. Lowe. Localization of the complex spectrum: the S transform. IEEE Trans. Signal Process., 44(4):998–1001, 1996. stwa67 [4331] C. Stone and S. Wainger. One-sided error estimates in renewal theory. J. Analyse Math., 20:325–352, 1967. stwi01 [4332] U. Storch and H. Wiebe. Lehrbuch der Mathematik, Band 4: Analysis auf Mannigfaltigkeiten – Funktionentheorie – Funktionalanalysis. Spektrum Akademischer Verlag, Heidelberg, Berlin, 2001. 378 stvo04 [4333] W. Strampp and E. V. Vorozhtsov. Mathematische Methoden der Signalverarbeitung. (Mathematical Methods of Signal Processing). Oldenbourg, München, 2004. st80 [4334] G. Strang. Linear Algebra and its Applications. Academic Press, New York - San Francisco - London, 2nd ed. edition, 1980. st86 [4335] G. Strang. Introduction to Applied Mathematics.. Cambridge Press, Wellesley, Massachusetts, 1986. st99-4 st03 Wellesley- [4336] G. Strang. The discrete cosine transform. SIAM Rev., 41(1):135–147, 1999. [4337] G. Strang. Introduction to Linear Algebra. 3rd ed. Cambridge Press, Wellesley, MA, 2003. Wellesley- st03-8 [4338] G. Strang. Lineare Algebra. Springer-Lehrbuch. Springer, Berlin, 2003. st06-4 [4339] G. Strang. Bringing the SVD to Life. 2006. st07 [4340] G. Strang. Computational Science and Engineering. 2007. fist73 [4341] G. Strang and G. Fix. A Fourier analysis of the finite element variational method. In CIME, II Ciclo Erice 1971, Constr Aspects Functional Analysis, pages 793–840. 1973. ngst96 [4342] G. Strang and T. Nguyen. Wavelets and Filter Banks. WellesleyCambridge Press, 1996. stzs79 [4343] S. Stratila and L. Zsido. Lectures on von Neumann Algebras. Translated from Romanian by Silviu Teleman. Revised and Updated Version of Lectii de Algebre von Neumann, Bucuresti 1975. Abacus Press, Bucuresti, 1979. st57 [4344] R. L. Stratonovich. On distributions in representation space. Sov. Phys., JETP, 4(6):891–898, 1957. st89 [4345] W. A. Strauss. Nonlinear Wave Equations, volume 73 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, 1989. 379 st67 [4346] R. S. Strichartz. Multipliers on Fractional Sobolev Spaces. J. Math. Mech., 16:1031–1060, 1967. st77 [4347] R. S. Strichartz. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J., 44:705– 714, 1977. st03-3 [4348] R. S. Strichartz. A Guide to Distribution Theory and Fourier Transforms. World Scientific, NJ, 2003. st91 [4349] T. Strohmer. Irregular Sampling, Frames and Pseudoinverse. Master’s thesis, Dept. Mathematics, Univ. Vienna, 1991. st94 [4350] T. Strohmer. Efficient Methods for Digital Signal and Image Reconstruction from Nonuniform Samples. PhD thesis, Dept. Mathematics, Univ. Vienna, 1994. st95 [4351] T. Strohmer. On discrete band-limited signal extrapolation. AMS Contemp. Math., 190:323–337, 1995. st97-2 [4352] T. Strohmer. A unified approach to numerical algorithms for discrete Gabor expansions. In Proc. SampTA - Sampling Theory and Applications, Aveiro/Portugal, pages 297–302, 1997. st97-1 [4353] T. Strohmer. Computational frameworks for discrete Gabor analysis. In Proc. SPIE’97, San Diego, 1997. st97-4 [4354] T. Strohmer. Computationally attractive reconstruction of bandlimited images from irregular samples. IEEE Trans. Image Process., 6(4):540–548, 1997. st98-1 [4355] T. Strohmer. Numerical algorithms for discrete Gabor expansions. In H. G. Feichtinger and T. Strohmer, editors, Gabor Analysis and Algorithms: Theory and Applications, Appl. Numer. Harmon. Anal., pages 267–294. Birkhäuser Boston, Boston, 1998. st99-3 [4356] T. Strohmer. Rates of convergence for the approximation of dual shift-invariant systems in `2 (Z). J. Fourier Anal. Appl., 5(6):599–615, 1999. 380 st00 [4357] T. Strohmer. A Levinson-Galerkin algorithm for regularized trigonometric approximation. SIAM J. Sci. Comput., 22(4):1160–1183 (electronic), 2000. st00-2 [4358] T. Strohmer. Finite and infinite-dimensional models for oversampled filter banks. In J. Benedetto and P. Ferreira, editors, Modern Sampling Theory: Mathematics and Applications, pages 297–320. Birkhäuser, Boston, 2000. st00-3 [4359] T. Strohmer. Numerical analysis of non-uniform sampling problem. J. Comput. Appl. Math., 122(1-2):297–316, 2000. st01-1 [4360] T. Strohmer. Approximation of dual Gabor frames, window decay, and wireless communications. Appl. Comput. Harmon. Anal., 11(2):243–262, 2001. st02-1 [4361] T. Strohmer. Four short stories about Toeplitz matrix calculations. Linear Algebra Appl., 343-344:321–344, 2002. st06 [4362] T. Strohmer. Pseudodifferential operators and Banach algebras in mobile communications. Appl. Comput. Harmon. Anal., 20(2):237– 249, March 2006. best03 [4363] T. Strohmer and S. Beaver. Optimal OFDM system design for timefrequency dispersive channels. IEEE Trans. Comm., 51(7):1111–1122, July 2003. bistsu96 [4364] T. Strohmer, T. Binder, and M. Süssner. How to recover smooth object boundaries in noisy medical images. In Proc. ICIP-96, volume 1, pages 331–334, Lausanne, 1996. fast10 [4365] T. Strohmer and B. Farrell. Inverse–Closedness of a Banach algebra of integral operators on the Heisenberg group. J. Operator Theory, 64, 2010. gust08 [4366] T. Strohmer and R. Guan. Krylov Subspace Algorithms and Circulant Embedding Method for Wideband Single-Carrier Equalization. IEEE Trans. Signal Process., 56(6):2483–2495, 2008. hest03 [4367] T. Strohmer and R. W. j. Heath. Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal., 14(3):257–275, 2003. 381 helost03 [4368] T. Strohmer, D. J. Love, and R. W. J. Heath. Grassmannian Beamforming for Multiple-Input Multiple-Output Wireless Systems. IEEE Trans. Inform. Theory, 49(10):2735–2747, 2003. stta05 [4369] T. Strohmer and J. Tanner. Implementations of Shannon’s sampling theorem, a time-frequency approach. Sampl. Theory Signal Image Process., 4(1):1–17, 2005. stta06 [4370] T. Strohmer and J. Tanner. Fast reconstruction methods for bandlimited functions from periodic nonuniform sampling. SIAM J. Numer. Anal., 44(3):1073 – 1094, 2006. stve06 [4371] T. Strohmer and R. Vershynin. A randomized solver for linear systems with exponential convergence. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques., volume 4110 of Lecture Notes in Computer Science, pages 499–507, August 2006. stve09 [4372] T. Strohmer and R. Vershynin. A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl., 15(2):262 – 278, April 2009. stviwa00 [4373] T. Strohmer, R. Vio, and W. Wamsteker. On the reconstruction of irregularly sampled time series. Publications of the Astronomical Society of the Pacific, 112:74–90, January 2000. stxu06 [4374] T. Strohmer and J. Xu. Efficient calibration of time-interleaved ADCs via separable nonlinear least squares. IEEE Trans. Circuits Syst. I Regul. Pap., submitted, 2006. stxu06-1 [4375] T. Strohmer and J. Xu. Pulse Construction in OFDM Systems via convex optimization. IEEE Trans. Comm., accepted, 2006. st83-1 [4376] J.-O. Strömberg. A modified Franklin system and higher-order spline systems on rn as unconditional bases for Hardy spaces. In et al. and W. Beckner, editors, Conference on Harmonic Analysis in Honor of A. Zygmond, Vol. II, Wadsworth (Belmont, CA), pages 475–494, 1983. st92-2 [4377] J.-O. Strömberg. A modified Franklin system as the first orthonormal system of wavelets. In Wavelets and Applications, Proc 2nd Int Conf, 382 Marseille/Fr 1989, volume 20 of Rech. Math. Appl., pages 434–442, Paris, 1992. Masson. st06-3 [4378] M. Stroppel. Locally Compact Groups. EMS Textbooks in Mathematics. Zürich: European Mathematical, 2006. stwh00 [4379] W. Strunk JR. and E. B. White. The Elements of Style. Longman, 4th edition, 2000. st92-1 [4380] M. Struwe. Semi-linear wave equations. Bull. Amer. Math. Soc., 26(1):53–85, 1992. suze07 [4381] N. K. Subbanna and Y. Y. Zeevi. Existence conditions for discrete noncanonical multiwindow Gabor schemes. IEEE Trans. Signal Process., 55(10):5113–5117, 2007. suta95 [4382] T. Sudo and H. Takai. Stable rank of the c∗ -algebras of nilpotent Lie groups. Internat. J. Math., 6(3):439–446, 1995. su86 [4383] E. E. Süli. Mollifiers in function spaces. Technical Report 4, Oxford University Computing Laboratory, Numerical Analysis Group, 1986. lilimasu06 [4384] J. Sun, L. Liu, Y. Maojin, and W. Lingyu. Study of the transmitter antenna gain for intersatellite laser communications. Opt. Eng., 45(5):058001 1–5, 2006. su93 [4385] Q. Sun. Sequence spaces and stability of integer translates. Z. Anal. Anwend., 12(3):567–584, 1993. su05-3 [4386] Q. Sun. Local dual and poly-scale refinability. Proc. Amer. Math. Soc., 133(4):1175–1184, 2005. su05 [4387] Q. Sun. Wiener’s lemma for infinite matrices with polynomial offdiagonal decay. C. R. Math. Acad. Sci. Paris, 340(8):567–570, 2005. su05-1 [4388] W. Sun. Sampling theorems for multivariate shift invariant subspaces. Sampl. Theory Signal Image Process., 4(1):73–98, 2005. su06 [4389] W. Sun. G-frames and g-Riesz bases. J. Math. Anal. Appl., 322:437– 452, October 2006. 383 su07-3 [4390] W. Sun. Density of wavelet frames. Appl. Comput. Harmon. Anal., 22(2):264–272, 2007. su07-4 [4391] W. Sun. Sampling theorems for multivariate shift invariant subspaces. Appl. Comput. Harmon. Anal., 4(1):264–272, 2007. su07 [4392] W. Sun. Stability of G-frames. J. Math. Anal. Appl., 326(2), 2007. su09-1 [4393] W. Sun. Local sampling theorems for spaces generated by splines with arbitrary knots. Math. Comp., 78(265), 2009. su10-4 [4394] W. Sun. Homogeneous approximation property for wavelet frames. Monatsh. Math., pages 289–324, 2010. suzh98 [4395] W. Sun and X. Zhou. Frames and sampling theorem. Sci. China Ser. A, 41(6):606–612, 1998. suzh00 [4396] W. Sun and X. Zhou. Sampling theorem for wavelet subspaces: Error estimate and irregular sampling. IEEE Trans. Signal Process., 48(1):223–226, 2000. suzh01 [4397] W. Sun and X. Zhou. On the stability of Gabor frames. Adv. in Appl. Math., 26(3):181–191, 2001. suzh02 [4398] W. Sun and X. Zhou. Irregular wavelet/Gabor frames. Appl. Comput. Harmon. Anal., 13(1):63–76, 2002. suzh03-2 [4399] W. Sun and X. Zhou. Average sampling in shift invariant subspaces with symmetric averaging functions. J. Math. Anal. Appl., 287(1):279–295, November 2003. suzh03-1 [4400] W. Sun and X. Zhou. Density and stability of wavelet frames. Appl. Comput. Harmon. Anal., 15(2):117–133, 2003. suzh03-4 [4401] W. Sun and X. Zhou. Irregular Gabor frames and their stability. Proc. Amer. Math. Soc., 131(9):2883–2893 (electronic), 2003. suzh03-3 [4402] W. Sun and X. Zhou. Reconstruction of functions in spline subspaces from local averages. Proc. Amer. Math. Soc., 131(8):2561–2571 (electronic), 2003. 384 suzh03 [4403] W. Sun and X. Zhou. The aliasing error in recovery of nonbandlimited signals by prefiltering and sampling. Appl. Math. Lett., 16(6):949–954, 2003. suzh04 [4404] W. Sun and X. Zhou. Density of irregular wavelet frames. Proc. Amer. Math. Soc., 132(8):2377–2387, 2004. suzh09 [4405] W. Sun and X. Zhou. Characterization of local sampling sequences for spline subspaces. Adv. Comput. Math., 30(2):153–175, February 2009. lisu93 [4406] Y. Sun and Y. Liu. Optimal recovery of the Sobolev-Wiener class of smooth functions by double sampling. Constr. Approx., 9(4):391–405, 1993. su97 [4407] V. S. Sunder. Functional Analysis: Spectral Theory. (English). Birkhäuser, Basel, 1997. su62 [4408] S. M. Sussman. Least square synthesis of radar ambiguity functions. IRE Trans. Inform. Theory, 8:246–254, 1962. bibugrpostsu95 [4409] M. Süssner, M. Budil, T. Strohmer, M. Greher, G. Porenta, and T. Binder. Contour detection using artificial neuronal network presegmention. In Proc. Computers in Cardiology, Vienna, 1995. oxsuxi96 [4410] B. Suter, X. Xia, and M. Oxley. Malvar wavelets with asymmetrically overlapped windows. IEEE Trans. Signal Process., 44(3):723 – 728, March 1996. su84 [4411] O. G. Sutton. Mathematics in Action. Dover Publications Inc, Mineola, N.Y., 1984. fosz70 [4412] B. Sz. Nagy and C. Foias. Harmonic Analysis of Operators on Hilbert Spaces. Budapest: Akadémiai Kiadó and Amsterdam-London: NorthHolland Publishing Company. XIII, 387 p., 1970. sz59 [4413] G. Szegö. Orthogonal Polynomials. Revised ed., volume 23 of American Mathematical Society Colloquium Publ. American Mathematical Society (AMS), New York, NY, 1959. sz68 [4414] P. Szeptycki. On functions and measures whose Fourier transforms are functions. Math. Ann., 179:31–41, 1968. 385 sz80 [4415] P. Szeptycki. On some problems related to the extended domain of the Fourier transform. Rocky Mountain J. Math., 10:99–103, 1980. sz94 [4416] H. H. Szu. Mathematics of adaptive wavelet transforms : relating continuous with discrete transforms. Opt. Eng., 33/7:2111–2124, July 1994. sz07 [4417] R. Szwarc. Kaczmarz algorithm in Hilbert space and tight frames. Appl. Comput. Harmon. Anal., 22(3):382–385, 2007. taXX [4418] K. Tachizawa. On L2 boundedness of pseudodifferential operators with Weyl symbols. ta94 [4419] K. Tachizawa. The boundedness of pseudodifferential operators on modulation spaces. Math. Nachr., 168:263–277, 1994. ta96-1 [4420] K. Tachizawa. The pseudodifferential operator and Wilson bases. J. Math. Pures Appl., IX. Sér., 75(6):509–529, 1996. ta99 [4421] K. Tachizawa. A generalization of Calderón-Vaillancourt’s theorem. RIMS Kokyuroku, 1102:64–75, 1999. ta05 [4422] K. Tachizawa. Weighted Sobolev-Lieb-Thirring inequalities. Rev. Mat. Iberoam., 21(1):67–85, 2005. ta75 [4423] M. H. Taibleson. Fourier analysis on local fields. Mathematical Notes. Vol. 15. Princeton University Press and University of Tokyo Press, Princeton, NJ, 1975. tawe80 [4424] M. H. Taibleson and G. Weiss. The molecular characterization of certain Hardy spaces. Ast’erisque, 77:67–149, 1980. tawe83 [4425] M. H. Taibleson and G. Weiss. Certain function spaces associated with a.e. convergence of Fourier series. In Conference in Honor of A. Zygmund, Vol.I, pages 95–113. Wadsworth, 1983. ta75-2 [4426] H. Takai. On a duality for crossed products of C ∗ t-algebras. J. Funct. Anal., 19:25–39, 1975. ta75-3 [4427] H. Takai. On a Fourier expansion in continuous crossed products. Publ. Res. Inst. Math. Sci., 11(3):849–880, 1975. 386 ta82 [4428] H. Takai. Differentiable structure on nonabelian c∗ -algebras. In Operator Algebras and Applications, Part 2, volume 38 of Proc. Sympos. Pure Math., pages 343–352. Amer. Math. Soc., Providence, R.I., 1982. ta69 [4429] M. Takesaki. A generalized commutation relation for the regular representation. Bull. Soc. Math. France, 97:289–297, 1969. ta79 [4430] M. Takesaki. Theory of Operator Algebras I. Springer-Verlag, New York, Heidelberg, Berlin, 1979. ta02 [4431] M. Takesaki. Theory of Operator Algebras I., volume 124(5) of Encyclopaedia of Mathematical Sciences. Operator Algebras and NonCommutative Geometry. Springer, Berlin, 2nd printing of the 1979 ed. edition, 2002. ta03 [4432] M. Takesaki. Theory of Operator Algebras. II., volume 125(VI) of Encyclopaedia of Mathematical Sciences. Springer, Berlin, 2003. ta03-1 [4433] M. Takesaki. Theory of Operator Algebras. III., volume 127(VIII) of Encyclopaedia of Mathematical Sciences. Springer, Berlin, 2003. ta96-2 [4434] M. Talagrand. New concentration inequalities in product spaces. Invent. Math., 126(3):505–563, 1996. ta06-1 [4435] E. Talvila. Continuity in the Alexiewicz norm. 2006. ta06-2 [4436] E. Tamasi. Anisotropic Besov spaces and approximation numbers of traces on related fractal sets. Rev. Mat. Comp., 19(2):297–321, 2006. ta71-1 [4437] K. Tanabe. Projection method for solving a singular system of linear equations and its applications. Numer. Math., 17:203–214, 1971. ta74 [4438] K. Tanabe. Characterization of linear stationary iterative processes for solving a singular system of linear equations. Numer. Math., 22:349– 359, 1974. ta75-1 [4439] S. Tanaka. On the Fourier transform of second degree characters. In I. Gelfand, editor, Lie Groups and their Representations: Summer School of the Bolyai Janos Mathematical Society, Budapest 1971, pages 649–652. Halsted Press, Wiley, New York, 1975. 387 taxu05 [4440] L. Tang and J. Xu. Some properties of Morrey type Besov-Triebel spaces. Math. Nachr., 278(7-8):904–917, 2005. tawe06 [4441] W.-S. Tang and E. Weber. Frame vectors for representations of Abelian groups. Appl. Comput. Harmon. Anal., 20(2):283–297, 2006. tawe04 [4442] X. Tang and A. Weinstein. Quantization and Morita equivalence for constant Dirac. Ann. Inst. Fourier (Grenoble), 54(5):1565–1580, xvi, xxii, 2004. ta06 [4443] J. Tanner. Optimal filter and mollifier for piecewise smooth spectral data. Math. Commun., 75(254):767–790, 2006. kwta99 [4444] L. Tao and H. K. Kwan. 2-D real Gabor transform. In Electrical and Computer Engineering, 1999 IEEE Canadian Conference on, volume 2, pages 831–834, Edmonton, Alta., 1999. kwta05 [4445] L. Tao and H. K. Kwan. Block time-recursive real-valued discrete Gabor transform implemented by unified parallel lattice structures. IEICE Trans. Inf. Syst., E88-D(7):1472–1478, 2005. tavaxu07 [4446] Q. Tao, M. I. Vai, and Y. Xu, editors. Wavelet Analysis and Applications. (Proc. WAA2005, Nov. 29 - Dec. 2, 2005, University of Macau.). Applied and Numerical Harmonic Analysis. Birkhäuser, Basel - Boston - Berlin, 2007. ta99-1 [4447] T. Tao. Low regularity semilinear wave equations. Comm. Partial Differential Equations, 24(3-4):599–629, 1999. ta93 [4448] A. M. Taratorin and S. Sideman. Iterative algorithm for image filtering utilizing image- and noise-related information. Opt. Eng., 32/11:2856– 2865, November 1993. ta98 [4449] D. Tataru. The FBI transform, operators with nonsmooth coefficients and the nonlinear wave equation. In Journées “quations aux Dérivées Partielles, Saint-Jean-de-Monts, France, 31 Mai au 4 Juin 1999 Exposés Nos I-XIX,. 1998. ta68 [4450] D. C. Taylor. A characterization of Banach algebras with approximate unit. Bull. Amer. Math. Soc., 74:761–766, 1968. 388 ta96 [4451] J. C. Taylor. An Introduction to Measure and Probability. Springer, New York, 1996. ta71 [4452] M. E. Taylor. Gelfand theory of pseudo differential operators and hypoelliptic operators. Trans. Amer. Math. Soc., 153:495–510, 1971. ta81 [4453] M. E. Taylor. Pseudodifferential Operators. Princeton Mathematical Series 34. Princeton University Press, Princeton, N.J., 1981. ta84 [4454] M. E. Taylor. Noncommutative microlocal analysis. Mem. Amer. Math. Soc., 313:182 p., 1984. ta84-2 [4455] M. E. Taylor. Noncommutative Microlocal Analysis, Part I, volume 52. 1984. ta86 [4456] M. E. Taylor. Noncommutative Harmonic Analysis. American Mathematical Society, Providence, RI, 1986. ta92 [4457] M. E. Taylor. Analysis on Morrey spaces and applications to NavierStokes and other evolution equations. Comm. Part. Diff. Equ., 17(910):1407–1456, 1992. ta06-3 [4458] M. E. Taylor. Measure Theory and Integration., volume 76 of Graduate Studies in Mathematics. American Mathematical Society (AMS), Providence, RI, 2006. tc84 [4459] P. Tchamitchian. Généralisation des algèbres de Beurling. Ann. Inst. Fourier (Grenoble), 34(4):151–168, 1984. tc87 [4460] P. Tchamitchian. tude dans un cadre hilbertien des algèbres de Beurling munies d’un poids radial à croissance rapide. (Study in a Hilbertian framework of Beurling algebras equipped with a radial weight having rapid growth). Ark. Mat., 25:295–312, 1987. tevi04 [4461] N. Tecu and V. Vicol. Testing the NuHAG Gabor Formulas. Technical report, 2004. stte80 [4462] R. Temam and G. Strang. Functions of bounded deformation. Arch. Ration. Mech. Anal., 75:7–21, 1980. te05-3 [4463] V. N. Temlyakov. Greedy-type approximation in Banach spaces and applications. Constr. Approx., 21(2):257–292, 2005. 389 te00 [4464] N. Teofanov. Ultramodulation Spaces, Wilson Bases and Pseudodifferential Operators. PhD thesis, University of Novi Sad, 2000. te05-1 [4465] N. Teofanov. Some Remarks on Ultra-Modulation Spaces. preprints, 2005. te05-2 [4466] N. Teofanov. Ultradistributions and Time-Frequency Analysis. ESI preprints, 2005. te06-1 [4467] N. Teofanov. Convergence of multiresolution expansions in the Schwartz class. Math. Balkanica (N.S.), 20(1):101–111, 2006. te06 [4468] N. Teofanov. Modulation spaces, Gelfand-Shilov spaces and pseudodifferential operators. Sampl. Theory Signal Image Process., 5(2):225– 242, 2006. te98 [4469] A. Teolis. Computational Signal Processing with Wavelets. Birkhäuser, Boston, 1998. te89 [4470] A. F. M. ter Elst. Gevrey spaces related to Lie algebras of operators. PhD thesis, Tech. Univ. Eindhoven, 1989. te91 [4471] A. F. M. ter Elst. On infinitely differentiable and Gevrey vectors for representation. Proc. Amer. Math. Soc., 112(3):795–802, 1991. te93 [4472] A. F. M. ter Elst. Gevrey spaces and their intersections. J. Austral. Math. Soc. Ser. A, 54(2):263–286, 1993. teva89 [4473] A. F. M. ter Elst and S. van Eijndhoven. A Gevrey space characterization of certain Gelfand-Shilov spaces Sαβ . Indag. Math., 51(2):175–184, 1989. te82 [4474] M. Terp. Interpolation spaces between a von Neumann algebra and its predual. J. Operator Theory, 8:327–360, 1982. te85 [4475] A. Terras. Harmonic Analysis on Symmetric Spaces and Applications. I. Springer, New York, 1985. te88 [4476] A. Terras. Harmonic Analysis on Symmetric Spaces and Applications. II. Springer, Berlin, 1988. 390 ESI te99 [4477] A. Terras. Fourier Analysis on Finite Groups and Applications., volume 43 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge, 1999. te05 [4478] G. Teschke. Multi-frames in thresholding iterations for nonlinear operator equations with mixed sparsity constraints. 2005. te07 [4479] G. Teschke. Multi-frame representations in linear inverse problems with mixed multi-constraints. Appl. Comput. Harmon. Anal., 22(1):43–60, 2007. crte04 [4480] G. Teschke and L. Cruz Martin. A new method to reconstruct radar reflectivity and Doppler information. Technical report, 2004. te72 [4481] U. B. Tewari. Isomorphisms of some convolution algebras and their multiplier algebras. Bull. Austral. Math. Soc., 7:321–335, 1972. te76 [4482] U. B. Tewari. Multipliers of Segal algebras. Proc. Amer. Math. Soc., 54:157–161, 1976. mate84 [4483] U. B. Tewari and S. Madan. An harmonic analysis for operators: F. and M. Riesz. Illinois J. Math., 28(2):286–298, 1984. sote92 [4484] U. B. Tewari and S. Somasundaram. Almost periodicity in operator algebras. Rend. Istit. Mat. Univ. Trieste, 24(1-2):39–54 (1994), 1992. jote91 [4485] A. H. Tewfik and P. E. T. Jorgensen. On the choice of a wavelet for signal coding and processing. pages 2025–2028, 1991. shth94 [4486] N. V. Thakor and D. L. Sherman. Biomedical problems in timefrequency-scale analysis-new challenges. In Proceedings of the IEEESP International Symposium on Time-Frequency and Time-Scale Analysis, 1994., pages 536–539, Philadelphia, PA, USA, 1994. th87 [4487] S. Thangavelu. Multipliers for Hermite expansions. Iberoam., 3(1):1–24, 1987. th89 [4488] S. Thangavelu. Summability of Hermite expansions. I. Trans. Amer. Math. Soc., 314(1):119–142, 1989. th89-1 [4489] S. Thangavelu. Summability of Hermite expansions. II. Trans. Amer. Math. Soc., 314(1):143–170, 1989. 391 Rev. Mat. th90-3 [4490] S. Thangavelu. Hermite expansions on R2n for radial functions. Rev. Mat. Iberoam., 6:61–74, 1990. th90-1 [4491] S. Thangavelu. Multipliers for the Weyl transform and Laguerre expansions. Proc. Indian Acad. Sci., Math. Sci., 100(1):9–20, 1990. th90-4 [4492] S. Thangavelu. On almost everywhere and mean convergence of Hermite and Laguerre expansions. Colloq. Math., 60:21–34, 1990. th90-2 [4493] S. Thangavelu. Some uncertainty inequalities. Proc. Indian Acad. Sci., Math. Sci., 100(2):137–145, 1990. th90 [4494] S. Thangavelu. Summability of Laguerre expansions. Anal. Math., 16(4):303–315, 1990. th91-2 [4495] S. Thangavelu. Restriction theorems for the Heisenberg group. J. Reine Angew. Math., 414:51–65, 1991. th91-1 [4496] S. Thangavelu. Some restriction theorems for the Heisenberg group. Studia Math., 99(1):11–21, 1991. th91-3 [4497] S. Thangavelu. Spherical means on the Heisenberg group and a restriction theorem for the symplectic Fourier transform. Rev. Mat. Iberoam., 7(2):135–155, 1991. th91 [4498] S. Thangavelu. Weyl multipliers, Bochner-Riesz means and special Hermite expansions. Ark. Mat., 29(2):307–321, 1991. th92 [4499] S. Thangavelu. Transplantation, summability and multipliers for multiple Laguerre expansions. Tohoku Math. J., 44:279–298, 1992. th93-4 [4500] S. Thangavelu. A note on a transplantation theorem of Kanjin and multiple Laguerre expansions. Proc. Amer. Math. Soc., 119(4):1135– 1143, 1993. th93-3 [4501] S. Thangavelu. Hermite expansions on Rn for radial functions. Proc. Amer. Math. Soc., 118(4):1097–1102, 1993. th93 [4502] S. Thangavelu. Lectures on Hermite and Laguerre Expansions., volume 42 of Mathematical Notes. Princeton University Press, Princeton, NJ, 1993. 392 th93-1 [4503] S. Thangavelu. On conjugate Poisson integrals and Riesz transforms for the Hermite expansions. Colloq. Math., 64(1):103–113, 1993. th93-2 [4504] S. Thangavelu. On regularity of twisted spherical means and special Hermite expansions. Proc. Indian Acad. Sci., Math. Sci., 103(3):303– 320, 1993. th98 [4505] S. Thangavelu. Harmonic Analysis on the Heisenberg Group., volume 159 of Progress in Mathematics. Birkhäuser, Boston, MA, 1998. th98-1 [4506] S. Thangavelu. Hermite and special Hermite expansions revisited. Duke Math. J., 94(2):257–278, 1998. th02 [4507] S. Thangavelu. Revisiting Hardy’s theorem for the Heisenberg group. Math. Z., 242(4):761–779, 2002. th04-1 [4508] S. Thangavelu. An Introduction to the Uncertainty Principle. Hardys Theorem on Lie Groups. With a Foreword by Gerald B. Folland., volume 217 of Progress in Mathematics. Birkhäuser, Boston, MA, 2004. th04-2 [4509] S. Thangavelu. On theorems of Hardy, Gelfand-Shilov and Beurling for semisimple groups. Publ. Res. Inst. Math. Sci., 40(2):311–344, 2004. th05-1 [4510] S. Thangavelu. A survey of Hardy type theorems. In Advances in Analysis, pages 39–70. World Sci. Publ., Hackensack, 2005. th06-1 [4511] S. Thangavelu. Holomorphic Sobolev spaces associated to compact symmetric spaces. 2006. th04 [4512] N. T. Thao. Quasi-equivalent feedforward system in asymptotic Σ/∆ modulation. Circuits and Systems II: Express Briefs, IEEE Transactions on [see also Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on], 51(9):482–487, 2004. th05 [4513] E. Thiébaut. Introduction to Image Reconstruction and Inverse Problems. In R. Foy and F.-C. Foy, editors, Optics in Astrophysics, NATO ASI. Kluwer Academic, 2005. th95 [4514] C. Thiele. Time-frequency analysis in the discrete phase plane. PhD thesis, 1995. 393 th06 [4515] C. Thiele. Wave Packet Analysis, volume 105 of CBMS Regional Conference Series in Mathematics. American Mathematical Society (AMS), Providence, RI, 2006. th82 [4516] D. J. Thomson. Spectrum estimation and harmonic analysis. Proc. IEEE, 70(9):1055–1096, 1982. fefeheloteth97 [4517] S. Thurner, S. B. Lowen, M. C. Feurstein, C. Heneghan, H. G. Feichtinger, and M. C. Teich. Analysis, synthesis, and estimation of fractal-rate stochastic point processes. Phys. Rev. E (3), 5(4):565– 595, 1997. ti96 [4518] R. Tibshirani. Regression shrinkage and selection via the LASSO. J. Roy. Statist. Soc. Ser. B, 58(1):267–288, 1996. arti77 [4519] A. N. Tikhonov and V. Y. Arsenin. Solutions of Ill-Posed Problems. Translation Editor Fritz John. Scripta Series in Mathematics. New York etc.: John Wiley & and Sons and Washington, D.C.: V. H. Winston & and Sons. XIII, 258 p., 1977. tiwa79 [4520] M.-L. Ting and H.-C. Wang. Homogeneous Banach spaces of locally integrable functions. Nanta Math., 12:62–70, 1979. ti48 [4521] E. C. Titchmarsh. Introduction to the Theory of Fourier Integrals. 2nd. Edition. Clarendon Press., Oxford, 1948. tj72 [4522] T. Tjur. On the Mathematical Foundations of Probability. Institute of Mathematical Statistics, University of Copenhagen, Copenhagen, 1972. tj74 [4523] T. Tjur. Conditional Probability Distributions. Institute of Mathematical Statistics, University of Copenhagen, Copenhagen, 1974. to01 [4524] J. Toft. Subalgebras to a Wiener type algebra of pseudo-differential operators. Ann. Inst. Fourier (Grenoble), 51(5):1347–1383, 2001. to04-3 [4525] J. Toft. Continuity properties for modulation spaces, with applications to pseudo-differential calculus. I. J. Funct. Anal., 207(2):399– 429, 2004. 394 to04-2 [4526] J. Toft. Continuity properties for modulation spaces, with applications to pseudo-differential calculus. II. Ann. Global Anal. Geom., 26(1):73–106, 2004. to04-1 [4527] J. Toft. Convolutions and embeddings for weighted modulation spaces. In Advances in Pseudo-differential Operators, volume 155 of Oper. Theory Adv. Appl., pages 165–186. Birkhäuser, Basel, 2004. to06-1 [4528] J. Toft. Hudson’s theorem and rank one operators in Weyl calculus. In Pseudo-differential Operators and related Topics, volume 164 of Oper. Theory Adv. Appl., pages 153–159. Birkhäuser, Basel, 2006. towozh07 [4529] J. Toft, M. Wong, and H. Zhu, editors. Modern Trends in PseudoDifferential Operators, volume 172. 2007. chto97 [4530] J. Tolar and G. Chadzitaskos. Quantization on zm and coherent states over zm timeszm . J. Phys. A, Math. Gen., 30(7):2509–2517, 1997. anto98 [4531] R. Tolimieri and M. An. Time-frequency Representations. Birkhäuser, Boston, 1998. anluto97 [4532] R. Tolimieri, M. An, and C. Lu. Mathematics of Multidimensional Fourier Transform Algorithms. Springer, 1997. orto95 [4533] R. Tolimieri and R. Orr. Poisson summation, the ambiguity function, and the theory of Weyl–Heisenberg frames. J. Fourier Anal. Appl., 1:233–247, 1995. to76 [4534] G. P. Tolstov. Fourier Series. Translated from the Russian by Richard A. Silverman. 2nd ed. Dover Publications Inc, New York, 1976. gohalito05 [4535] S. Tomasin, A. Gorokhov, Haibing Yang, and J. P. Linnartz. Iterative interference cancellation and channel estimation for mobile OFDM. IEEE Transactions on Wireless Communications, 4(1):238– 245, January 2005. to06 [4536] N. Tomita. Fractional integrals on modulation spaces. Math. Nachr., 279(5-6):672–680, 2006. to79 [4537] B. J. Tomiuk. On someproperties of Segal algebras and their multipliers. Manuscripta Math., 27:1–18, 1979. 395 to83 [4538] B. J. Tomiuk. Arens regularity of conjugate Banach algebras with dense socle. The Rocky Mountain Journal of Mathematics, 13(1):117– 124, 1983. to73 [4539] A. Torchinsky. Singular integrals in the spaces lambda(B,X). Studia Math., 47:165–190, 1973. to86 [4540] A. Torchinsky. Real-variable Methods in Harmonic Analysis. Academic Press, Orlando etc., 1986. to04 [4541] A. Torchinsky. Real-Variable Methods in Harmonic Analysis. Dover Publications Inc, 2004. to91-2 [4542] J.-L. Torrea. The work of Jos’e Luis Rubio de Francia. I. Publ. Mat., Barc., 35(1):9–25, 1991. to84 [4543] M. Torres. Amalgams of Lp and ellq . PhD thesis, McMaster University, USA, 1984. to91 [4544] R. H. Torres. Boundedness Results for Operators with Singular Kernels on Distribution Space. Marcel Dekker, New York, Basel, 1991. to91-1 [4545] R. H. Torres. Spaces of sequences, sampling theorem, and functions of exponential type. Studia Math., 100(1):51–74, 1991. to98 [4546] R. H. Torres. Mean oscillation of functions and the Paley-Wiener space. J. Fourier Anal. Appl., 4(3):283–297, 1998. toXX [4547] M. Torres de Squire. Multipliers and Fourier multipliers for spaces in standard situation. to87-1 [4548] M. Torres de Squire. Multipliers for amalgams and the algebra so (g). Canad. J. Math., 39:123–148, 1987. to87 [4549] M. Torres de Squire. Resonance classes of measures. Int. J. Math. Math. Sci., 10:461–472, 1987. to93 [4550] M. Torres de Squire. Multipliers from spaces of test functions to amalgams. J. Austral. Math. Soc. Ser. A, 54(1):97–110, 1993. mito05 [4551] M. Torres Torriti and H. Michalska. A software package for Lie algebraic computations. SIAM Rev., 47(4):722–745, 2005. 396 frto93 [4552] G. Torres Vega and J. H. Frederick. A quantum mechanical representation in phase space. J. Chem. Phys., 4:3103–3120, 1993. to00 [4553] B. Torrésani. Time-frequency analysis, from geometry to signal processing. In Govaerts, Jan (ed) et al, Contemporary Problems in Mathematical Physics Proceedings of the 1st International Workshop, Cotonou, Republic of Benin, October 31-November 5, 1999 Singapore: World Scientific 74-96. 2000. towi05 [4554] A. Toselli and O. Widlund. Domain Decomposition Methods – Algorithms and Theory. Springer Series in Computational Mathematics 34. Berlin: Springer. xv, 450 p., 2005. sttr00 [4555] B. Trebels and G. Steidl. Riesz bounds of Wilson bases generated by B-splines. J. Fourier Anal. Appl., 6(2):171–184, 2000. batr97 [4556] L. N. Trefethen and D. I. Bau. Numerical Linear Algebra. SIAM, Philadelphia, PA, 1997. emtr05 [4557] L. N. Trefethen and M. Embree. Spectra and Pseudospectra. The Behavior of Nonnormal Matrices and Operators. Princeton University Press, Princeton, NJ, 2005. trvo97 [4558] S. Treil and A. Volberg. Continuous frame decomposition and a vector Hunt-Muckenhoupt-Wheeden theorem. Ark. Mat., 35(2):363–386, 1997. trvo97-1 [4559] S. Treil and A. Volberg. Wavelets and the angle between past and future. J. Funct. Anal., 143(2):269–308, 1997. tr97 [4560] K. Trenkwalder. Gabor Filter für multiscale Texturanalyse. Master’s thesis, Technische Universtät Graz, March 1997. tr67 [4561] F. Trèves. Topological Vector Spaces, Distributions and Kernels. Number 25 in Pure Appl. Math. Academic Press, New York, 1967. tr70 [4562] F. Trèves. Local solvability in L2 of first order linear PDEs. Amer. J. Math., 92:369–380, 1970. tr75 [4563] F. Trèves. Basic Linear Partial Differential Equations., volume 62. of Pure and Applied Mathematics. Academic Press, New York-San Francisco London, 1975. 397 tr72 [4564] H. Triebel. Höhere Analysis. senschaften, Berlin, 1972. VEB Deutscher Verlag der Wis- tr77 [4565] H. Triebel. Fourier Analysis and Function Spaces. Selected topics. B. G. Teubner, Leipzig, 1977. tr77-1 [4566] H. Triebel. General function spaces. I: decomposition methods. Math. Nachr., 79:167–179, 1977. tr77-2 [4567] H. Triebel. General function spaces. II: Inequalities of PlancherelPolya-Nikol’skij- type, lp -spaces of analytic functions, 0 < p ≤ ∞. J. Approx. Theory, 19:154–175, 1977. tr77-3 [4568] H. Triebel. General function spaces. III: (Spaces Bp,q and Fp,q , 1 < p < ∞: basic properties). Anal. Math., 3:221–249, 1977. tr77-4 [4569] H. Triebel. General function spaces. IV: (Spaces Bp,q and Fp,q , 1 < p < ∞: special properties). Anal. Math., 3:299–315, 1977. tr77-5 [4570] H. Triebel. Spaces of distributions with weights. Multipliers in lp spaces with weights. Math. Nachr., 78:339–355, 1977. tr78 [4571] H. Triebel. Spaces of Besov-Hardy-Sobolev Type. B. G. Teubner, Leipzig, 1978. tr79 [4572] H. Triebel. General function spaces. V: The spaces Bp,q and Fp,q : The case 0 < p ≤ ∞. Math. Nachr., 87:129–152, 1979. tr81-1 [4573] H. Triebel. A remark on integral operators from the standpoint of Fourier analysis. In Approximation and Function Spaces, Proc Int Conf, Gdansk 1979, 821-829. 1981. tr81 [4574] H. Triebel. Analysis und Mathematische Physik. B. G. Teubner, Leipzig, 1981. tr81-2 [4575] H. Triebel. Mapping properties of abstract integral operators. Applications. Beitrge Anal., 17:7–18, 1981. tr83-2 [4576] H. Triebel. Anisotropic function spaces and boundary value problems for semi-elliptic differential equations. Semin. Anal. 1982/83, 19-43 (1983)., 1983. g(x) g(x) g(x) g(x) g(x) 398 g(x) tr83-1 [4577] H. Triebel. Modulation spaces on the Euclidean n-space. Z. Anal. Anwend., 2(5):443–457, 1983. tr83 [4578] H. Triebel. Theory of Function Spaces., volume 78 of Monographs in Mathematics. Birkhäuser, Basel, 1983. tr88 [4579] H. Triebel. Characterizations of Besov-Hardy-Sobolev spaces: A unified approach. J. Approx. Theory, 52(2):162–203, 1988. tr89 [4580] H. Triebel. Local approximation spaces. Z. Anal. Anwend., 8(3):261– 288, 1989. tr92 [4581] H. Triebel. Theory of Function Spaces II. Monographs in Mathematics 84. Birkhäuser, Basel, 1992. tr95 [4582] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators.2nd rev. A. enl. ed. Barth, Leipzig, 1995. tr01 [4583] H. Triebel. The Structure of Functions. Birkhäuser, Basel, 2001. tr06 [4584] H. Triebel. Theory of Function Spaces III, volume 100 of Monographs in Mathematics. Birkhäuser, 2006. tr06-5 [4585] H. Triebel. Theory of Function Spaces III. Monographs in Mathematics 100. Basel: Birkhäuser. xii, 426 p., 2006. tr06-1 [4586] H. Triebel. Wavelets on domains, the extension problem. Technical report, 2006. notr06 [4587] H. Triebel and E. Novak. Function spaces in Lipschitz domains and optimal rates of convergence for sampling. Constr. Approx., 23:325– 350, 2006. betr04 [4588] R. M. Trigub and E. S. Belinsky. Fourier Analysis and Approximation of Functions. Kluwer Academic Publishers, 2004. tr01-1 [4589] K. Trimèche. Generalized Harmonic Analysis and Wavelet Packets. Gordon and Breach Science Publishers, 2001. tr04 [4590] J. A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inform. Theory, 50(10):2231–2242, 2004. 399 tr04-1 [4591] J. A. Tropp. Topics in sparse approximation. PhD thesis, 2004. tr05-1 [4592] J. A. Tropp. Recovery of short, complex linear combinations via l1 minimization. IEEE Trans. Inform. Theory, 51(4):1568–1570, 2005. tr06-4 [4593] J. A. Tropp. Algorithms for simultaneous sparse approximation: part II: Convex relaxation. Signal Process., 86(3):589 – 602, 2006. tr06-3 [4594] J. A. Tropp. Just relax: Convex programming methods for identifying sparse signals in noise. IEEE Trans. Inform. Theory, 51(3):1030–1051, 2006. tr08-1 [4595] J. A. Tropp. On the conditioning of random subdictionaries. Appl. Comput. Harmon. Anal., 25(1):1–24, 2008. gisttr06 [4596] J. A. Tropp, A. C. Gilbert, and M. J. Strauss. Algorithms for simultaneous sparse approximation: part I: Greedy pursuit. Signal Process., 86(3):572 – 588, 2006. tr05 [4597] M. Trott. The Mathematica GuideBook for Numerics. Springer, 2005. tr81-3 [4598] M. R. Trummer. Reconstructing pictures from projections: On the convergence of the ART algorithm with relaxation. Computing, 26:189–196, 1981. tr84 [4599] M. R. Trummer. A note on the ART of relaxation. Computing, 33:349–352, 1984. ts00 [4600] T. Tschurtschenthaler. The Gabor Frame Operator (its Structure and numerical Consequences). Master’s thesis, University of Vienna, 2000. hatu01 [4601] M. Tuchler and J. Hagenauer. Linear time and frequency domain turbo equalization. In Vehicular Technology Conference, 2001. VTC 2001 Fall. IEEE VTS 54th, volume 4, pages 2773–2777, Atlantic City, NJ, 2001. tu95 [4602] A. Türk. Constructing Wavelets from a Multiresolution Analysis. Master’s thesis, Dept. Mathematics, Univ. Vienna, 1995. tu74 [4603] P. R. Turner. Convolution in the duals of function spaces with operators. J. Lond. Math. Soc. (2), 8:587–592, 1974. 400 ty03-1 [4604] J. Tyson. Operator-Schmidt decomposition of the quantum Fourier transform on Cn1 ⊗ Cn2 . J. Phys. A, Math. Gen., 36(24):6813–6819, 2003. ty03 [4605] A. Tyurin. Quantization, Classical and Quantum Field Theory and Theta Functions. CRM Monograph Series 21. Providence, RI: American Mathematical Society (AMS). xii, 2003. ub95 [4606] C. Überhuber. Computer-Numerik. Bd. 1. (Computer Numerics. I.). Springer, Berlin, 1995. ub95-1 [4607] C. Überhuber. Computer-Numerik. Bd. 2. (Computer Numerics. II.). Springer, Berlin, 1995. kazeub06 [4608] C. Überhuber, T. Zemen, and F. Kaltenberger. Low complexity simulation of wireless channels using discrete prolate spheroidal sequences. 2006. uc01 [4609] A. Uchiyama. Hardy Spaces on the Euclidean Space. Springer, Berlin, 2001. ucwi83 [4610] A. Uchiyama and J. M. Wilson. Approximate identities and h1 (r). Proc. Amer. Math. Soc., 88:53–58, 1983. ud05-1 [4611] Z. Udovicic. Determination of the Threshold of Compression in Wavelet Transform with Haars Coefficients. In Proceedings of ICAT 2005, 2005. ud05 [4612] Z. Udovicic. Numerical Stability of a Class (of systems) of Nonlinear Equations. Mat. Vesnik, 1(57):27–33, 2005. ud06-1 [4613] Z. Udovicic. Some Modifications of the Trapezoidal Rule. Sarajevo Journal of Mathematics, 2(15), 2006. ud06 [4614] Z. Udovicic. The Threshold of Compression in Wavelet Transform with Haars Coefficients Numerical Examples. Springer, 2006. un74 [4615] K. R. Unni. A note on multipliers on a Segal algebra. Studia Math., 49:125–127, 1974. un00 [4616] M. Unser. Sampling – 50 years after Shannon. Proc. IEEE, 88(4):569– 587, April 2000. 401 aledun92 [4617] M. Unser, A. Aldroubi, and M. Eden. Polynomial spline signal approximations: Filter design and asymptotic equivalence with Shannon’s sampling theorem. IEEE Trans. Inform. Theory, 38(1):95–103, 1992. unze98 [4618] M. Unser and J. Zerubia. A generalized sampling theory without band-limiting constraints. IEEE Trans. Circuits Syst., II, Analog Digit. Signal Process., 45(8):959–969, 1998. allaun03 [4619] M. A. Unser, A. Aldroubi, and A. F. Laine. Wavelets: Applications in Signal and Image Processing. Proceedings of SPIE, San Diego, 2003. un79 [4620] A. Unterberger. Oscillateur harmonique et op’erateurs pseudodiff’erentiels. Ann. Inst. Fourier (Grenoble), 29(3):201–221, 1979. un06 [4621] A. Unterberger. The Fourfold Way in Real analysis An Alternative to The Metaplectic Representation. Progress in Mathematics 250. Basel: Birkhäuser. x, 220 p., 2006. up87 [4622] H. Upmeier. Jordan Algebras in Analysis, Operator Theory, and Quantum Mechanics, volume 67 of CBMS Regional Conference Series in Mathematics. Published for the Conference Board of the Mathematical Sciences, Washington, 1987. up77 [4623] C. J. Upton. On classes of continous almost periodic functions. Proc. London Math. Soc., 3(35):159–179, 1977. up56 [4624] C. J. F. Upton. Riesz almost periodicity. J. London Math. Soc., 31:407–426, 1956. up72 [4625] C. J. F. Upton. On extensions of inequalities of Kolmogoroff and others and some applications to almost periodic functions. Glasg. Math. J., 13:1–16, 1972. ur95 [4626] K. Urban. On divergence-free wavelets. Adv. Comput. Math., 4(12):51–81, 1995. baur98 [4627] K. Urban and T. Barsch. Software tool for using wavelets on the interval for the numerical solution of operator equations, 1998. seurXX [4628] O. Ureten and N. Serinken. Decision Directed Iterative Equalization of OFDM Symbols Using Non-Uniform Interpolation. 402 va87 [4629] P. P. Vaidyanathan. Theory and design of M-channel maximally decimated quadrature mirror filters with arbitrary M, having the perfectreconstruction property. IEEE Trans. Acoustics, Speech and Signal Processing, 35:476–492, 1987. va86 [4630] J. van de Lune. An Introduction to Tauberian Theory: from Tauber to Wiener. CWI Syllabus 12. Centrum voor Wiskunde en Informatica. Amsterdam: Mathematisch Centrum. III, 102 p. Dfl. 16.50, 1986. va02 [4631] D. Van De Ville. Linear, Non-linear, and Fuzzy Logic Based Imageresampling Techniques. Ghent University Architectual and Engineering Press, Belgium, 2002. brdijava05 [4632] C. van der Avoort, J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen. Aberration retrieval from the intensity point-spread function in the focal region using the extended Nijboer — Zernike approach. J. Modern Opt., 52(12):1695–1728, 2005. vawe96 [4633] A. W. Van der Vaart and J. A. Wellner. Weak Convergence and Empirical Processes. Springer-Verlag, 1996. va66 [4634] B. L. van der Waerden. Algebra. Springer, 1966. havava00 [4635] P. M. Van Dooren, A. Hadjidimos, and H. A. Van der Vorst. Numerical Analysis 2000. (In 7 Vols.) Vol. 3: Linear Algebra - Linear Systems and Eigenvalues. Repr. from the Journal of Computational and Applied Mathematics 123, No. 1-2 (2000). North-Holland/ Elsevier, Amsterdam, 2000. depava83 [4636] S. van Eijndhoven, J. de Graaf, and R. S. Pathak. A characterization k/k+1 of the spaces S1,k+1 by means of holomorphic semigroups. SIAM J. Math. Anal., 14:1180–1186, 1983. va34 [4637] E. R. van Kampen. Locally compact Abelian groups. Proc. Natl. Acad. Sci. USA, 20:434–436, 1934. va35 [4638] E. R. van Kampen. Locally bicompact Abelian groups and their character groups. Ann. Math., 36(2):448–463, 1935. va36 [4639] E. R. van Kampen. Almost periodic functions and compact groups. 1936. 403 bava00 [4640] A. J. van Leest and M. J. Bastiaans. Gabor’s signal expansion and the Gabor transform on a non-separable time-frequency lattice. J. Franklin Inst., 337(4):291–301, 2000. va76 [4641] C. F. Van Loan. Generalizing the singular value decomposition. SIAM J. Numer. Anal., 13:76–83, 1976. va92 [4642] C. F. Van Loan. Computational Frameworks for the Fast Fourier Transform. SIAM, Phiadelphia, PA, 1992. andogovava01 [4643] P. Vandergheynst, J.-P. Antoine, E. Van Vyve, A. Goldberg, and I. Doghri. Modeling and simulation of an impact test using wavelets, analytical solutions and finite elements. Int. J. Solids Struct., 38(3233):5481–5508, 2001. bogava05 [4644] P. Vandergheynst, I. Bogdanova, and J.-P. Gazeau. wavelet transforms on the hyperboloid. page 28, 2005. Continuous va00 [4645] V. Vapnik. The nature of statistical learning theory. 2nd ed. Statistics for Engineering and Information Science. Springer, New York, NY, 2nd ed. edition, 2000. va98 [4646] V. N. Vapnik. Statistical Learning Theory. Adaptive and Learning Systems for Signal Processing, Communications, and Control. Wiley, Chichester, 1998. gosmva97 [4647] V. N. Vapnik, S. Golowich, and A. Smola. Support vector method for function approximation, regression estimation, and signal processing. In M. Mozer, M. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 281–287, Cambridge, MA, 1997. MIT Press. va95-1 [4648] V. S. Varadarajan. Variations on a theme of Schwinger and Weyl. Lett. Math. Phys., 34(3):319–326, 1995. va96 [4649] V. S. Varadarajan. Quantum kinematics and projective unitary representations of abelian groups. In R. Bhatia and A. G. Bhatt, editors, Analysis, Geometry and Probability Essays in Honour of K R Parthasarathy, volume 10 of Texts Read. Math., pages 362–396, Delhi, 1996. Hindustan Book Agency. 404 grv87 [4650] J. C. Varilly and J. M. Gracia Bondia. The Wigner transformation is of finite order. J. Math. Phys., 28(10):2390–2392, 1987. grv88 [4651] J. C. Varilly and J. M. Gracia Bondia. Algebras of distributions suitable for phase-space quantum mechanics. II. Topologies on the Moyal algebra. J. Math. Phys., 29(4):880–887, 1988. grva89 [4652] J. C. Varilly and J. M. Gracia Bondia. The Moyal representation for spin. Ann. Physics, 190(1):107–148, 1989. grscva90 [4653] J. C. Varilly, J. M. Gracia Bondia, and W. Schempp. The Moyal representation of quantum mechanics and special function theory. Acta Appl. Math., 18(3):225–250, 1990. jave87 [4654] R. N. J. Veldhuis and A. J. E. M. Janssen. Adaptive restoration of unknown samples in certain discrete-time signals; mathematical aspects. In Proceedings of the first International Conference on Industrial and Applied Mathematics (ICIAM 87) (Paris, 1987), volume 36 of CWI Tract, pages 235–255, Amsterdam, 1987. Math. Centrum Centrum Wisk. Inform. kave90 [4655] A. N. Venetsanopoulos and N. B. Karayiannis. Regularization Theory in Image Restoration - The Stabilizing Functional Approach. IEEE Trans. Acoustics, Speech and Signal Processing, 38(7):1155– 1178, 1990. ve74 [4656] D. Vere Jones. An elementary approach to the spectral theory of stationary random measures. In D. G. Kendall and E. F. Harding, editors, Stochastic Geometry. A Tribute to the Memory Rollo Davidson, pages 307–321. Wiley, New York, NY, 1974. ve86 [4657] M. Vetterli. Filter banks allowing perfect reconstruction. Signal Process., 10:219–244, 1986. kove95 [4658] M. Vetterli and J. Kovacevic. Wavelets and Subband Coding. Prentice Hall, Hemel Hempstead, 1995. flprteve86 [4659] W. T. Vetterling, S. A. Teukolsky, W. H. Press, and B. P. Flannery. Numerical Recipes. Example Book (Pascal). Cambridge University Press, Cambridge, 1986. 405 flprteve92-1 [4660] W. T. Vetterling, S. A. Teukolsky, W. H. Press, and B. P. Flannery. Numerical Recipes Example Book (C).2. ed. Cambridge University Press, Cambridge, 1992. vi99 [4661] B. Vidakovic. Statistical Modeling by Wavelets. Wiley Series in Probability and Statistics: Applied Probability and Statistics. John Wiley & Sons Inc., New York, 1999. scvi05 [4662] Viet Ha Hoang and C. Schwab. High-dimensional finite elements for elliptic problems with multiple scales. Multiscale Model. Simul., 3(1):168–194, 2005. shvi06 [4663] K. B. Vinay and B. S. Shreyas. Face recognition using Gabor wavelets. Asilomar Conference on Signals, Systems and Computers, 2006, pages 593–597, 2006. anviwa04 [4664] R. Vio, P. Andreani, and W. Wamsteker. Some good reasons to use matched filters for the detection of point sources in CMB maps. Astronom. and Astrophys., 414:17–21, 2004. viwa02 [4665] R. Vio and W. Wamsteker. Joint Time-Frequency Analysis: A tool for exploratory analysis and filtering of non-stationary time series. Astronom. and Astrophys., 388:1124–1138, 2002. nateviwa04 [4666] R. Vio, W. Wamsteker, J. Nagy, and L. Tenorio. A simple but efficient algorithm for multiple-image deblurring. Astronom. and Astrophys., 416:403–410, 2004. vl79 [4667] V. S. Vladimirov. Generalized Functions in Mathematical Physics. Transl. from the 2nd Russian edition by G. Yankovskij. Moscow: Mir Publishers. 362 p. R. 2.35, 1979. drvlza88 [4668] V. S. Vladimirov, Y. N. Drozzinov, and B. I. Zavialov. Tauberian Theorems for Generalized Functions, volume 10 of Mathematics and its Applications (Soviet Series). Kluwer Academic Publishers Group, 1988. vl06 [4669] M. Vlasenko. The graded ring of quantum theta functions for noncommutative torus with real multiplication. Internat. Math. Res. Notices, pages Art. ID 15825, 19, 2006. 406 vo84-1 [4670] J. Voigt. Factorization in Frechet algebras. J. Lond. Math. Soc. (2), 29:147–152, 1984. vo84 [4671] J. Voigt. Factorization in some Frechet algebras of differentiable functions. Studia Math., 77:333–348, 1984. drvo00 [4672] R. H. Vollmerhausen and R. G. Driggers. Analysis of Sampled Imaging Systems. SPIE Optical Engineering Press, Bellingham, WA, 2000. vo31 [4673] J. von Neumann. Die Eindeutigkeit der Schrödingerschen Operatoren. Math. Ann., 104:570–578, 1931. vo50 [4674] J. von Neumann. Functional Operators. Vol. I.: Measures and Integrals., volume 21 of Annals of Mathematics Studies. Princeton University Press, Princeton, 1950. vo50-1 [4675] J. von Neumann. Functional Operators. Vol. II. The Geometry of Orthogonal Spaces., volume 22 of Annals of Mathematics Studies. Princeton University Press, Princeton, 1950. vo55 [4676] J. von Neumann. Mathematical Foundations of Quantum Mechanics., volume 2 of Investigations in Physics. Princeton University Press, Princeton, Translated from the German edition by Robert T. Beyer. edition, 1955. vo96 [4677] J. von Neumann. Mathematische Grundlagen der Quantenmechanik. (Mathematical Foundations of Quantum Mechanics). Springer, Berlin, 2. Aufl. edition, 1996. vo99 [4678] J. von Neumann. Invariant Measures. Providence, RI: American Mathematical Society (AMS). xiv, 1999. vo79 [4679] B. von Querenburg. Mengentheoretische Topologie. 2., Neubearb. u. erw. Aufl. Springer, Berlin, Heidelberg, New York, 1979. vo01 [4680] B. von Querenburg. Mengentheoretische Topologie. 3., neu bearbeitete und erweiterte Aufl. Springer, Berlin, 2001. kovo06 [4681] P. O. Vontobel and R. Koetter. Towards Low-Complexity LinearProgramming Decoding, 2006. 407 vo92 [4682] A. Vourdas. Analytic representations in the unit disk and applications to phase states and squeezing. Phys. Rev. A, 45(3):1943–1950, 1992. vo97 [4683] A. Vourdas. Phase space methods for finite quantum systems. Rep. Math. Phys., 40(2):367–371, 1997. vo01-1 [4684] A. Vourdas. Quantum systems with finite Hilbert space and Chebyshev polynomials. In Proceedings of the Fifth International Symposium on Orthogonal, volume 133, pages 657–664, 2001. vo03 [4685] A. Vourdas. Factorization in finite quantum systems. J. Phys. A, 36(20):5645–5653, 2003. vo04 [4686] A. Vourdas. Symplectically entangled states and their applications to coding. J. Phys. A, 37(9):3305–3319, 2004. vo05 [4687] A. Vourdas. Galois quantum systems. J. Phys. A, 38(39):8453–8471, 2005. vo06 [4688] A. Vourdas. Analytic representations in quantum mechanics. J. Phys. A, Math. Gen., 39:R65–R141, 2006. vr95 [4689] F. Vrabec. Eigenwerte und Eigenräume allgemeiner diskreter Fouriertransformationen. Master’s thesis, University of Vienna, August 1995. vr73 [4690] A. Vretblad. Spectral analysis in weighted L1 spaces on R. Ark. Mat., 11:109–138, 1973. vr03 [4691] A. Vretblad. Fourier Analysis and its Applications. Springer-Verlag, NY, 2003. vu03 [4692] J. M. Vuletich. Orthonormal bases and tilings of the time-frequency plane for music processing. In M. A. Unser, A. Aldroubi, and A. F. Laine, editors, Wavelets: Applications in Signal and Image Processing X, volume 5207 of Proceedings of SPIE, pages 784–793, 2003. wa05 [4693] P. Wahlberg. The random Wigner distribution of Gaussian stochastic processes with covariance in S0 (R2d ). J. Funct. Spaces Appl., 3(2):163– 181, 2005. 408 wa06-2 [4694] P. Wahlberg. The Wigner distribution of Gaussian weakly harmonizable stochastic processes. In P. Boggiatto and et al., editors, Pseudodifferential operators and related topics. Papers based on lectures given at the international conference, Växjö University, Sweden, June 22 to June 25, 2005., volume 164 of Operator Theory: Advances and Applications, pages 211–226, Basel, 2006. Birkhäuser. wa06-1 [4695] P. Wahlberg. Vector-valued modulation spaces and localization operators with operator-valued symbols. 2006. wa10-2 [4696] P. Wahlberg. Regularization of kernels for estimation of the Wigner spectrum of Gaussian stochastic processes. Probab. Math. Statist., 30(2):369–381, 2010. wa03 [4697] S. Waldron. Generalized Welch bound equality sequences are tight frames. IEEE Trans. Inform. Theory, 49(9):2307–2309, 2003. wa07 [4698] S. Waldron. Orthogonal polynomials on the disc. pages 117–131, 2007. hawa06 [4699] S. Waldron and N. Hay. On computing all harmonic frames of n vectors in d . Appl. Comput. Harmon. Anal., 21(2):168–181, 2006. vawa05 [4700] S. Waldron and R. Vale. Tight frames and their symmetries. Constr. Approx., 21(1):83–112, 2005. wa91 [4701] J. S. Walker. Fast Fourier transforms. With floppy disc. CRC Press, Boca Raton, FL, 1991. wa99 [4702] J. S. Walker. A Primer on Wavelets and their Scientific Applications. Studies in Advanced Mathematics. Boca Raton, FL: Chapman & Hall/CRC. 155 p. and and and, 1999. wa61 [4703] G. E. Wall. Some applications of the Eulerian functions of a finite group. J. Aust. Math. Soc., 2:35–59, 1961. wa77-1 [4704] N. R. Wallach. Symplectic Geometry and Fourier Analysis, volume 5 of Lie Groups: History, Frontiers, and Applications. Math Sci Press, Brookline, MA, 1977. 409 wa00 [4705] P. J. Walmsley. Signal Separation of Musical Instruments. Simulationbased methods for musical signal decomposition and transcription. PhD thesis, 2000. wa89 [4706] D. F. Walnut. Weyl-Heisenberg wavelet expansions: Existence and stability in weighted spaces. PhD thesis, University of Maryland, College Park, College Park, MD, 1989. wa92 [4707] D. F. Walnut. Continuity properties of the Gabor frame operator. J. Math. Anal. Appl., 165(2):479–504, 1992. wa93 [4708] D. F. Walnut. Lattice size estimates for Gabor decompositions. Monatsh. Math., 115(3):245–256, 1993. wa02 [4709] D. F. Walnut. An Introduction to Wavelet Analysis. Birkhäuser, 2002. wa05-1 [4710] D. F. Walnut. Sampling and local deconvolution. In Harmonic Analysis, Signal Processing, and Complexity Festschrift in Honor of the 60th Birthday of Carlos A Berenstein Papers from the Conference in Berenstein’s Honor held at George Mason University, Fairfax, VA, USA, May 17–20, 2004, pages 97–110. Birkhäuser Boston, 2005. wa92-1 [4711] G. G. Walter. A sampling theorem for wavelet subspaces. IEEE Trans. Inform. Theory, 38:881–884, 1992. wa94 [4712] G. G. Walter. Wavelets and Other Orthogonal Systems with Applications. CRC Press, Boca Raton, FL, 1994. shwa04 [4713] G. G. Walter and X. Shen. Wavelets based on prolate spheroidal wave functions. J. Fourier Anal. Appl., 10(1):1–26, 2004. wa85 [4714] R. Walter. Lineare Algebra und analytische Geometrie. Braunschweig, Wiesbaden, 1985. Vieweg, liwazh07 [4715] F. Wang, Z. Liu, and J. Zhang. Nonorthogonal Joint Diagonalization Algorithm Based on Trigonometric Parameterization. IEEE Trans. Signal Process., 55(11):5299–5308, 2007. wa77 [4716] H.-C. Wang. Homogeneous Banach Algebras. Marcel Dekker, New York, Basel, 1977. 410 wa78 [4717] H.-C. Wang. A note on Segal algebras on Euclidean spaces. Proc. Amer. Math. Soc., 72:513–518, 1978. wa01 [4718] H. P. Wang. Average widths for Sobolev-Wiener classes with mixed smoothness in Lq (Rd ). Acta Math. Sin. (Engl. Ser.), 17(2):305–312, 2001. wa65 [4719] J. K. Wang. Lectures on Banach Algebras. 1965. chliwa94 [4720] L. Wang, C.-T. Chen, and W.-C. Lin. An efficient algorithm to compute the complete set of discrete Gabor coefficients. IEEE Trans. Image Process., 3(1):87–92, jan 1994. wa03-1 [4721] R.-H. Wang, editor. Computational geometry, volume 34 of AMS/IP Studies in Advanced Mathematics. American Mathematical Society, Providence, RI, 2003. howa00 [4722] X. Wang and A. Host Madsen. Advanced signal processing for wireless multimedia communications. In Proceedings. International Conference on Information Technology: Coding and Computing, 2000., pages 109–114. IEEE, 2000. wa95-2 [4723] Y. Wang. Two-scale dilation equations and the cascade algorithm. Random Comput. Dynam., 3(4):289–307, 1995. wa04-1 [4724] Y. Wang. Sparse complete Gabor systems on a lattice. Appl. Comput. Harmon. Anal., 16(1):60–67, 2004. waXX [4725] J. Ward. Characterization of homogeneous spaces and their norms. Pacific J. Math. wa82-1 [4726] J. Ward. Ideal structure of operator and measure algebras. Monatsh. Math., 95:159–172, 1982. wa80 [4727] J. A. Ward. Banach spaces of pseudomeasures on compact groups with emphasis on homogeneous spaces. Bull. Austral. Math. Soc., 22:155–157, 1980. wa82 [4728] J. A. Ward. Weighted algebras of integrable functions. Res. Math., 5:199–207, 1982. 411 wa87 [4729] J. A. Ward. Homogeneous Banach spaces of type C. In Harmonic Analysis and Operator Algebras, Miniconf Canberra/Aust 1987, volume 15 of Proc. Cent. Math. Anal. Aust. Natl. Univ., pages 279–291. 1987. wa98 [4730] A. F. Ware. Fast approximate Fourier transforms for irregularly spaced data. SIAM Rev., 40(4):838–856, 1998. wa66 [4731] C. R. Warner. Closed ideals in the group algebra L1 (g)∩L2 (g). Trans. Amer. Math. Soc., 121:408–423, 1966. wa72 [4732] G. Warner. Harmonic Analysis on Semi-simple Lie Groups I. Die Grundlehren der mathematischen Wissenschaften. Band 188. BerlinHeidelberg-New York: Springer-Verlag. XVI, 529 p. Cloth DM 98.00, 1972. wa72-1 [4733] G. Warner. Harmonic Analysis on Semi-simple Lie Groups II. Die Grundlehren der mathematischen Wissenschaften. Band 189. BerlinHeidelberg-New York: Springer-Verlag. VIII, 491 p. Cloth DM 98.00, 1972. wa95-1 [4734] F. Watbled. Interpolation complexe d’un espace de Banach et de son antidual. (Complex interpolation of a Banach space with its antidual). C. R. Acad. Sci. Paris S’er. I Math., 321:1437–1440, 1995. wa00-1 [4735] F. Watbled. Complex interpolation of a Banach space with its dual. Math. Scand., 87(2):200–210, 2000. wa95 [4736] G. N. Watson. A Treatise on the Theory of Bessel Functions. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 1995. bafowa01 [4737] L. T. Watson, M. Bartholomew Biggs, and J. A. Ford. Numerical Analysis 2000. (In 7 Vols.) Vol. 4: Optimization and Nonlinear Equations. Repr. from the Journal of Computational and Applied Mathematics 124, No. 1-2 (2000). North-Holland/ Elsevier, Amsterdam, 2001. we96 [4738] N. Weaver. Lipschitz algebras and derivations of von Neumann algebras. J. Funct. Anal., 139(2):261–300, 1996. 412 we98-1 [4739] N. Weaver. α-Lipschitz algebras on the noncommutative torus. J. Operator Theory, 39(1):123–138, 1998. we01 [4740] N. Weaver. Mathematical Quantization. Chapman & Hall/ CRC, FL, 2001. we04 [4741] E. Weber. Orthogonal frames of translates. Appl. Comput. Harmon. Anal., 17(1):69–90, 2004. we07 [4742] S. Wehling. ’Aha!’ Problem Solving: EEG Correlates of Mental Impasse, Restructuring, Deeper Understanding and Suddenness. PhD thesis, University of Vienna, April 2007. we40 [4743] A. Weil. L’integration dans les Groupes Topologiques et ses Applications. Hermann and Cie, Paris, 1940. we64 [4744] A. Weil. Sur certains groupes d’opérateurs unitaires. Acta Math., 111:143–211, 1964. we93 [4745] A. Weil. Lehr- und Wanderjahre eines Mathematikers. Aus dem Französischen Übersetzt von Theresia Uebelhör. (Years of Apprenticeship and of Travel of a Mathematician. Transl. from the French by Theresia belhör). Birkhäuser, Basel, 1993. cowe76 [4746] O. Weingärtner and F. Constantinescu. Der Satz von BochnerSchwartz für Ultradistributionen. Math. Z., 147:175–180, 1976. we77 [4747] A. Weinstein. Lectures on Symplectic Manifolds. Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics. No.29. Providence, R. I.: American Mathematical Society (AMS). V, 1977. we81 [4748] A. Weinstein. Symplectic geometry. Bull. Amer. Math. Soc. (N.S.), 5(1):1–13, 1981. hewe96 [4749] G. Weiss and E. Hernandez. A First Course on Wavelets. CRC Press, FL, 1996. we94-1 [4750] L. G. Weiss. Wavelets and wideband correlation processing. IEEE Signal Processing Magazine, 11(1):13–32, January 1994. 413 we94 [4751] F. Weisz. Martingale Hardy Spaces and their Applications in Fourier Analysis. Springer, Berlin, 1994. we01-1 [4752] F. Weisz. Several dimensional θ-summability and Hardy spaces. Math. Nachr., 230:159–180, 2001. we02 [4753] F. Weisz. Summability of Multi-Dimensional Fourier Series and Hardy Spaces. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2002. we07-1 [4754] F. Weisz. Inversion of the short-time Fourier transform using Riemannian sums. J. Fourier Anal. Appl., 13(3):357–368, 2007. mosewe07 [4755] C. Y. Wen, R. D. Morris, and W. A. Sethares. Distance Estimation Using Bidirectional Communications Without Synchronous Clocking. IEEE Trans. Signal Process., 55(5):1927–1939, 2007. we51 [4756] J. G. Wendel. On isometric isomorphisms of group algebras. Pacific J. Math., 1:305–311, 1951. we52 [4757] J. G. Wendel. Left centralizers and isomorphisms of group algebras. Pacific J. Math., 2:251–261, 1952. we05-1 [4758] H. Wendland. Scattered Data Approximation. Cambridge University Press, Cambridge, 2005. we98 [4759] A. Wenth. Bearbeitung und Visualisierung ausgewählter Kapitel der linearen, analytischen Geometrie mit dem Softwarepaket MATLAB. Master’s thesis, University of Vienna, 1998. hewe90 [4760] H. Wenzel and G. Heinrich. Übungsaufgaben zur Analysis 2. (Exercises in Analysis 2). 4. Aufl. B. G. Teubner, Leipzig, 1990. we54 [4761] J. Wermer. On a class of normed rings. Ark. Mat., 2(28):537–551, 1954. we74 [4762] J. Wermer. Potential Theory. Lecture Notes in Mathematics. 408. Berlin-Heidelberg-New York: Springer-Verlag. VIII, 166 p. DM 21.50, 1974. we97 [4763] D. Werner. Funktionalanalysis. (Functional Analysis) 2., Überarb. Aufl. Springer-Verlag, Berlin, 1997. 414 we02-2 [4764] D. Werner. Functional Analysis. (Funktionalanalysis) 5., Erweiterte Aufl. Springer-Verlag, Berlin, 2002. we05-2 [4765] M. Werner. Signale und Systeme. Lehr- und Arbeitsbuch mit MATLAB-Übungen und Lösungen. Studium Technik. Vieweg, Braunschweig, 2., vollst. überarb. u. erg. A. edition, 2005. we06 [4766] M. Werner. Digitale Signalverarbeitung mit MATLAB. Grundkurs mit 16 ausführlichen Versuchen. Studium Technik. Vieweg, 3., vollst. überarb. u. aktualis. Aufl. edition, 2006. brwe95 [4767] R. F. Werner and T. Bröcker. Mixed states with positive Wigner functions. J. Math. Phys., 36(1):62–75, 1995. we99 [4768] T. Werther. Reconstruction from Irregular Samples with Improved Locality. Master’s thesis, University of Vienna, December 1999. we03 [4769] T. Werther. Characterization of semi-Hilbert Spaces with Application in Scattered Data Interpolation. In A. Cohen, J.-L. Merrien, and L. L. Schumaker, editors, Curve and Surface Fitting, pages 374–383. Brenwood Nashboro Press, 2003. we03-1 [4770] T. Werther. Optimal Interpolation in Semi-Hilbert Spaces. PhD thesis, October 2003. we05 [4771] T. Werther. Optimal Multivariate Interpolation. In A. Iske and T. Randen, editors, Mathematical Methods and Modeling in Hydrcarbon Exploration and Production, Mathematics and Industry, pages 385–404. Springer-Verlag, 2005. elsuwe05 [4772] T. Werther, Y. C. Eldar, and N. K. Subbana. Dual Gabor frames: theory and computational aspects. IEEE Trans. Signal Process., 53(11):4147– 4158, 2005. elmasuwe07 [4773] T. Werther, E. Matusiak, Y. C. Eldar, and N. K. Subbana. A unified approach to dual Gabor windows. IEEE Signal Processing Magazine, 55(no. 5, Part 1):1758–1768, 2007. rawe90 [4774] J. Wexler and S. Raz. Discrete Gabor expansions. Signal Process., 21:207–220, 1990. 415 we27 [4775] H. Weyl. Quantenmechanik und Gruppentheorie. Z. f. Physik, 46:1– 46, 1927. we28 [4776] H. Weyl. Gruppentheorie und Quantenmechanik. S. Hirzel, Leipzig, 1928. we49 [4777] H. Weyl. The Theory of Groups and Quantum Mechanics. Dover Publications Inc, New York, 1949. whzy77 [4778] R. L. Wheeden and A. Zygmund. Measure and Integral. An Introduction to Real Analysis. Marcel Dekker, New York, Basel, 1977. e.15 [4779] E. T. Whittaker. On the functions which are represented by the expansions of the interpolation theory, volume 35. Proceedings of the Royal Society of Edinburgh, 1915. wh00 [4780] P. Whittle. Probability via Expectation. 4th ed. Springer Texts in Statistics. New York, NY: Springer. xxi, 2000. mcviwi07 [4781] Y. Wiaux, J. D. McEwen, and P. Vielva. Complex data processing: Fast wavelet analysis on the sphere. J. Fourier Anal. Appl., 13:in press, 2007. mavaviwi06 [4782] Y. Wiaux, P. Vielva, E. Martinéz Gonzalez, and P. Vandergheynst. Global Universe Anisotropy Probed by the Alignment of Structures in the Cosmic Microwave Background. Phys. Rev. Lett., 96:151303 1–4, 2006. wi73 [4783] J. Wichmann. Bounded approximate units and bounded approximate identities. Proc. Amer. Math. Soc., 41(2):547–550, 1973. wi01 [4784] T. Wichmann. Computer aided generation of approximate DAE systems for symbolic analog circuit design. In Proc. Annual Meeting GAMM, 2000, 2001. wi94 [4785] M. V. Wickerhauser. Adapted Wavelet Analysis from Theory to Software. Wellesley-Cambridge Press, Wellesley, MA, 1994. wi96 [4786] M. V. Wickerhauser. Adaptive Wavelet-Analysis: Theorie und Software. Aus dem Amerik. übers. von Kurt Jetter. (Adapted Wavelet Analysis from Theory to Software). Vieweg, Wiesbaden, 1996. 416 wi04 [4787] M. V. Wickerhauser. Mathematics for Multimedia. Academic Press, 2004. peswszwi04 [4788] M. V. Wickerhauser, H. Szu, B. A. Pearlmutter, and W. Sweldens. Independent Component Analyses, Wavelets, Unsupervised Smart Sensors, and Neural Networks II, 5439 Proceedings of SPIE. SPIE Optical Engineering Press, 2004. bowi02 [4789] S. Wickramasekara and A. Bohm. Symmetry representations in the rigged Hilbert space formulation of quantum mechanics. J. Phys. A, Math. Gen., 35(3):807–829, 2002. bowi03 [4790] S. Wickramasekara and A. Bohm. Representation of semigroups in rigged Hilbert spaces: subsemigroups of the Weyl-Heisenberg group. J. Math. Phys., 44(2):930–942, 2003. wi71 [4791] D. Widder. An Introduction to Transform Theory. Academic Press, York-London, 1971. wi71-1 [4792] D. Widder. An Introduction to Transform Theory. Pure and Applied Mathematics, 42. New York-London: Academic Press. XIV, 1971. wi64-2 [4793] H. Widom. Asymptotic behavior of the eigenvalues of certain integral equations.II. Arch. Ration. Mech. Anal., 17:215–229, 1964. wi69 [4794] H. Widom. Lectures on Integral Equations. 1969. wi78-1 [4795] H. Widom. Families of pseudodifferential operators. In Topics in Functional Analysis Essays Dedic M G Krein, volume 3 of Adv. Math., Suppl. Stud., pages 345–395. 1978. jowi05 [4796] R. Wienands and W. Joppich. Practical Fourier Analysis for Multigrid Methods. With CD-ROM. Numerical Insights 4. Boca Raton, FL: Chapman and Hall/CRC. xvi, 2005. wi24 [4797] N. Wiener. The quadratic variation of a function and its Fourier coefficients. J. Math. Phys., 3:72–94, 1924. wi26 [4798] N. Wiener. On the representation of functions by trigonometric integrals. Math. Z., 24:575–616, 1926. 417 wi32 [4799] N. Wiener. Tauberian theorems. Ann. of Math. (2), 33(1):1–100, 1932. wi33 [4800] N. Wiener. The Fourier Integral and certain of its Applications. Cambridge University Press, Cambridge, 1933. wi58 [4801] N. Wiener. The Fourier Integral and Certain of its Applications. Dover Publications Inc, New York, 1958. wi64-1 [4802] N. Wiener. Selected Papers of Norbert Wiener Including Generalized Harmonic Analysis and Tauberian Theorems. Cambridge, Mass.: Massachusetts Institute of Technology. IX, 1964. wi64 [4803] N. Wiener. Tauberian theorems. MIT Press, pages 143–242, 1964. wi66 [4804] N. Wiener. Generalized Harmonic Analysis and Tauberian Theorems. The MIT Press, 1966. wi76-1 [4805] N. Wiener. Collected Works with Commentaries. Vol. I: Mathematical Philosophy and Foundations; Potential Theory; Brownian Movement, Wiener Integrals, Ergodic and Chaos Theories, Turbulence and Statistical Mechanics. Edited by P. Masani. Mathematicians of Our Time. Vol. 10. Cambridge, Mass. - London: The MIT Press. X, 1976. wi79 [4806] N. Wiener. Collected Works with Commentaries. Volume II: Generalized Harmonic Analysis and Tauberian Theory; Classical Harmonic and Complex Analysis. Ed. by Pesi Rustom Masani. Mathematicians of Our Time, Vol. 15. Cambridge, 1979. wi81 [4807] N. Wiener. Collected Works with Commentaries. Vol. III: The HopfWiener Integral Equation; Prediction and Filtering; Quantum Mechanics and Relativity; Miscellaneous Mathematical Papers. Mathematicians of Our Time, 20. Cambridge and London: The MIT Press. XIII, 753 p., 1981. wi85-1 [4808] N. Wiener. Collected Works with Commentaries. Vol. IV: Cybernetics, Science, and Society; Ethics, Aesthetics, and Literary Criticism; Book Reviews and Obituaries. Ed. and with an Introduction by P. Masani. Mathematicians of Our Time, 23. Cambridge, 1985. 418 wi02 [4809] H. Wiese. Entscheidungs- und Spieltheorie. (Decision and Game Theory). Springer, Berlin, 2002. wi32-1 [4810] E. P. Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev., II. Ser., 40:749–759, 1932. wi06 [4811] M. Wild. Characterizing Discrete-Time Function Spaces. PhD thesis, 2006. wi05 [4812] N. J. Wildberger. Weyl quantization and a symbol calculus for abelian groups. J. Aust. Math. Soc., 78(3):323–338, 2005. wi74 [4813] D. Wildfogel. Double algebras, Segal algebras and spectral synthesis. Bull. Inst. Math. Acad. Sinica, 2:241–254, 1974. wi78 [4814] R. G. Wiley. Recovery of bandlimited signals from unequally spaced samples. IEEE Trans. Comm., 26:135–137, 1978. wi02-1 [4815] M. Wilhelm. Fourier-transform rheology. Macromol. Mater. Eng., 287(2):83–105, 2002. wi76 [4816] F. Wille. Analysis. Eine Anwendungsbezogene Einführung. B. G. Teubner, Stuttgart, 1976. wi93 [4817] B. Willems. Phases de FBI de seconde espece adaptées au conormal 341; l’origine. (FBI phase functions of the second kind adapted to the conormal bundle to the origin). Bull. Soc. Roy. Sci. Li‘ege, 62(4):165– 178, 1993. thwi94 [4818] A. William and Thomas Branson ’ Irving Segal, editors. Quantization Nonlinear Partial Differential Equations and Operator Algebra. June 1994. wi07 [4819] D. P. Williams. Crossed Products of C*-algebras. Mathematical Surveys and Monographs 134. Providence, RI: American, 2007. wi99 [4820] E. G. Williams. Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography. Academic Press, 1999. wi95 [4821] J. M. Williams. Style, Toward Clarity and Grace. The University of Chicago Press, 1995. 419 wi36 [4822] J. Williamson. On the Algebraic Problem Concerning the Normal Forms of Linear Dynamical Systems. Amer. J. Math., 58(1):141–163, 1936. wi92-1 [4823] G. A. Willis. Examples of factorization without bounded approximate units. Proc. Lond. Math. Soc., III. Ser., 64(3):602–624, 1992. wi87 [4824] K. G. Wilson. Generalized Wannier functions. 1987. wi87-1 [4825] R. Wilson. Finite prolate spheroidal sequences and their applications I: generation and properties. IEEE Trans. Pattern Analysis and Machine intelligence, 9(6):787 – 795, 1987. capewi92 [4826] R. Wilson, A. D. Calway, and E. R. S. Pearson. A generalized wavelet transform for Fourier analysis: the multiresolution Fourier transform and its application to image and audiosignal analysis. IEEE Trans. Information Theory, 38(2):674–690, 1992. spwi88 [4827] R. Wilson and M. Spann. Finite prolate spheroidal sequences and their applications. II. Image feature description and segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(2):193–203, 1988. wi92 [4828] D. J. Wingham. The reconstruction of a band-limited function and its Fourier transform from a finite number of samples at arbitrary locations by singular value decomposition. IEEE Trans. Signal Process., 40(3):559–570, 1992. wi03 [4829] G. Winkler. Image Analysis, Random Fields and Markov Chain Monte Carlo Methods. A Mathematical Introdution. Springer-Verlag, Berlin, 2003. wi98 [4830] P. Winkler. Endliche Körper. Master’s thesis, University of Vienna, 1998. nawi95 [4831] J. M. Winograd and H. Nawab. Incremental refinement of DFT and STFT approximations. IEEE Signal Processing Letters, 2(2):25–27, 1995. wi85 [4832] N. Wirth. Programmieren in Modula-2. übers. aus dem Engl. von Guido Pfeiffer. (Programming in Modula-2). Springer, 1985. 420 wo01 [4833] P. Wojdyllo. Gabor and wavelet frames. Geometry and Applications. PhD thesis, 2001. wo01-1 [4834] P. Wojdyllo. Unconditional basis in Bargmann space – new proof of Gröchenig-Walnut theorem. Math. Nachr., 221:169–181, 2001. wo02-1 [4835] P. Wojdyllo. Modified Wilson orthonormal bases. Sampl. Theory Signal Image Process., 1(1):0–50, 2002. wo05 [4836] P. Wojdyllo. Abstract Wilson Systems. Part I: Theory. ESI preprints, 2005. wo06 [4837] P. Wojdyllo. Generalizations of Wilson systems: tight frames. page 12, 2006. wo07-1 [4838] P. Wojdyllo. Modified Wilson orthonormal bases. Sampl. Theory Signal Image Process., 6(2):223–235, 2007. wo07-2 [4839] P. Wojdyllo. Wilson systems for symplectic lattices. Int. J. Wavelets Multiresolut. Inf. Process., to appear, 2007. wo97 [4840] P. Wojtaszczyk. A Mathematical Introduction to Wavelets. Cambridge University Press, Cambridge, 1997. wo03 [4841] T. Wolff. Lectures on Harmonic Analysis. American Mathematical Society, 2003. woXX [4842] Wolfgang Walter. Einführung in die Theorie der Distributionen. dawo00 [4843] H. Wolter and B. I. Dahn. Analysis Individuell. Kompakt zum Prüfungserfolg. Mit CD-ROM und Online Konponente. (Analysis Individual. Compact to a Successfully Examen). Springer, Berlin, 2000. kywoyo99 [4844] G. J. Won, H. C. Kyung, and S. C. Yong. An equalization technique for orthogonal frequency-division multiplexing systems in timevariant multipath channels. IEEE Transactions on Communications, 47(1):27–32, 1999. hawo84 [4845] E. Wong and B. Hajek. Stochastic Processes in Engineering Systems. Springer Texts in Electrical Engineering. Springer, New York, 1984. 421 wo81 [4846] M. Wong. lspp−spectra of strongly Carleman pseudo-differential operators. J. Funct. Anal., 44:163–173, 1981. wo91 [4847] M. Wong. An Introduction to Pseudo-differential Operators. World Scientific, Singapore, 1991. wo98 [4848] M. Wong. Weyl Transforms. Universitext. Springer, New York, 1998. wo99 [4849] M. Wong. Localization Operators. Seoul National University, Seoul, 1999. wozh07 [4850] M. Wong and H. Zhu. A characterization of Stockwell spectra., 2007. wo02 [4851] M.-W. Wong. Wavelet Transforms and Localization Operators. Operator Theory: Advances and Applications. 136. Basel: Birkhäuser, 2002. wo04 [4852] P. J. Wood. Wavelets and Hilbert modules. J. Fourier Anal. Appl., 10:573–598, 2004. si01 [4853] S. Working Group on CSE Education. Graduate education in computational science and engineering. SIAM Rev., 43(1):163–177, 2001. wo06-1 [4854] W. A. Woyczynski. A First Course in Statistics for Signal Analysis. Birkhäuser, Boston, MA, 2006. wu99 [4855] Z. Wu. Carleson measures and multipliers for Dirichlet spaces. J. Funct. Anal., 169(1):148–163, 1999. wuXX [4856] B. S. Wulich. Einführung in die Funktionalanalysis. Teil 1. (Mathematisch-Naturwissenschaftliche Bibliothek. 32.) Leipzig: B. G. Teubner Verlagsgesellschaft. VII, 202 S. wu62 [4857] B. S. Wulich. Einführung in die Funktionalanalysis. Teil 2. Mathematisch-Naturwissenschaftliche Bibliothek. 33 and Leipzig: B.G. Teubner Verlagsgesellschaft171 S., 1962. bowu03 [4858] G. Wunder and H. Boche. Peak value estimation of bandlimited signals from their samples, noise enhancement, and a local characterization in the neighborhood of an extremum, March 2003. 422 wuzw01 [4859] J. Wunsch and M. Zworski. The FBI transform on compact C ∞ manifolds. Trans. Amer. Math. Soc., 353(3):1151–1167, 2001. wu05 [4860] A. Wünsche. Generalized Zernike or disc polynomials. J. Comput. Appl. Math., 174(1):135–163, 2005. fawu00 [4861] A. Wünsche and H.-y. Fan. Design of sqeezing. J. Opt. B Quantum Semiclass. Opt., 2:464–469, 2000. fawu01 [4862] A. Wünsche and H. y. Fan. Eigenstates of boson creation operator. Eur. Phys. J. D, 15:405–412, 2001. tewu04 [4863] B. Wünsche and E. Tempero. A comparison and evaluation of interpolation methods for visualising discrete 2D survey data. In Proceedings of the 2004 Australasian Symposium on Information Visualisation Volume 35, volume 99 of ACM International Conference Proceeding Series, pages 1–7, 2004. wiwu00 [4864] L. Wuytack and J. Wimp. Numerical Analysis 2000. (In 7 Vols.) Vol. 1: Approximation Theory. Repr. from the Journal of Computational and Applied Mathematics 121, No. 1-2 (2000). North-Holland/ Elsevier, Amsterdam, 2000. xi88 [4865] J. Xia. Geometric invariants of the quantum Hall effect. Comm. Math. Phys., 119(1):29–50, 1988. xi94-1 [4866] J. Xia. On the spectra of Schrödinger operators. Comm. Math. Phys., 159(3):619–645, 1994. xi94 [4867] X.-G. Xia. On orthogonal wavelets with the oversampling property. J. Fourier Anal. Appl., 1(2):193–199, 1994. xi96 [4868] X. G. Xia. On characterization of the optimal biorthogonal window functions for Gabor transform. IEEE Trans. Signal Process., 44(1):133 – 136, 1996. xi97 [4869] X.-G. Xia. System identification using chirp signals and time-variant filters in the joint time–frequency domain. IEEE Trans. Signal Process., 45(8):2072–2084, 1997. 423 xina94 [4870] X. G. Xia and M. Z. Nashed. The Backus-Gilbert method for signals in reproducing kernel Hilbert spaces and wavelets subspaces. pages 1–23, January 1994. qixi99 [4871] X. G. Xia and S. Qian. Convergence of an Iterative Time-Variant Filtering Based on Discrete Gabor Transform. IEEE Trans. Signal Process., 47(10):2894–2899, October 1999. suxi95 [4872] X.-G. Xia and B. W. Suter. A family of two-dimensional nonseparable Malvar wavelets. Appl. Comput. Harmon. Anal., 2(3):243–256, 1995. suxi96 [4873] X.-G. Xia and B. W. Suter. Construction of Malvar wavelets on hexagons. Appl. Comput. Harmon. Anal., 3(1):65–71, 1996. lixi04 [4874] J. Xian and W. Lin. Sampling and reconstruction in time-warped spaces and their applications. Appl. Math. Comput., 157(1):153–173, September 2004. qixi03 [4875] J. Xian and X.-F. Qiang. Non-uniform sampling and reconstruction in weighted multiply generated shift-invariant spaces. Far East J. Math. Sci. (FJMS), 8(3):281–293, 2003. shwexi04 [4876] Xian Jun, Shi-Ping Luo, and Wei Lin. Weighted sampling and signal reconstruction in spline subspaces. In Control, Communications and Signal Processing, 2004. First International Symposium on, pages 853–856, 2004. xu05 [4877] J. Xu. Equivalent norms of Herz-type Besov and Triebel-Lizorkin spaces. J. Funct. Spaces Appl., 3(1):17–31, 2005. osxu07 [4878] J. Xu and S. Osher. Iterative regularization and nonlinear inverse scale space applied to wavelet-based denoising. IEEE Trans. Image Process., 16(2):534–544, 2007. stxu06-2 [4879] J. Xu and T. Strohmer. Adaptive and Robust Channel Estimation for Pilot-aided OFDM Systems. 2006. xu00 [4880] Y. Xu. A note on summability of multiple Laguerre expansions. Proc. Amer. Math. Soc., 128(12):3571–3578, 2000. lilirixu06 [4881] Y. Xu, B. Liu, J. Liu, and S. D. Riemenschneider. Two dimensional empirical mode decomposition by finite elements. 2006. 424 xuya06 [4882] Y. Xu and D. Yan. The Bedrosian identity for the Hilbert transform of product functions. Proc. Amer. Math. Soc., 134(9):2719–2728, 2006. noprsk11 [4883] I. Ya. Novikov, V. Y. Protasov, and M. A. Skopina. Wavelet theory. Transl. from the Russian by Evgenia Sorokina. Translations of Mathematical Monographs vol. 239. Providence, RI: American Mathematical Society (AMS), 2011. ya06 [4884] S. B. Yakubovich. The Plancherel and Hausdorff-Young type theorems for an index transform. Z. Anal. Anwend., 25(2):193–204, 2006. gaya04 [4885] R. Yan and R. X. Gao. An efficient approach to machine health diagnosis based on harmonic wavelet packet transform. 2004. ya95 [4886] B. Yang. Projection approximation subspace tracking. IEEE Trans. Signal Process., 43(1):95–107, January 1995. jiya07 [4887] B. Yang and Z. Jing. A Simple Method to Build Oversampled Filter Banks and Tight Frames. IEEE Trans. Image Process., 16(11):2682– 2687, 2007. ya02 [4888] D. Yang. Frame characterizations of Besov and Triebel-Lizorkin spaces on spaces of homogeneous type and their applications. Georgian Math. J., 9(3):567–590, 2002. ya05 [4889] D. Yang. New frames of Besov and Triebel-Lizorkin spaces. J. Funct. Spaces Appl., 3(1):1–16, 2005. yazh04 [4890] D. Yang and X. Zhou. Wavelet frames with irregular matrix dilations and their stability. J. Math. Anal. Appl., 295(1):97–106, 2004. yazh05 [4891] D. Yang and X. Zhou. Irregular wavelet frames on L2 (Rn ). Sci. China Ser. A, 48(2):277–287, 2005. yazh07 [4892] S. Yang and X. Zhou. A note on irregular wavelet frames. Appl. Math. Comput., 187(2):1410–1416, 2007. ya98 [4893] W. Yang. Carleson type measure characterization of qp spaces. Analysis, 18:345–349, 1998. 425 thya66 [4894] K. Yao and J. Thomas. On truncation error bounds for sampling representations of band-limited signals. IEEE Trans. Aerospace Electron. Systems, AES–2/No.6:640–647, 1966. yazh02-1 [4895] X. Yao and J. Zhang. Equivalence relations between generalized frames. J. Shaanxi Normal Univ. Nat. Sci. Ed., 30(2):7–10, 2002. yazh02 [4896] X. Yao and J. Zhang. Generalized frames and pseudo-inverses of operators. Acta Anal. Funct. Appl., 4(4):357–360, 2002. ya70 [4897] L. Yap. Ideals in subalgebras of the group algebras. Studia Math., 35:165–175, 1970. ya71 [4898] L. Yap. Every Segal algebra satisfies Ditkins condition. Studia Math., 40:235–237, 1971. ya69 [4899] L. Y. H. Yap. Some remarks on convolution operators and L(p,q) spaces. Duke Math. J., 36:647–658, 1969. ya71-1 [4900] L. Y. H. Yap. Convolution of functions in Lorentz spaces. Studia Math., 40:49–53, 1971. ya75 [4901] L. Y. H. Yap. Nonfactorization of functions in Banach subspaces of L1 (g). Proc. Amer. Math. Soc., 51(2):356–358, September 1975. ya76 [4902] L. Y. H. Yap. On a convolution theorem. Acta Math. Sci., 38:171–182, 1976. ya77 [4903] L. Y. H. Yap. Convolution functions on compact Abelian groups. Anal. Math., 3:317–320, 1977. edya96 [4904] L. P. Yaroslavsky and M. Eden. Fundamentals of Digital Optics. Digital Signal Processing in Optics and Holography. Birkhäuser, Boston, 1996. ya82 [4905] S. Yasui. Wiener-like Fourier kernels for nonlinear system identification and synthesis (nonanalytic cascade, bilinear, and feedback cases). IEEE Trans. Automat. Control, 27:677–685, 1982. goya05 [4906] R. D. Yates and D. J. Goodman. Probability and Stochastic Processes: a Friendly Introduction for Electrical and Computer Engineers. 2nd ed. John Wiley and Sons, NJ, 2005. 426 hayeXX [4907] P. V. Yee and S. Haykin. Regularized Radial BasisFunction Networks Theory of Applications. stye90 [4908] S. Yeh and H. Stark. Iterative and One-Step Reconstruction from Nonuniform Samples by Convex Projections. J. Opt. Soc. Amer. A, 7(3):491–499, Mar. 1990. kuozye02 [4909] I. S. Yetik, M. A. Kutay, and H. M. Ozaktas. Optimization of orders in multichannel fractional Fourier-domain filtering circuits and its application to the synthesis of mutual-intensity distributions. Appl. Opt., 41(20):4078–4084, 2002. yi03 [4910] O. Yilmaz. Coarse quantization of highly redundant time-frequency representations of square-integrable functions. Appl. Comput. Harmon. Anal., 14(2):107–132, 2003. yl84 [4911] K. Ylinen. Dilations of V-bounded stochastic processes indexed by a locally compact group. Proc. Amer. Math. Soc., 90:378–380, 1984. yl90 [4912] K. Ylinen. Representing completely bounded multilinear operators. Acta Math. Hungar., 56(3-4):295–297, 1990. yo05 [4913] R. Yoneda. Multiplication operators, integration operators and companion operators on weighted Bloch space. Hokkaido Math. J., 34(1):135–147, 2005. yo94 [4914] K. Yosida. Functional Analysis. Classics in Mathematics. SpringerVerlag, Berlin, Repr. of the 6th ed. edition, 1994. yo78 [4915] D. C. Youla. Generalized image restoration by the method of alternating orthogonal projections. IEEE Trans. Circuits Syst., 25(9):694– 702, 1978. veyo86 [4916] D. C. Youla and V. Velasco. Extensions of a result on the synthesis of signals in the presence of inconsistent constraints. IEEE Trans. Circuits Syst., 33(4):465–468, 1986. weyo82 [4917] D. C. Youla and H. Webb. Image Restoration by the Method of Convex Projections: Part1 - Theory. IEEE Transactions on Medical Imaging, MI-1(2):81–94, 1982. 427 yo01 [4918] R. M. Young. An Introduction to Nonharmonic Fourier Series. Academic Press, Orlando, FL, Revised 1st edition edition, 2001. dasayo07 [4919] YoungBo Cho, Sangmin Ro, and Daesik Hong. A New Channel Estimation Using Data-Dependent Pilot Symbols for MC-CDMA Systems With Chip Interleaving. IEEE Signal Processing Letters, 14(6):385– 388, jun 2007. liyu06 [4920] M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B Stat. Methodol., 68(1):49– 67, 2006. vayu95 [4921] Yuan-Pei Lin and P. P. Vaidyanathan. Linear phase cosine modulated maximally decimated filter banks with perfect reconstruction. IEEE Trans. Signal Process., 43(11):2525–2539, 1995. za53 [4922] A. C. Zaanen. Linear Analysis Measure and Integral, Banach and Hilbert Space, Linear Integral Equations, volume 2 of Bibliotheca mathematica; a series of monographs on pure and applied mathematics. North-Holland Publishing Company, Amsterdam, 1953. za56 [4923] A. C. Zaanen. Linear Analysis. Measure and Integral, Banach and Hilbert Space, Linear Integral Equations., volume II of Bibliotheca Mathematica. A Series of Monographs on Pure and Applied Mathematics. North-Holland Publishing Co., Amsterdam, Second Printing edition, 1956. za67 [4924] A. C. Zaanen. Integration. North–Holland, Amsterdam, Completely revises edition of: An introduction to the theory of integration. edition, 1967. za89 [4925] A. C. Zaanen. Continuity, Integration and Fourier Theory. Universitext. Springer-Verlag, 1989. cufaza05 [4926] C. K. Zachos and Fairlie, editors. Quantum Mechanics In Phase Space, volume 34 of World Scientific Series in 20th Century Physics. World Scientific Publishing Co. Pte. Ltd., Hackensack, 2005. za50 [4927] L. A. Zadeh. The determination of the impulsive response of variable networks. J. Appl. Phys., 21:642–645, 1950. 428 za76 [4928] M. Zafran. The functions operating on certain algebras of multipliers. Bull. Amer. Math. Soc., 82:939–940, 1976. za77 [4929] M. Zafran. The functions operating on homogeneous Banach algebras. Bull. Amer. Math. Soc., 83:1319–1320, 1977. za78 [4930] M. Zafran. The dichotomy problem for homogeneous Banach algebras. Ann. of Math., 108:97–105, 1978. za79 [4931] M. Zafran. On the Symbolic Calculus in Homogeneous Banach algebras. Israel J. Math., 32:183–192, 1979. za91 [4932] S. Zaidman. Distributions and Pseudo-differential Operators., volume 248 of Pitman Research Notes in Mathematics Series. John Wiley & Sons, Inc. and Longman Scientific and Technical, Harlow etc., New York, 1991. za96-2 [4933] S. Zaidman. Topics in Pseudo-differential Operators., volume 359 of Pitman Research Notes in Mathematics Series. Addison Wesley Longman, Harlow, 1996. za67-1 [4934] J. Zak. Finite translations in solid state physics. Phys. Rev. Lett., 19(24):1385–1397, 1967. za72 [4935] J. Zak. The kq-representation in the Dynamics of Electrons in Solids. Solid State Physics, 27(1):1–62,, 1972. za96 [4936] J. Zak. Discrete Weyl-Heisenberg transforms. 37(8):3815–3823, 1996. J. Math. Phys., za78-1 [4937] R. A. Zalik. On approximation by shifts and a theorem of Wiener. Trans. Amer. Math. Soc., 243:299–308, 1978. za80 [4938] R. A. Zalik. On fundamental sequences of translates. Proc. Amer. Math. Soc., 79:255–259, 1980. za93 [4939] A. I. Zayed. Advances in Shannon‘s Sampling Theory. CRC Press, Boca Raton, FL, 1993. za96-1 [4940] A. I. Zayed. On the relationship between the Fourier and fractional Fourier transforms. IEEE Signal Processing Letters, 3(12):310–311, 1996. 429 za02 [4941] A. I. Zayed. A class of fractional integral transforms: a generalization of the fractional Fourier transform. IEEE Trans. Signal Process., 50(3):619–627, 2002. ze01 [4942] Y. Y. Zeevi. Multiwindow Gabor-type representations and signal representation by partial information. In J. S. Byrnes, editor, Twentieth Century Harmonic Analysis - A Celebration Proceedings of the NATO Advanced Study Institute, Il Ciocco, Italy, July 2-15, 2000, volume 33 of NATO Sci. Ser. II, Math. Phys. Chem., pages 173–199, Dordrecht:, 2001. Kluwer Academic Publishers. zezi93 [4943] Y. Y. Zeevi and M. Zibulski. Oversampling in the Gabor scheme. IEEE Trans. Signal Process., 41(8):2679–2687, 1993. pozezi98 [4944] Y. Y. Zeevi, M. Zibulski, and M. Porat. Multi-window Gabor schemes in signal and image representations. In H. G. Feichtinger and T. Strohmer, editors, Gabor Analysis and Algorithms: Theory and Applications, Appl. Numer. Harmon. Anal., pages 381–407. Birkhäuser Boston, Boston, MA, 1998. ze93 [4945] E. Zeidler. Nonlinear Functional Analysis and its Applications. Volume I: Fixed-point Theorems. Translated from the German by Peter R. Wadsack.2. Corr. Printing. Springer, New York, 1993. ze95 [4946] E. Zeidler. Applied Functional Analysis. Applications to Mathematical Physics. Vol. 1. Springer, Berlin, 1995. frze98 [4947] A. Zeira and B. Friedlander. Gabor representation and signal detection. In H. G. Feichtinger and T. Strohmer, editors, Gabor Analysis and Algorithms: Theory and Applications, *42C15 Series and expansions in general function systems, pages 353–380, 453–488. 1998. ze72-1 [4948] A. H. Zemanian. Realizability conditions for time-varying and timeinvariant Hilbert ports. SIAM J. Appl. Math., 22:612–628, 1972. ze72 [4949] A. H. Zemanian. Realizability Theory for Continuous Linear Systems., volume 97 of Mathematics in Science and Engineering. Academic Press, New York, London, 1972. 430 ze87-1 [4950] A. H. Zemanian. Distribution Theory and Transform Analysis. An Introduction to Generalized Functions, with Applications. Reprint, Slightly corrected. New York: Dover Publications, Inc. XII, 1987. ze87 [4951] A. H. Zemanian. Generalized Integral Transformations. (Unabridged republ. of the 1968 orig. publ. by Interscience, New York). Dover Publications Inc, New York, 1987. memuweze06 [4952] T. Zemen, J. Wehinger, C. Mecklenbräuker, and R. Müller. Iterative Joint Time-Variant Channel Estimation and Multi-User Detection for MC-CDMA. 2006. zh02-3 [4953] G. Zhang. Branching coefficients of holomorphic representations and Segal-Bargmann transform. J. Funct. Anal., 195(2):306–349, 2002. zh99 [4954] J. Zhang. On the stability of wavelet and Gabor frames (Riesz bases). J. Fourier Anal. Appl., 5(1):105–125, 1999. zh01-2 [4955] J. Zhang. Stability of wavelet frames and Riesz bases, with respect to dilations. Proc. Amer. Math. Soc., 129(4):1113–1121, 2001. vozh03 [4956] S. Zhang and A. Vourdas. Phase space methods for particles on a circle. J. Math. Phys., 44(11):5084–5094, 2003. vozh05 [4957] S. Zhang and A. Vourdas. Analytic representation of finite quantum systems. J. Phys. A, Math. Gen., 37(34):8349–8363, 2005. fegizh90 [4958] W.-M. Zhang, D. H. Feng, and R. Gilmore. Coherent states: Theory and some applications. Rev. Modern Phys., 62(4):867 – 927, 1990. cawezh06 [4959] X. Zhang, J.-F. Cai, and Y. Wei. Interval iterative methods for computing Moore Penrose inverse. Appl. Math. Comput., 183(1):522–532, 2006. zh02 [4960] Y. Zhang. Approximate identities for ideals of Segal algebras on a compact group. J. Funct. Anal., 191(1):123–131, 2002. zh02-1 [4961] Y. Zhang. Weak amenability of module extensions of Banach algebras. Trans. Amer. Math. Soc., 354(10):4131–4151, 2002. 431 zhzh05 [4962] Y. Zhang and H. Zhang. Doppler ultrasound spectral enhancement using the Gabor transform-based spectral subtraction. IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control, 52(10):1861– 1868, 2005. zh05-1 [4963] Z. Zhang. Periodic wavelet frames. Adv. Comput. Math., 22(2):165– 180, 2005. zhzh05-1 [4964] C. Zhao and P. Zhao. Sampling theorem and irregular sampling theorem for multiwavelet subspaces. IEEE Trans. Signal Process., 53(2):705– 713, 2005. sczh95 [4965] G. Zhao and B. M. Schreiber. Algebras of multilinear forms on groups. In Marcantognini, S A M (ed) et al, Harmonic Analysis and Operator Theory A Conference in Honor of Mischa Cotlar, January 3-8, 1994, Caracas, Venezuela Proceedings Providence, RI: American Mathematical Society Contemp Math 189, 497-511. 1995. chjuluzhzo05 [4966] H. Zhao, S. Lu, R. Zou, K. Ju, and K. H. Chon. Estimation of TimeVarying Coherence Function Using Time-Varying Transfer Functions. Annals of Biomedical Engineering, 33(1):1582–1594, 2005. pozh07 [4967] W. Zhao and A. Pope. Image Restoration Under Significant Additive Noise. IEEE Signal Processing Letters, 14(6):401–404, jun 2007. zh01 [4968] D.-X. Zhou. Spectra of subdivision operators. Proc. Amer. Math. Soc., 129(1):191–202, 2001. zh02-2 [4969] D.-X. Zhou. Two-scale homogeneous functions in wavelet analysis. J. Fourier Anal. Appl., 8(6):565–580, 2002. halazh08 [4970] T. Zhou, D. Han, and M.-J. Lai. Energy minimization method for scattered data Hermite interpolation. Appl. Numer. Math., 58(5):646– 659, May 2008. suzh99 [4971] X. Zhou and W. Sun. On the sampling theorem for wavelet subspaces. J. Fourier Anal. Appl., 5(4):347–354, 1999. suzh05 [4972] X. Zhou and W. Sun. An aspect of the Sampling Theorem. Int. J. Wavelets Multiresolut. Inf. Process., 3(2):247–255, 2005. 432 brgolalamamamizh03 [4973] H. Zhu, B. G. Goodyear, M. L. Lauzon, R. A. Brown, G. S. Mayer, A. G. Law, L. Mansinha, and J. R. Mitchell. A new local multiscale Fourier analysis for medical imaging. Medical Physics, 30(6):1134– 1141, 2003. zh88 [4974] K. Zhu. Positive Toeplitz operators on weighted Bergman spaces of bounded symmetric domains. J. Operator Theory, 20(2):329–357, 1988. zh89 [4975] K. Zhu. Multipliers of BMO in the Bergman metric with applications to Toeplitz operators. J. Funct. Anal., 87(1):31–50, 1989. zh90 [4976] K. Zhu. Operator Theory in Function Spaces. Marcel Dekker, New York, 1990. zh05 [4977] K. Zhu. Spaces of Holomorphic Functions in the Unit Ball, volume 226 of Graduate Texts in Mathematics. Springer, New York, NY, 2005. zh07 [4978] K. Zhu. Operator Theory in Function Spaces., volume 138 of Mathematical Surveys and Monographs. American Mathematical Society (AMS), Providence, RI, 2nd ed. edition, 2007. zh07-1 [4979] Y. C. Zhu. q -Besselian frames in Banach spaces. Acta Math. Sinica, 23(9):1707–1718, 2007. zezi97 [4980] M. Zibulski and Y. Y. Zeevi. Analysis of multiwindow Gabor-type schemes by frame methods. Appl. Comput. Harmon. Anal., 4(2):188– 221, 1997. zezi97-1 [4981] M. Zibulski and Y. Y. Zeevi. Discrete multiwindow Gabor-type transforms. IEEE Trans. Signal Process., 45(6):1428–1442, 1997. zi94 [4982] G. Zimmermann. Projective Multiresolution Analysis and Generalized Sampling. PhD thesis, University of Maryland, College Park, December 1994. zi97 [4983] G. Zimmermann. Double projective approximation and projective decomposition in the construction of wavelet bases. 1997. 433 zi97-1 [4984] G. Zimmermann. Spectral synthesis with wavelet methods. In Multivariate Approximation (Witten-Bommerholz, 1996), volume 101 of Math. Res., pages 303–320. Akademie Verlag, Berlin, 1997. zi98 [4985] G. Zimmermann. A minimax-condition for the characteristic center of a tree. Linear Multilinear Algebra, 45(2-3):161–187, 1998. zi98-1 [4986] G. Zimmermann. Eigenfunctions of the Fourier Transform. Technical report, 1998. zi05 [4987] G. Zimmermann. Habilitationsschrift: Coherent states from nonunitary representations. April 2005. zi06 [4988] G. Zimmermann. Coherent states from nonunitary representations. In K. Jetter, M. Buhmann, W. Haussmann, R. Schaback, and J. Stöckler, editors, Topics in Multivariate Approximation and Interpolation, number 12 in Stud. Comput. Math., pages 291–339. Academic Press, Amsterdam, 2006. zo06 [4989] H. Zou. The adaptive Lasso and its oracle properties. J. Amer. Statist. Assoc., 101:1418–1429, 2006. dagistzo05 [4990] J. Zou, A. C. Gilbert, M. Strauss, and I. Daubechies. Theoretical and experimental analysis of a randomized algorithm for sparse Fourier transform analysis. J. Comput. Phys., 211:572–595, 2005. zs80 [4991] L. Zsido. On spectral subspaces associated to locally compact Abelian groups of operators. Adv. Math., 36:213–276, 1980. zs84 [4992] L. Zsido. Spectral properties of the analytic generator and singular integrals. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 17:105–134, 1984. zw93 [4993] M. Zwaan. Moment Problems in Hilbert Space with Applications to Magnetic Resonance Imaging. CWI, Amsterdam, 1993. zy27 [4994] A. Zygmund. A remarque sur les sommes positives des series Trigonometriques. Bull. Int. Polon. Sci. Lett. Ser. A Math Cracowie, 6A:333–341, 1927. zy27-1 [4995] A. Zygmund. Sur un theoreme de M. Fekete. Acad. Polon. Sci. Lett. Ser. A Math., 6A:334–347, 1927. 434 zy30-1 [4996] A. Zygmund. On the convergence of lacnary trigonometric series. Fund. Math., 16:138–155, 1930. zy30 [4997] A. Zygmund. Sur les series trigonometriques lacunaires. J. London Math. Soc., 5:138–155, 1930. zy55 [4998] A. Zygmund. Trigonometrical Series. Dover Publications Inc, New York, 2nd ed. edition, 1955. zy03 [4999] A. Zygmund. Trigonometric Series. Cambridge University Press, 2003. 435
© Copyright 2024 ExpyDoc